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Abstract—Remote monitoring of physical activity using
body-worn sensors provides an alternative to assessment of
functional independence by subjective, paper-based question-
naires. This study investigated the classification accuracy of a
combined surface electromyographic (sEMG) and accelerometer
(ACC) sensor system for monitoring activities of daily living
in patients with stroke. sEMG and ACC data (eight channels
each) were recorded from 10 hemiparetic patients while they
carried out a sequence of 11 activities of daily living (identification
tasks), and 10 activities used to evaluate misclassification errors
(nonidentification tasks). The sEMG and ACC sensor data were
analyzed using a multilayered neural network and an adaptive
neuro-fuzzy inference system to identify the minimal sensor con-
figuration needed to accurately classify the identification tasks,
with a minimal number of misclassifications from the nonidentifi-
cation tasks. The results demonstrated that the highest sensitivity
and specificity for the identification tasks was achieved using a
subset of four ACC sensors and adjacent sEMG sensors located
on both upper arms, one forearm, and one thigh, respectively.
This configuration resulted in a mean sensitivity of 95.0%, and a
mean specificity of 99.7% for the identification tasks, and a mean
misclassification error of ��% for the nonidentification tasks.
The findings support the feasibility of a hybrid sEMG and ACC
wearable sensor system for automatic recognition of motor tasks
used to assess functional independence in patients with stroke.

Index Terms—Accelerometry, activity monitor, adaptive
neuro-fuzzy inference system, artificial neural network, elec-
tromyography, stroke, wearable sensors.

I. INTRODUCTION

S TROKE can result in a profound restriction of physical
functioning, which may negatively impact the quality of

life for stroke survivors and their care givers. Stroke is the
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leading cause of serious, long-term disability in the United
States [1]. Approximately 4.8 million Americans are currently
diagnosed with stroke and more than a million are reported
to have residual difficulties in carrying out activities of daily
living (ADL) [2]. The psychological and financial advantages
of returning these patients to their home following acute care
must be weighed against the increased health risks for falls and
other catastrophic injuries that can result when discharge plans
are implemented prematurely or with insufficient home-based
support. Falls in the home are the leading cause of injury-re-
lated deaths among people ages 65 and older in the U.S. and
represent a public health burden in health care costs that is on
par with that of stroke [2].

Decisions about home-readiness in these patients rely heavily
on comprehensive assessments of mobility and physical func-
tioning. Most of the clinical assessment tools currently in use
are based on either self-report or observer-rated measures.
Self-report measures, although simple to acquire, can be vague
or inaccurate due to poor patient memory, unsound perceptions
of performance, or misjudgments of actual capability [3],
[4]. Observer-rated surveys by caregivers are often time-con-
suming, involve limited opportunity for repeated observations,
and rarely capture changes in functional status that may fluc-
tuate throughout the day [4].

Instrumented devices that automatically and continuously
monitor physical activity and functioning provide an alternative
to subjective assessment tools. The objectivity and comprehen-
siveness of a patient’s physical performance record could be
improved by a system that automatically identifies the activities
carried out by the individual throughout the day, particularly
in remote locations such as the patient’s home or community.
Sensor-based activity monitors currently in use provide general
measures of physical activity or energy expenditure based on
data from accelerometer (ACC), gyroscope, or EKG sensors.
ACCs are the most common sensors found in current activity
monitors because of their versatility and relative ease of use.
When placed on the body, ACC sensors provide kinematic
information based on measurements of acceleration and po-
sition with respect to gravity. ACC signal features have been
processed using neural networks to successfully differentiate
sedentary activities, such as sitting or lying down, from more
physically demanding activities, such as walking or running
[5]–[10]. These features have also been effective in monitoring
movement disorders such as tremor [11] and dyskinesia [12]
in patients with Parkinson’s disease. However, ACC sensors
have inherent limitations in differentiating between an active
versus passive performance of a movement, or a loaded versus
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TABLE I
PHYSICAL CHARACTERISTICS OF SUBJECTS

unloaded performance of an activity. In contrast, surface elec-
tromyographic (sEMG) sensors have an inherent advantage in
distinguishing between active versus passive movements or
degrees of loading because the amplitude of the sEMG signal
is monotonically related to muscle torque [13]. These sensors
have been used for deriving kinematic information based on
the timing, frequency, and amplitude of muscle activity [14].
sEMG-based activity monitors are a rarity, however, with
the majority of such devices limited to classification of gait
disorders [15] or movement disorders such as tremor [16].

