
  

  

Abstract—The use of Artificial Intelligence (AI) methods in 
Precision Decomposition (PD) of indwelling and surface 
electromyographic (EMG) signals has led to the recent 
development of systems that can automatically resolve most 
instances of complex superposition among action potentials.  
The remaining errors have to be corrected by a user-interactive 
editing process. Typically, 25% to 50% of such errors involve 
action-potential aliasing, whereby the action potential of a 
motor unit is incorrectly identified in signal data that actually 
supports the action potential of another motor unit. To 
drastically reduce this class of errors, we have added a new 
aliasing-rejection mechanism in PD algorithms. Experimental 
results on real EMG signals show that aliasing-related errors of 
the Precision Decomposition technique are thereby reduced by 
80% to 90%.  

 

I. INTRODUCTION 
 RECISION Decomposition (PD) of EMG signals into 
their constituent motor units has been significantly 

improved through Artificial Intelligence (AI) innovations 
over the last decade [1,2,3]. Prior to any user-interactive 
editing, the latest generation of PD systems with artificial 
intelligence architectures and algorithms have been reported 
to decompose indwelling EMG signals with 75% to 96% 
accuracy [3] and surface EMG signals with 75% to 91% 
accuracy [4]. Many of the decomposition errors of these PD 
systems can be detected and corrected via user-interactive 
editing to achieve clinically acceptable accuracy levels of 
95% or greater. A major goal of our current research is to 
alleviate as much as possible the burden placed on 
user-interactive editing for achieving the desired accuracy 
levels. 
 

A significant source of PD errors for indwelling as well as 
surface EMG signals is an aliasing phenomenon that 
essentially causes PD systems to “hallucinate” the presence 
of a motor unit action potential where it is actually not 
present. As an illustration, consider the two action potentials, 
AP1 and AP2, of Figure 1. The shape of AP2 is similar to a 
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temporal portion (indicated by the shaded region in Figure 1) 
of AP1. When only AP1 is present, it can sometimes appear 
to a PD system that AP2 is also present; the problem is further 
exacerbated when other motor unit action potentials are also 
in superposition with AP1. Furthermore, there is always the 
chance that AP2 may actually be in superposition with the 
grayed portion of AP1. In this paper, we address how in such 
instances a PD system can be made to more effectively 
distinguish between actual superposition and the occurrence 
of aliasing. 

II. BACKGROUND 
The Precision Decomposition solutions in [3] and [4] 

consist of a cascade combination of three basic classifiers 
(depicted in Fig. 2) embedded within an artificial intelligence 
architecture known as IPUS [5,6]; we therefore refer to this 
class of PD solutions as PD-IPUS. The Maximum 
A-posteriori Probability (MAP) classifier in PD-IPUS is 
adapted from the original Precision Decomposition solution 
proposed by LeFever and De Luca [7]. Each of the three basic 
classifiers in PD-IPUS consists of signal processing 
algorithms that operate directly on raw or filtered EMG 
signals and symbol processing algorithms that are applied to 
symbol structures containing classification results from 
previous rounds of signal processing and/or symbol 
processing. 

 
 The classifiers used in PD-IPUS have many tunable 
parameters associated with them. The tuning is performed by 
the IPUS elements of the decomposition system itself and it is 
entirely signal dependent rather than requiring any input from 
the user regarding the signal source (e.g. identification of the 
source muscle). The IPUS architecture permits the system 
designer to conveniently define specialized rules (the entire 
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Fig. 1:  Two action potentials with possible aliasing in shaded region. 
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collection of these rules constitute a “knowledge base”) that 
are used at run-time to decide how to tune the algorithm 
parameters in response to various statistics computed from 
the signal. For example, one of the rules associated with the 
MAP classifier in PD-IPUS continuously updates a statistic 
for how many MUAPT candidates per detection are being 
generated for application of the MAP criterion; if the statistic 
takes on a value less than an established threshold, the rule 
causes an increase in the value of one of the classifier 
parameters so as to relax the criterion for candidate 
generation. Two new IPUS rules are proposed in Section III 
(Methods) to introduce an aliasing-rejection mechanism into 
PD-IPUS.       
 

