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ABSTRACT 

 

The authors previously reported speaker-dependent 

automatic speech recognition accuracy for isolated words 

using eleven surface-electromyographic (sEMG) sensors in 

fixed recording locations on the face and neck. The original 

array of sensors was chosen to ensure ample coverage of the 

muscle groups known to contribute to articulation during 

speech production. In this paper we systematically analyzed 

speech recognition performance from sensor subsets with 

the goal of reducing the number of sensors needed and 

finding the best combination of sensor locations to achieve 

word recognition rates comparable to the full set. We 

evaluated each of the different possible subsets by its mean 

word recognition rate across nine speakers using HMM 

modeling of MFCC and co-activation features derived from 

the subset of sensor signals. We show empirically that five 

sensors are sufficient to achieve a recognition rate to within 

a half a percentage point of that obtainable from the full set 

of sensors. 

 

Index Terms— Electromyography, speech recognition 

 

1. INTRODUCTION 

 

Previously reported results [1] demonstrated the ability to 

conduct accurate automatic speech recognition on vocalized 

and mouthed speech using signals collected by a set of 

eleven surface-electromyographic (sEMG) sensors placed at 

standardized locations on the face and neck. The original 

array of sensors was chosen to ensure ample coverage of the 

muscle groups known to contribute to articulation and 

correlated with voice production during speech production. 

In this follow-on study, the effect of the number of sEMG 

sensors on subvocal speaker-dependent speech recognition 

accuracy was analyzed with the goal of identifying a smaller 

subset of sensors that maintained recognition accuracy close 

to that of the full sensor set on a 65-word vocabulary for 9 

different speakers. 

 

Our approach was first to evaluate the best speech 

recognition rates achievable at each subset size averaged 

across all 9 speakers. Given those results, we then selected 

the smallest cardinality that afforded a maximal average 

recognition close to that of the full eleven-sensor set. After 

the preferred number of sensors was selected, we then 

identified several subsets of that cardinality that provide 

sufficient sEMG articulation information for achieving 

speech-recognition rates to within one percentage point of 

the original full set of sensors. 

 

2. METHODS 

2.1 Data Collection 

Data consisted of eleven channels of sEMG signals 

measuring the activity of superficial muscles in face, neck 

and under the chin (see Figure 1) during the production of a 

65-word English vocabulary (see Table 1), repeated six 

times by nine different speakers, 4 female and 5 male.  

 

  

Figure 1. The sEMG sensor locations shown (A) before 

and (B) after removal. Black lines in (B) show electrode 

contacts and the red dot (neck midline) marks the 

cricothyroid gap. 

The ordering of the words was randomized separately 

among the different speakers, and each word was repeated 
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three times before continuing on to the next word. Two 

complete rounds of data for each speech modality—

vocalized and mouthed—were collected resulting in six 

repetitions of each speech token per speech mode per 

speaker. The original signals were recorded digitally using a 

20 kHz sampling rate. 

 
no fire that right advance monitor stand-by 

go five this seven forward continue shut-down 

one four zero target latitude negative accelerate 

six help abort three location hibernate maneuver 

ten days block assist measure position affirmative 

two nine eight brings recover proceed coordinates 

yes pull hours cancel reverse transmit kilometers 

left push miles meters seconds thousand rendezvous 

fast slow point collect hundred longitude  

feet stop reach     

Table 1. Vocabulary of 65 words used in the sEMG-

based word recognition experiments. 

2.2 sEMG-based Speech Recognition 

Automatic speech recognition was conducted on the data by 

modeling the 65 word tokens represented by 11-channel 

sEMG signals on a speaker-dependent basis using hidden 

Markov models. The experiments implemented a cross-

validation method in which four utterances (Utterances 1, 3, 

4, and 6) of each word per speaker were used to train each 

speaker-dependent word model, and the remaining two 

utterances (Utterances 2 and 5) of each word per speaker 

were held out for testing. Segmentation and labeling of the 

word utterances from the surrounding non-speech intervals 

of the original signals were performed using a function of 

the onset/offset  of sEMG signal activity above/below an 

estimated noise threshold on selected channels. 

In preparation for modeling and recognition, the 

digitized signals were first downsampled from 20 kHz to 5 

kHz, and then the DC-offset was removed from each 

channel. The data were then broken into overlapping multi-

channel frames using a window size of 50 ms and a frame 

period of 25 ms. A feature vector, consisting of 9 Mel-

frequency cepstral coefficients (MFCCs), the 0th coefficient 

and deltas together with pairwise channel co-activation  

information [2], was then extracted from each frame. Eleven 

channels of such features resulted in 275 real-valued 

features per frame:    2011  MFCC features plus 11-

choose-2 co-activation features. Signal processing, feature 

extraction and conversion into HTK format were 

implemented using Matlab and the Voicebox Speech-

Processing Toolbox for Matlab [3]. 