The work described in this paper evolved from earlier work
in evaluating the feasibility of using sEMG sensors to monitor
11 specific ADL activities among a healthy control population
[17]. That study achieved a sensitivity of 90% for a comple-
ment of eight sensors, and 82% for combinations of 4–6 sensors
using an adaptive neuro-fuzzy inference system (ANFIS). Sub-
sequent work [18], [19] also with normal healthy subjects, ana-
lyzed a similar set of ADL activities and demonstrated that ac-
celerometer data combined with EMG data could significantly
improve the classification performance compared to a system
limited to EMG sensors. More recent attempts at classifying
these ADL activities in a patient population with stroke using
only sEMG sensors resulted in unacceptably low classification
results of 80% sensitivity [20]–[22].

The purpose of this study was to investigate the relative merits
of combining sEMG and ACC sensor data for automatic recog-
nition of these ADL activities in a stroke patient population.
The feasibility of this approach among a target patient popu-

lation rather than among healthy controls is considered a crit-
ical step in the evolution of this work towards clinical use. The
general approach taken in this study was to adapt the analysis
procedures from these earlier investigations to this investiga-
tion and optimize the classification algorithms to a minimal set
of sensor data starting from a relatively large number of EMG
and ACC sensors. Developing a device with as few sensors as
possible is a desirable aim in minimizing the cost and maxi-
mizing the usability of a wearable sensor system. If a combined
sensor approach provides increased sensitivity and specificity
of ADL task recognition, then hybrid sensors that detect sEMG
and ACC signals from a single sensor encapsulation might re-
duce the overall number of sensors needed for functional ac-
tivity monitoring among these patients.

II. METHOD

A. Subjects

Ten subjects (five females and five males) with a verifiable
history of stroke by CAT and/or MRI scan provided written in-
formed consent prior to their participation in this study. The age
of the subjects ranged from 33 to 67 years (mean age
years) and the average duration since the onset of their stroke
was years. The subjects were within Brunnstrom’s
Stage III–V rating of recovery from hemiplegia (i.e., they all
had clinical signs of increased muscle tone, spasticity, and syn-
ergistic movements). Functionally, they were able to walk in-
dependently for at least 30 m with or without an assistive de-
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Fig. 1. Schematic overview of the location of ACC (dark round) and sEMG
(dark rectangular) sensors on a frontal view of the subject. Lightly shaded sen-
sors indicate posterior placement on the subject. The directions for measurement
of acceleration by each accelerometer are indicated by arrows where X refers to
the anterior–posterior direction, Y refers to the medial–lateral direction, and Z
refers to the superior–inferior (gravity) direction.

vice, and were independent in most, but not all, daily activities.
A comprehensive battery for assessing functional ability was
administered prior to their participation in the study using the
Fugl–Meyer assessment questionnaire [23]. Fugl–Meyer scores
for these subjects confirmed that they had mild to moderate
functional deficits. Further details regarding the subject popu-
lation are summarized in Table I. All subjects read and signed
an informed consent form approved by an Institutional Review
Board.