 
Fig. 2:  The PD-IPUS Classifiers 

 
 The new aliasing rejection rules are designed into the 

signal and symbol processing associated with the 
Superposition (SUP) classifier of PD-IPUS.  The SUP begins 
by applying an “iterative correlation procedure” [2] to the kth 
candidate data kρ  in order to obtain an Absolute Shape 
Rating (ASR) for each possible action potential classification. 
Specifically, if hmn denotes the hypothesis that the mth motor 
unit has an action potential whose main lobe is centered at 
time n, then the corresponding ASR is computed 
as:
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where mnt
v

 is the waveform template corresponding to hmn 

and  mnd
v

is the portion of the signal data at location n that best 
“matches” the waveform template in accordance with a 
normalized cross-correlation (NCC) measure specified as: 
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The SUP, under the supervision of IPUS controlled symbol 
processing, then carries out statistical utility maximization to 

determine which of the hypothesized detections have 
sufficient data evidence to support them. 

III. METHODS 
 Even before the incorporation of the IPUS 
aliasing-rejection rules described in this section, the 
decomposition results from the SUP classifier of PD-IPUS 
were superior to those of previously reported methods. The 
new rules were specifically motivated by the desire to 
significantly reduce the burden on user-interactive editing for 
reaching clinically acceptable accuracy levels. One of the 
rules pertains to the rejection of possible aliasing of the main 
lobes of two different action potentials. The other rule 
pertains to the rejection of possible aliasing of the main lobe 
of one action potential and the side lobe of another. 
 
Main Lobe to Main Lobe Aliasing Rule: This rule is 
applicable to the type of situation illustrated in Figure 3. The 
top plot in the figure represents the observed EMG data 
whose main lobe has peak height D. The second and third 
plots respectively represent the action potentials (AP1 and 
AP2) of two different motor units. The peak heights of AP1 
and AP2 are A1 and A2 respectively. Without loss of 
generality, assume A2<A1. The IPUS rule for aliasing 
rejection in such situations is given below [The fractional 
parameters p1 and p2 are IPUS controlled]: 
 
If (1-p2)D ≤  p1(A1+A2) ≤ (1+p2)D,  then neither AP1 nor AP2 
is rejected as a case of aliasing; else 

If (1-p2)D ≤  p1A1 ≤  (1+p2)D, then AP2 is rejected as a case 
of aliasing; else 

If (1-p2)D ≤  p1A2 ≤  (1+p2)D, then AP1 is rejected as 
a case of aliasing; else 

the action potential with lower ASR is rejected 
as a case of aliasing. 
 

The IPUS parameters, p1 and p2 typically converge to the 
values around 0.5 and 0.1, respectively. 
 

 
Fig. 3:  EMG data with possible “main lobe to main lobe” aliasing of two 
action potentials, AP1 and AP2. 
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Main Lobe to Side Lobe Aliasing Rule: This rule is applicable 
to the type of situation illustrated in Figure 4. The top plot in 
the figure represents the observed EMG data whose main 
lobe has peak height D. The second and third plots 
respectively represent the action potentials (AP1 and AP2) of 
two different motor units. The side lobe height for AP1 is A1 
and the main lobe height for AP2 is A2. The IPUS rule we 
have formulated for this type of situation is given below [The 
fractional parameters p3 and p4 are IPUS controlled]: 
 
If (1-p4)D ≤ p3(A1+A2) ≤ (1+p4)D, then AP2 is not rejected 
 as a case of aliasing; else 
 AP2 is rejected as a case of aliasing. 
 
The IPUS controlled parameters, p3 and p4, typically 
converge to the values around 0.2 and 0.5, respectively. 

