
  

  

Abstract—We introduce the concept of empirically 
sustainable principles for biosignal separation as a means of 
addressing the complexities that are practically encountered in 
the decomposition of surface electromyographic (sEMG) 
signals.  Recently, we have identified two new principles of this 
type. The first principle places upper bounds on the inter-firing 
intervals and residual signal energies of the separated 
components. The second principle seeks a local minimum in the 
coefficient of variation of inter-firing intervals of each separated 
component. Upon incorporation of these principles into our 
latest Precision Decomposition system for sEMG signals, 20 to 
30 motor unit action potential trains (MUAPTs) were 
decomposed per experimental sEMG signal from isometric 
contractions with trapezoidal force profiles. Our new system 
performs well even as the force generated by a muscle 
approaches maximum voluntary levels. 

 
 

I. INTRODUCTION 
 ECOMPOSITION of the surface electromyographic 
(sEMG) signal into its constituent motor unit action 
potential trains (MUAPTs) is a challenging signal 

separation problem that has received considerable attention  
[1,2,3] over the last decade.  Broadly speaking, two basic 
approaches can be taken to address such problems. In the 
“applied mathematics” approach, a formulation is found for 
the signal decomposition problem that enables the application 
of a pre-existing optimized mathematical solution (e.g. blind 
signal separation [4]) to the problem as a whole. In the 
“empirically sustainable” approach, the signal decomposition 
problem is divided into (possibly inter-dependent) sub 
problems, each of which can be solved using a separate 
mathematical framework. However, instead of there being a 
mathematical optimality requirement for the solution as a 
whole, there is the requirement that the solution undergo 
extensive empirical testing to determine the fidelity with 
which it carries out the sEMG signal decomposition task.  
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 The empirically sustainable approach is exemplified by our 
Precision Decomposition approach for indwelling EMG 
signals and, more recently, surface EMG signals.  The 
original version of the system [5] was designed by dividing 
the overall problem into sub problems involving template 
formation, template matching, and template updating. 
Empirical testing of the decomposition results was conducted 
by trained human operators and by comparing 
decompositions of the same MUAPT on different sensors [6]. 
Further subdividing the decomposition problem and 
formulating new solutions for them addressed the identified 
shortcomings of the system. As the number of sub problems 
kept increasing, it became clear that significant consideration 
would be warranted on how the (usually parameterized) 
solutions for the sub problems interact with each other and 
how that affects the overall solution. To address this new 
level of complexity, we imbued subsequent implementations 
of the Precision Decomposition system with the IPUS 
architecture [7,8] for Integrated Processing and 
Understanding of Signals.  This architecture enables the 
system designer to conveniently specify and test principles 
that can be utilized by the overall system to adaptively decide 
upon what values to assign to the various parameters of its 
sub systems. The formulation of such principles requires 
extensive trial-and-error procedures to ensure that the overall 
signal separation task is empirically sustainable.  

 In this paper, we present examples of two biosignal 
separation principles that we have recently incorporated into 
our Precision Decomposition system for surface EMG 
signals. Experimental results from the resulting 
decomposition system for real sEMG signals are used to 
illustrate the effectiveness of these principles.  

II. METHODS 
The current version of our Precision Decomposition 

system can be conceptualized as consisting of two stages 
(Stage I and Stage II). Stage I consists of the algorithms 
described in [3] and its primary purpose in the current version 
of the system is to identify the evolving action potential 
templates of as many MUAPT constituents of the input signal 
as possible. Stage II utilizes those action potential templates 
to estimate the firing times of as many of the identified 
MUAPTs as possible.  

As indicated in Figure 1, Stage II begins by applying a 
shape-matching procedure to the sEMG signal and produces 
shape-evidence signals for the various PD-IPUS identified 
MUAPT constituents. Conceptually, a shape-evidence signal 
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Fig. 1: Stage II diagram. 

 
)(nsm  at any time n represents a measure of shape similarity 

between the mth motor unit’s template vector mnh
r

and a data 

vector mnd
v

 representing the shape of the input sEMG signal 
in the vicinity of time n.  More specifically, the definition of 

)(nsm is based upon the normalized cross-correlation (C) of 

mnd
v

and mnh
r

 : 
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Taking a parameter mα  as the ratio of the largest 

magnitude in mnh
r

 to that of the largest magnitude among all 

MUAPT templates, the intermediate signal )(ngm  is 
obtained from C as: 
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The weighting factor on C in equation (2) serves to 
penalize the shape-correlation score where the amplitude of 
the signal data is significantly higher or lower than that of the 
template. The values of )(ngm  can be seen to range between 
-1.0 and 1.0 with larger values representing greater degrees of 
shape match between the signal data and the template. The 
next step is to modify each )(ngm  to form )(ngm′  by 

retaining the values of )(ngm at local maxima and setting 

the rest of the values of )(ngm′ to zero. Finally, the 

shape-evidence signals )(nsm  are obtained by setting them 

equal to the corresponding )(ngm′  values and performing an 
aliasing-rejection analysis [9] that sets some additional values 
of each )(nsm  to zero.  