B. Data Acquisition

Signals were recorded from pairs of sEMG and ACC sensors
which were placed adjacent to one another at eight anatomical
sites (Fig. 1), corresponding to bilateral Anterior Deltoid, Flexor
Digitorum Superficialis, Erector Spinae (L1 spinal level), and
unilaterally from the Vastus Lateralis (hemiparetic side), and
Rectus Abdominus (nonhemiparetic side) muscles. Selection of
these sites was based on a preliminary study among healthy con-
trol subjects where data from these locations identified a similar
set of motor tasks with an accuracy of 90% [17]. The sEMG sig-
nals were acquired using eight active electrodes (Model DE-2.1
DelSys, Inc.) and a Bagnoli-16 (DelSys, Inc.) system that pro-
vided a total gain of 3000, a bandwidth of 20–450 Hz (12 dB/oct
roll-off), and a baseline noise V (rms). A reference elec-
trode was attached to the skin at the elbow bony prominence.
The ACC signals were acquired from eight miniature uni-axial
accelerometers (Analog Devices ADXL105JQC) which were
preamplified to provide signals with a dynamic range of g, a
maximum resolution of 10 mV (40 milligravities), and a band-
width of dc-30 Hz. Both sEMG and ACC signals were sam-
pled at 1000 Hz using a 16-bit A/D board (PCI-6035E, National
Instruments) and EMGworks 3.0 acquisition software (DelSys,

Inc). All sensors were secured to the skin by a double-sided ad-
hesive interface.

C. Activities Monitored

Data from the sensors were acquired while the subjects car-
ried out the same set of 11 ADL activities (referred to as iden-
tification tasks) as in previous studies [17]–[21]. The identifi-
cation tasks were originally based on the functional indepen-
dence measure (FIM) [24], the most widely used scale for as-
sessing functional independence. The FIM is comprised of six
subcategories of ADL activities that include feeding, grooming,
dressing, transferring, ambulating, and personal care tasks, and
two tasks from each of these categories were selected to develop
the identification task set (Table II). In order to test for the like-
lihood of false detection associated with motor activities not be-
longing to these 11 identification tasks, an additional set of 10
tasks (referred to as nonidentification tasks) was also monitored
(Table II), as described in previous investigations [17]–[21].
They included fine- or gross-motor activities utilizing similar
muscle groups and/or limb trajectories as those of the 11 iden-
tification tasks. All of the subjects were read the same set of
instructions for each task and were not coached in the manner
in which they performed the task, thereby allowing for some of
the realistic variability found in “real life.”

The identification tasks were repeated twice by the subject
in order to provide training and test data sets for the algorithms
that were designed for the subsequent data analysis. Identifica-
tion tasks that involved repetitive activity (e.g., brushing teeth,
combing hair, and cutting food) were performed continuously
by the subject for 1 min. All the other identification tasks
were performed as a set of 15 repetitions. These numbers were
specified on the basis of a previous study demonstrating their
sufficiency for training the neural network algorithms among
healthy control subjects [17]. Rest periods were allowed on an
“as-needed” basis between tasks to minimize fatigue.

D. Data Processing and Analysis

Data processing and classification of tasks were accom-
plished in four parts consisting of feature extraction algo-
rithms, a multilayer feed forward neural network, an adaptive
neuro-fuzzy inference system, and an optimization procedure
to minimize number of sensors. This model was based on a pre-
viously-reported investigation among a nondisabled population
[17]. The process is schematically presented in Fig. 2.

Feature Extraction: Surface EMG features were computed
using 4 s epochs, which was the time necessary to complete the
longest identification task (supine-to-sit). The features included:
1) the root mean square (rms) value of the raw sEMG signal
to represent overall muscle activity, 2) the amplitude range of
the auto-covariance function of the sEMG envelope to represent
the modulation of muscle activity, 3) the dominant frequency
component of the sEMG envelope to represent the periodicity
of muscle activity, and 4) the co-activation intervals between
muscle pairs to represent muscle co-contraction. The raw sEMG
signals were initially filtered with a fifth-order high-pass But-
terworth filter with zero phase lag (cutoff frequency 45 Hz) to
attenuate artifacts, followed by calculation of the RMS energy.
The envelope of the sEMG signal was then obtained using a
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TABLE II
LIST OF THE IDENTIFICATION AND NONIDENTIFICATION TASKS STUDIED IN THIS REPORT. FIM CATEGORY IDENTIFIES