Supervised HMM modeling and recognition were 

performed using the HTK Speech Recognition Toolkit [4]. 

For each of the nine speakers, a separate set of 65 speaker-

dependent word models were generated from training data. 

The HMM topology consisted of 10 states, of which only 8 

states were emitting. The transition matrix was defined such 

that the model either stayed in the same state or advanced 

one state between consecutive frames.  Only one Gaussian 

per feature per word was generated, which was initialized 

with a mean of 0 and variance of 1, and a fixed variance 

floor was set to 0.01. Training began by first generating 

initial word model estimates using segmental k-means on 

the labeled bootstrap data and then re-estimating the models 

using an isolated-word implementation of the Baum-Welch 

algorithm. The models were further re-estimated three 

consecutive times using the Baum-Welch algorithm across 

all words in the vocabulary simultaneously. Speaker-

dependent recognition was performed using the Viterbi 

algorithm. 

2.3 Recognition Performance using Full Sensor Set 

We selected as our evaluation metric for comparing subsets 

the mean recognition rate across all nine speakers using the 

full HMM training and recognition procedure, Baseline 

recognition accuracy was computed for both speech 

modalities, mouthed and vocalized, using the full array of 

sensors, the results of which are presented in Table 2. The 

mean speaker-dependent mouthed speech recognition rate 

across all nine speakers is 85.4% (range of 69.2% - 93.1%). 

  
Speaker Recognition Accuracy 

Number Gender Mouthed Vocalized 

1 F 86.9% 88.5% 

2 F 83.1% 93.1% 

3 F 90.0% 86.9% 

4 M 77.7% 91.5% 

5 M 93.1% 96.2% 

6 M 90.8% 97.7% 

7 M 89.2% 96.9% 

8 F 88.5% 84.6% 

9 M 69.2% 90.8% 

Mean - 85.4% 91.8% 

Table 2.  Baseline recognition accuracy for both speech 

modalities using all 11 sensors. 

2.4 Analysis of Subset Size 

We began the subset analysis by first evaluating the 

maximal speaker-dependent recognition rate, averaged 

across all speakers, achievable at each cardinality. Since 

alternative search methods may not guarantee finding the 

maximal scoring subset at each cardinality, we conducted an 

exhaustive evaluation on all 2047 possible subsets using the 

mouthed-word data.  There are a total of  122047
11

=  

possible subsets from the full array of 11 sensors, of which 

there are 11-choose-k subsets of size k, for 111 == k . For 

the empty subset 0=k , we assume a recognition rate equal 

to uniform random distribution; i.e., 1/65 = 1.5% 

recognition rate. 

To implement such a large scale set of experiments 

efficiently, we replaced our computationally expensive 

signal-processing and feature-extraction procedures from 

the raw segmented signals with simple matrix 
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multiplications. We pre-computed 2047 binary 

transformation matrices, one for each subset, algebraically 

designed to transform the feature vector obtained from using 

all eleven sensors to the feature vector for the given subset 

of sensors. To generate the 

word

utterances
 6

speaker

words
65

subset

speakers
93510 =

 

new feature 

vectors for each subset, one need only read in the 

appropriate binary transformation matrix and multiply the 

3510 feature vectors from the full 11-sensor set by the 

matrix. 

Plotting the resulting mean recognition rates of each 

possible subset versus its subset cardinality (see Figure 2) 

reveals relevant characteristics to our study. First, the 

maximal mean recognition rate at each cardinality increases 

rapidly by using just a small number of sensors and 

eventually plateaus at approximately 85% for five sensors, 

with no significant increase (less than a total of 1.75 

percentage points) in recognition capabilities from adding 

additional sensors. The best scoring 5-sensor subset 

achieved a mean recognition rate of 84.9%, just a half a 

percentage point below that of the full 11-sensor set 

(85.4%). Second, the maximal mean recognition rates of 

subsets having between six and ten sensors were slightly 

higher than that of using all eleven sensors. This effect may 

possibly be attributable to overfitting of the larger feature 

vectors as the cardinality grows. Third, the fewer the 

number of sensors, the greater the variance of the 

recognition results for a particular cardinality. 
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Figure 2. Mean recognition rates for each sensor subset 

on mouthed words. Each data point represents 

recognition for a different subset averaged across all 

nine speakers.  A line spans the peak recognition values. 

Our findings regarding the effect of sEMG subset 

cardinality on speech recognition performance were cross-

checked against the vocalized data set (see Figure 3). 