 
The aliasing-rejection process basically limits the number 

of MUAPT constituents that can share any single data peak in 
the sEMG signal; it allows only the largest subset of the 
MUAPT constituents that can adequately account for the 
height of the data peak. Whenever aliasing rejection excludes 
a MUAPT at any particular time, 0n , the corresponding value 

of )( 0nsm is set to zero. 
  
The shape-evidence signals then undergo iterative MUAPT 
discrimination analysis to resolve the high degrees of MUAP 
superimposition that were not adequately handled by the 
Stage I. Each of the iterations of the MUAPT discrimination 
analysis is controlled by the values assigned to a set of 3M 
decision variables, where M is the number of MUAPT 
constituents identified by the Stage I.  
  
Stage II then proceeds to conduct a principled iterative search 
for the values of the 3M decision variables of the MUAPT 
discrimination procedure. The underlying biosignal 
separation principle requires each MUAPT to 
simultaneously satisfy the following two criteria: 

 
 
(1) The mean energy of the residual signal (the difference 

between the original signal and all the identified MUAPT 
constituents) at the firing locations of a MUAPT must be a 
relatively small fraction of the mean energy in all the MUAPT 
constituents at those locations. 
 

 
(2) The mean inter-firing interval of a MUAPT must not be 

greater than τ  s. We use 35.0=τ s in our current 
implementation of the algorithm. 

 
The above principle was arrived at using extensive 

experimentation on a database of real sEMG signals and user 
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inspection of the results. At all times, care was taken to make 
sure that the principle is general enough to apply to all sEMG 
signals of interest.   

 
Any MUAPT for which Stage II is not able to satisfy the 

previously described principle by the end of the iterations is 
rejected.  The MUAPT constituents that remain then undergo 
another principled search. The underlying biosignal 
separation principle that we have empirically derived for this 
search is given below: 

 

The coefficient of variation of the inter-firing intervals of 
each MUAPT should be a local minimum as a function of the 
three decision variables per MUAPT of the MUAPT 
discrimination procedure.  
 

 
The rationale behind this search principle of Stage II is that 

random placements of false positives and/or false negatives 
amongst the firings of a MUAPT always tend to increase 
MUAPT inter-firing irregularity. The true firings would 
therefore be expected to cause a local minimum in inter-firing 
irregularity. 

 
 

 

III. RESULTS 
Upon incorporation of the biosignal separation principles 

described in this paper, the current version of our Precision 
decomposition system is typically able to decompose 20 to 30 
MUAPTs per sEMG signal. In some cases, it can decompose 
more than 30 MUAPTs. This is a much higher yield of 
MUAPTs decomposed per signal when compared to 
previously published techniques [3,4]. The surface EMG 
sensor produced 4 channels of data, which were band pass 
filtered between 50 Hz and 2500 Hz before being 
decomposed by the latest version of our Precision 
Decomposition system for surface EMG signals.  

 
The inter-firing intervals of the 28 MUAPTs obtained by 

decomposing an sEMG signal from an 80% MVC of the 
Tibialis Anterior (TA) muscle are shown in Figure 2 for the 
most current version of our Precision Decomposition system 
for surface EMG signals.  

 
In Figure 2, the “dot” plot of each MUAPT’s inter-firing 

intervals consists of a series of dots. The horizontal and 
vertical coordinates of each dot respectively represent a 
specific firing time and the time elapsed since the 
immediately preceding firing of the same motor unit. In the 
plot, the maximum height of any dot is restricted to 200 ms. 
We have also superimposed on the bar plot a solid line that 

represents the force profile generated during the muscle 
contraction. The vertical axis on the left represents the 
recruitment order of MUAPT constituents while the vertical 
axis on the right represents force level as a percentage of 
MVC.  

 
It is seen in Figure 2 that earlier recruited motor units 

typically have smaller mean inter-firing intervals than later 
recruited motor units. Later recruited motor units are also 
seen to have greater variance in inter-firing intervals than 
earlier recruited motor units.  

 
The dot plot of each MUAPT in Figure 2 can also be seen 

to exhibit “canoe like” characteristic. For further evaluation 
of the empirical sustainability of our sEMG signal 
decomposition, we have been applying our system on a large 
database of real and synthetic EMG signals. We are also in 
the process of carrying out two-source tests to quantify the 
signal decomposition accuracy of the system.  
 

IV. CONCLUSIONS 
We have presented the concept of empirically sustainable 

biosignal separation and how it has proved useful in the 
design of the latest version of our surface EMG signal 
decomposition system. Initial experiments indicate that with 
the incorporation of two new biosignal separation principles 
our decomposition system is able to decompose 20 to 30 
MUAPTs per signal and in some cases even more.  

 
The accuracy of our sEMG signal decomposition 

technique is being actively investigated but appears to be 
comparable to the accuracies attained by the best indwelling 
sEMG signal decomposition techniques. 
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Fig. 2: Dot plot of 28 MUAPTs decomposed from 4-channel sEMG signal of 80% MVC of TA muscle. 
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