WHICH OF THE SPECIFIC FIM CATEGORIES ARE BEING REPRESENTED BY THE IDENTIFICATION TASK

Fig. 2. Schematic diagram showing each stage of the data processing system for activity classification, based on earlier work [17]. Raw sEMG and ACC signals
provide the input into the system, which culminates in the output classification of 11 identification tasks. Feature extraction parameters describe various character-
istics of the input signals related to muscle activity and movement. The features serve as inputs to a neural network, which is trained to identify the identification
tasks. The output is directed to an adaptive neuro-fuzzy inference system which identifies whether the outputs of the neural networks resembled the orthogonal
pattern expected of an identification task, or the nonorthogonal pattern of a nonidentification task.

12 Hz low-pass filter (FIR implemented using a 201-coefficient
Hamming window) and down sampled by a factor of 10. The
auto-covariance of the sEMG envelope was computed for lags
between s and s and the amplitude range of this func-
tion was extracted for each channel. The dominant frequency
was computed using the squared magnitude of the FFT of the
envelope between 0 and 10 Hz. The spectrum was binned in in-
tervals of 1 Hz, and the bin with the greatest magnitude was
designated the dominant frequency component. Co-activation
between pairs of channels was derived for each channel using a
statistically-based algorithm of double-threshold detectors that

operates on the raw sEMG signal [25]. The feature extraction
procedure resulted in a total of 52 numerical values for each
sEMG epoch: (eight channels) (three features) (28 values
representing the percent co-activation for all possible pairs of
eight sEMG channels). Features from a total of 40 epochs were
extracted for each task.

ACC features were also extracted using 4 s epochs. The data
were down sampled by a factor of 10 after applying an anti-
aliasing filter. To measure changes in body orientation relative
to the gravity vector, the rms and range of auto-covariance were
calculated from data low-pass filtered at 15 Hz. Measures re-
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lated to body acceleration were computed from the RMS, range
of auto-covariance, dominant frequency, and percent co-activa-
tion of high-pass filtered data at 1 Hz. This processing resulted in
a total of 68 numerical values for each ACC epoch: (eight chan-
nels) (two features from low-pass ACC three features from
high-pass ACC) (28 values representing the percent co-acti-
vation for all possible pairs of eight ACC channels).

Neural Network: The next step of the analysis procedure was
implemented by analyzing the data using a multilayer feed for-
ward artificial neural network (ANN) to identify the relation-
ship between feature sets and identification tasks, and to iden-
tify the ANN topology with the highest performance metrics for
classifying the identification tasks. Four different ANN topolo-
gies were evaluated for this purpose: two ANN topologies with a
single hidden layer containing 22 and 33 neurons, respectively;
and two neural networks with two hidden layers containing ei-
ther 44 and 33 or 44 and 22 neurons, respectively. A larger
number of neurons were not considered to avoid the possible
requirement for a larger training data set than provided in this
study. The selection of these topologies was based on compar-
isons of different ANN configurations carried out in previous
studies among control subjects [17]–[19]. Each of the 11 iden-
tification tasks was assigned to one output neuron. This is an
important characteristic of the design resulting in orthogonal
outputs that decrease the likelihood of misclassification errors.
A sigmoid (anti-symmetric hyperbolic tangent) transfer func-
tion was used for the neurons of the hidden layers, and a linear
transfer function for the neurons of the output layer [26].

Training of the neural networks was accomplished by the
use of a scaled conjugate gradient algorithm [27] with weights
and biases of neurons selected using a technique proposed by
Nguyen and Widrow [28] for nonlinear transfer functions. For
neurons with linear transfer function, the weights and biases
were initialized by random values selected between and
1 [26]. The neural network was trained on a subject-by-sub-
ject basis utilizing 440 data sets (40 epochs 11 identification
tasks). The features were normalized for each input neuron so
that the mean was 0 and the standard deviation was 1. The target
outputs of the neural network were determined by setting one
neuron of the output layer to 1 and all the other neurons to
0, so that each identification task was associated with one ac-
tive output neuron. The training algorithm was run for different
numbers of iterations (100, 250, 350, 500, and 1000) using an
“early stopping” procedure to achieve the greatest sensitivity for
a given value of specificity or misclassification [29].