Although we did not perform an exhaustive evaluation of 

the subsets on the vocalized data, we did conduct a generous 

sampling of subsets across various cardinalities. Note that 

one would not a priori expect the subsets that yield the 

maximal recognition rates for vocalized data to be the same 

for mouthed data, since sensors recording muscular activity 

correlated with phonation should contribute to recognition 

capability in the vocalized but not necessarily the mouthed 

experiments. Additionally, it is reasonable to expect that the 

mouthed articulation differs somewhat from vocalized 

articulation because mouthing is not a completely natural 

use of the articulator muscles. 
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Figure 3. Comparison of the maximal mean recognition 

rate per sensor subset size between the two different 

phonation modalities of speech: vocalized and mouthed. 

Note that the evaluation of the subsets was exhausted 

over the mouthed data, but not over the vocalized data. 
 

Comparing the results from the two different data sets, we 

conclude that the trends that we observed on the mouthed 

data are indeed reflected in the vocalized data, as well. More 

specifically, analysis of sensor subset sizes with respect to 

both vocalized and mouthed data provides empirical support 

that five sensors provides a desired balance of a significant 

reduction in the number of sensors while maintaining speech 

recognition capabilities to within a half a percentage point 

of that obtained using the full 11-sensor set: 84.9% for five 

sensors versus 85.4% for eleven sensors on the mouthed 

data, and 91.4% for five sensors versus 91.8% for eleven 

sensors on the vocalized data. 

2.5 Subset Selection 

 

With the preferred subset cardinality selected as five, we 

proceeded to identify a particular sensor subset or range of 

subsets to be chosen as best in terms of speech recognition 

capabilities. The top-scoring 5-sensor subset for the 

mouthed, individual-word data was comprised of Sensors 1 

and 2 under the chin, Sensor 5 on the neck, and Sensors 9 

and 10 on the face (see top left-hand corner schematic in 

Figure 4) and resulted in an 84.9% average recognition rate 

across all nine speakers. In addition to having the best 

average recognition rate, this configuration of sensors also 
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had the fourth smallest variance among all 462 5-sensor 

subsets. Notably, five other 5-sensor subsets yielded 

recognition rates within a single percentage point of the 

highest-scoring one (see Figure 4). 

 

 

Figure 4. The six top-scoring 5-sensor subsets (black 

shading), with the mean recognition rate for each subset 

shown above the sensor schematics. 

Patterns of the optimal reduced sensor sets were consistent 

with the anticipated muscle signal sources across the tested 

anatomical regions in relation to their known roles in voice 

and speech production.  There was at least one sensor 

selected among each of the three targeted head/neck surface 

regions in the top 26 maximally-scoring 5-sensor subsets 

(see Figure 4).  This suggests the importance of perioral face 

locations for capturing articulatory movements (Sensors 8-

11), under the chin locations for representing tongue height 

and front versus back tongue position (Sensors 1-2), and the 

ventral neck surface for capturing laryngeal vertical position 

and possibly laryngeal activity (Sensors 3-7).  Variability in 

the particular sensor(s) in each region for the optimal 

subsets indicates a degree of redundancy in information 

provided within (and possibly across) each region.  The only 

sensor consistently represented in each of the top 6 subsets 

was Sensor 1 under the chin.  This location happens to also 

match the optimal sensor position (among seven neck/face 

locations tested) for laryngectomy patients to control an 

EMG-activated artificial voice source [5], and is a robust 

information source regarding both intended voice activation 

and tongue control. 

There was at least one sensor selected on the medial, 

ventral neck surface (Sensors 4, 5 and 7) in the top six 5-

sensor subsets.  These locations detect superficial neck 

“strap” muscles which normally help control and stabilize 

the height of the larynx in the neck while speaking; and are 

apparently active whether voice is actually produced or not, 

since they were important for recognition during both 

normal and mouthed speech modes. 

 

3. CONCLUSION 

 

In this study we evaluated the effect of the number of sEMG 

sensors on recognition accuracy for both normal and non-

vocalized (mouthed) speech modes. The recognition 

accuracy increases rapidly with respect to the number of 

sensors, eventually plateauing at 5 sensors to within a 

percentage point of the full 11-sensor set. We observed a 

slight peak in performance at around 9 sensors, possibly due 

to the effect of overfitting at larger sizes of feature vectors 

given the limited amounted of training data available.   The 

top six 5-sensor sets had at least one sensor location on each 

of the face, chin and neck regions under study, indicating 

each region’s unique contribution to sEMG-based speech 

recognition.  Further work is needed to determine how 

sEMG patterns from each sensor location relate to particular 

speech sounds or articulatory gestures, and whether the 

present sensor reduction findings will extend to recognition 

of continuous speech. 
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