 
 

IV. RESULTS 
New versions of PD-IPUS have been implemented that 

incorporate the IPUS aliasing-rejection rules described in the 
previous section. Initial experimental results confirm the 
expectation that 80% to 90% of aliasing errors of the SUP 
classifier are eliminated. For example, we considered a 
4-channel challenging surface EMG signal (see [4] for 
acquisition details) from the First Dorsal Interosseous (FDI) 
muscle with a 50% MVC trapezoidal force profile of 30s 
duration. Without the aliasing-rejection mechanisms, our 
fully automatic PD-IPUS system for surface EMG signals 
decomposed 6 action potential trains with approximately 75% 
accuracy. The same system with the addition of 
aliasing-rejection mechanisms described in this paper 
decomposed the 6 action potential trains with nearly 83% 
accuracy.  Furthermore, a detailed inspection (via 
user-interactive editing) of the decomposition results 
indicated that the number of decomposition errors 
attributable to aliasing rejection had been reduced by 

approximately 85%.  About two-thirds of the eliminated 
errors were due to the Main Lobe to Side Lobe Aliasing Rule, 
and the rest were due to the Main Lobe to Main Lobe Aliasing 
Rule. Similar results have been obtained so far with other 
surface EMG signals as well. We are currently conducting a 
detailed experimental evaluation for other surface EMG 
signals as well as for indwelling EMG signals. The trend that 
appears from our initial results is that roughly 25% to 50% of 
the decomposition errors prior to incorporation of 
aliasing-rejection mechanisms can be attributed to aliasing 
phenomena. Furthermore, 80% to 90% of those errors can 
effectively be eliminated via the aliasing rejection rules 
described in this paper. 

 
We now present some examples of actual data illustrating 

the effectiveness of aliasing rejection on the surface EMG 
signal (50% MVC, FDI) that was decomposed into 6 motor 
units. In the figures for these examples, we show only the 3 
dominant channels from among the four channels of the data; 
the energy in the fourth channel turned out to be much smaller 
than that of each of the other channels. 
 
Example 1: 
In this example, both motor unit 2 and 3 are classified as 
belonging to a single data-peak (See Figure 5), indicating that 
the Main Lobe to Main Lobe Aliasing Rule did not reject 
either motor unit as being an alias.  The same rule rejected 
motor unit 6 for the data peak where only motor unit 5 is 
classified as being present (See Figure 5). Finally, the first 
positive side lobe to the right of the data peak for motor unit 5 
had motor unit 4 rejected as a match for it because of the Main 

Lobe to Side Lobe Aliasing Rule. The correctness of the 
answers can be seen in Figure 5 from the flatness of the 
“residue” obtained by subtracting the hypothesized templates 
from the EMG data. 
 
Example 2: 
 
In the example presented in Figure 6, all 6 motor units were 
found in the vicinity of the same data segment. The Main 
Lobe to Main Lobe Aliasing Rule rejected neither motor unit 
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Fig 4: EMG data with possible “main lobe to side lobe” aliasing of two 
action potentials, AP1 and AP2. 
 

 
Fig. 5:  EMG data and residue after subtraction of templates 2, 3, and 5.  
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4 nor motor unit 5. Similarly, the Main Lobe to Side Lobe 
Aliasing Rule rejected neither motor unit 3 nor motor unit 6. 
As in Example 1, the flatness of the residue after subtracting 
the six hypothesized motor units verifies the proper 
functioning of our aliasing-rejection mechanism. 

 

V. CONCLUSION 
The impressive results we have obtained thus far with our 
IPUS-based aliasing-rejection mechanism are a small but 
important first step toward the achievement of guaranteed  
accuracy via fully automatic PD-IPUS. We are confident that 
the power of artificial intelligence mechanisms of IPUS will 
help achieve the ultimate goal, aided by the careful derivation 
of specialized rules such as the ones reported in this paper. 
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Fig. 6:  EMG data and residue after subtraction of all 6 templates. 
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