The detection of the identification task by the ANN was based
on the -norm distance between the outputs of the neural
network and each of the targets where the -norm distance for

the th target is defined as .
The minimum of was selected and compared
to different threshold values that varied between 0.1 to 5, by
steps of 0.02 to identify all possible classification decisions and
to optimize performance. If this minimal distance was smaller
than the threshold value, the corresponding identification task
was accepted as the final output of the classifier algorithm
module. If the minimal distance was greater than the threshold
value, the dataset was deemed as belonging to a nonidentifica-

tion task. Sensitivity, specificity and misclassification were then
calculated with each of the possible thresholds based on all the
data sets. The ANN topology that resulted in the highest levels
of identification task sensitivity and specificity was selected for
the next step of processing using ANFIS [30].

Neuro-Fuzzy Inference System: The use of the ANFIS was
implemented to determine whether the outputs of the selected
ANN resembled the orthogonal pattern expected of an identifi-
cation task, or the nonorthogonal pattern of a nonidentification
task (Fig. 2). The usefulness of this procedure was demonstrated
in previous investigations among healthy and stroke popula-
tions [17]–[21] and was therefore adopted in this investigation.
The ANFIS was trained using examples of orthogonal and
nonorthogonal patterns associated with the identification and
nonidentification tasks, respectively. The training set consisted
of 20 epochs for each of the identification tasks and 20 epochs
for a subset of the nonidentification tasks. An additional 20
epochs of data from the identification and nonidentification
tasks was used for the test set. A subtractive clustering method
[30] was utilized to build the fuzzy inference system and
determine the number of rules and antecedent membership
functions [31], [32]. A least-square estimation approach was
used to determine the rule’s consequent equations, resulting
in a Takagi–Sugeno–Kang inference system [31], [32] with
outputs approximating 0 for the identification tasks and 1 for
the nonidentification tasks. The output of the ANFIS (a value
between 0 and 1) was compared to a threshold value, such that
outputs below the threshold would consider the ANN output as
orthogonal, in which case the corresponding identification task
was accepted. Outputs exceeding the threshold would consider
the neural network output as nonorthogonal and the identifica-
tion task would be rejected in favor of the output representing
the nonidentification task category. A threshold value of 0.65
was used for the ANFIS in this study based on a preliminary
investigation [17] in which this value resulted in the greatest
sensitivity for the identification tasks when misclassification
of the nonidentification tasks was arbitrarily set to less than
10%. A more detailed description of the ANFIS can be found
in related studies [19], [21].

Performance Measurement and Optimization: The final stage
of the analyses to quantify classification performance was im-
plemented by first calculating sensitivity and specificity for the
identification tasks, and misclassification for the nonidentifica-
tion tasks. Sensitivity measures the percentage of correct clas-
sifications of identification tasks, whereas specificity measures
the percentage of mistaken classifications of one identification
task for another. Misclassification measures the percentage of
nonidentification tasks mistaken for identification tasks. The re-
ceiver operating characteristics (ROC) curves of the ANN and
ANFIS were evaluated by plotting sensitivity versus specificity
and sensitivity versus misclassification for all possible thresh-
olds [29]. The equations for computing these outcomes are listed
below

%
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Fig. 3. (a) Example of raw sEMG and ACC data from one of the subjects tested in this study. Twenty seconds of data are displayed for a subset of sensors placed
on the upper extremity (sEMG sensors located on the biceps brachii and wrist flexor muscles, respectively; ACC sensors located immediately adjacent to the sEMG
sensors). Data were recorded for two identification tasks (shirt buttoning and hair combing) and one nonidentification task (bringing a telephone receiver to the
ear). (b) A similar data set from a second subject performing the same tasks as in (a).

%

%

An optimization procedure was then implemented to obtain
maximum sensitivity and specificity for a given value of mis-
classification for successively smaller combinations of ACC and
sEMG sensor configurations. Because the ACC and sEMG sen-
sors were placed adjacent to one another in most locations on the
body to explore the possible benefits of combining such mea-
sures in a single hybrid sensor, a goal of the optimization proce-
dure was to identify the fewest number of such combined loca-
tions needed to provide “acceptable” classification results. Ac-
ceptability was defined as achieving at least 90% sensitivity and
specificity, respectively, for misclassifications errors no greater
than 10%. This specification was based on our intent to achieve
results for stroke patients that were comparable to the previously
reported results among healthy subjects without stroke.

The first step of the optimization was to compare the classi-
fication results for the full complement of 16 channels of data,
the full complement of ACC data (eight channels), and the full
complement of sEMG data (eight channels), respectively. These

results were used to determine whether the ACC or sEMG data
provided higher levels of classification for these tasks. The clas-
sification algorithms were then reanalyzed using all possible
combinations of successively fewer numbers of sensor data as
inputs to the neural networks. Details of this process are pro-
vided in the Results section of the paper.

III. RESULTS

A qualitative analysis of the raw data demonstrated that the
sEMG and ACC signals patterns were visibly different for the
different identification tasks. Fig. 3(a) provides examples of
signal patterns from three activities monitored in the same sub-
ject. The first two plots were derived from data recorded while
the subject buttoned his shirt and combed his hair, respectively.
As might be expected, the sEMG and ACC patterns for these
tasks are visibly different because these two identification tasks
require very different uses of the upper extremities. However,
the third task in the figure, bringing a telephone receiver to
the ear, is a nonidentification task with a similar use of the
upper extremities as the hair combing task, making the task of
automated recognition likely more difficult than the previous
examples. This likelihood is supported by examining channels
1 and 3 for both tasks, which appear to have similar signal
patterns. However, there are visible differences in the amplitude
modulation of the sEMG and ACC signals in channels 2 and
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Fig. 4. ROC curves for neural networks with different topologies. Results are
for algorithms trained using 250 iterations. The left panel is a plot of sensitivity
versus misclassification; the right panel is a plot of sensitivity versus specificity.
Dashed lines with and without squares represent two-layer neural networks with
22 and 33 neurons in the hidden layer, respectively. Continuous line plots with
and without circles represent three-layer neural networks with either 44 and 33
neurons in the first and second hidden layers or 44 and 22 neurons in the first
and second layer, respectively.

4 for these tasks, highlighting the fact that similar tasks may
have dissimilar signal features in some channels which the
classification algorithms can exploit. Classification algorithms
must not be too sensitive to differences in signal patterns;
otherwise it might mistakenly identify the normal variability of
performing the same task as different tasks. Fig. 3(b) provides
an example of signal patterns from a second subject performing
the same tasks as in Fig. 3(a). It illustrates that tasks retain many
of the same signal pattern characteristics even when different
individuals are performing these tasks.

The results of comparing classification percentages for dif-
ferent neural network topologies are summarized in Fig. 4(a)
and (b). This stage of the analysis was performed without the
fuzzy-inference postprocessing in order to establish the rela-
tionship between ANN topology and operating characteristic
performance. Training algorithms were stopped after 250 itera-
tions because performance did not improve beyond this number.
The figure demonstrates that differences in operating charac-
teristics were primarily related to the number of layers in the
network, with maximum sensitivity for given values of speci-
ficity and misclassification obtained for the three-layer neural
network with 44 and 22 neurons in the hidden layers. This was
the preferred topology used for the remainder of the analysis
which incorporated the fuzzy-inference postprocessing.

The ROC curves using the preferred neural network topology
are compared for data from the full set of sensors (sEMG and
ACC) versus data from either the sEMG sensors or the ACC
sensors (Fig. 5). The results indicate that relatively high sensi-
tivity was achieved with the 16-channel sEMG/ACC data set

% % and the 8-channel ACC data set %
% , but not for the 8-channel sEMG data set % % .

Maximum specificity was relatively high for all three data sets
and resulted in mean values of % % for 16-channel
sEMG/ACC data, % % for 8-channel ACC data, and

Fig. 5. ROC curves for classification of the identification and nonidentification
tasks for data from all 16 sensors (eight sEMG plus eight ACC; solid line), from
just the eight ACC sensors (dash/dot line) and from just the eight sEMG sensors
(dotted line). Results were derived from all of the subject data using an ANN
with a three-layer neural network with 44 and 22 neurons in the hidden layers
and an ANFIS.

Fig. 6. ROC curves for data from different numbers of ACC sensors used in
the analysis. Each ROC curve represents the best performance for a specified
number of sensors when all possible combinations of that number of sensors
were analyzed using the ANN algorithm. The curves demonstrate that classifi-
cation performance, in general, is reduced by decreasing the number of ACC
sensor. Secondly, these results demonstrate that reducing the number of sensors
to fewer than 4 results in a dramatic reduction in sensitivity, particularly when
the goal of limiting misclassifications to 10% is enforced.

% % for 8-channel sEMG data. The inability of the
8-channel sEMG data set to achieve relatively high sensitivity
percentages for misclassification limited to 10% suggests that
a solely sEMG-based sensor system would not be sufficient for
effectively monitoring these tasks in this population.

Optimization of the classification results to obtain a system
that would require a minimal number of sensors began by re-
peating the analysis for all possible combinations of succes-
sively fewer numbers of the eight ACC sensors (Fig. 6). This
strategy was dictated by the previously described finding that the
eight ACC sensor configuration resulted in the best ROC curve.
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Fig. 7. Comparison of ROC curves for data from four hybrid sensors (dashed
line) versus data from four ACC sensors (solid line). Results are for the set of
sensors with data that produced the highest % sensitivity and % specificity. The
findings demonstrate that classification of these tasks can be improved with a
hybrid sensor that combines sEMG and ACC detection.

As might be expected, and as was indicated in the figure, suc-
cessively fewer numbers of ACC sensors was associated with a
decrease in the sensitivity obtained for a given value of speci-
ficity or misclassification. Examination of the sensitivity versus
misclassification curves [Fig. 6(a)] reveals a precipitous drop
in performance when the numbers of sensors were reduced to
less than 4. Sensitivity versus specificity performance [Fig. 6(b)]
also supported this finding. The 4-channel ACC system associ-
ated with peak performance was attained for sensor locations on
both upper arms, the forearm of the preferred side, and the thigh
of the nonpreferred side, and resulted in a maximum mean sen-
sitivity of 86.5% and specificity of 99.7% for misclassifications
limited to 10%

Further analysis was conducted to determine whether the
ROC curves for this 4-ACC data set could be improved by
adding EMG data from the adjacent sensors. The result (Fig. 7)
demonstrated that sensitivity percentages were significantly
improved, with maximum sensitivity and specificity values
averaging 95.0% and 99.7%, respectively. Sensitivity improved
for 10 of the 11 identification tasks as a result of adding this
data set (Table III).

IV. DISCUSSION

This study provides evidence that automated monitoring of
a variety of activities of daily living can be accomplished in
patients with stroke using a wearable sensor system in combi-
nation with a neural network and fuzzy logic processing tech-
nique. Although other reports in the literature have achieved
similar levels of classification accuracy for wearable activity
monitors, the identification tasks in those reports were nonspe-
cific and were restricted to investigations on normal healthy sub-
jects [8]–[10]. In the present study, the identification tasks were
more specific and related to FIM activities that are useful for
evaluation the functional mobility of patients with motor disor-
ders. But, more importantly, this study suggests that movement

TABLE III
INDIVIDUAL TASK PERFORMANCE FOR THE BEST 4-ACC AND 4-HYBRID

SENSOR COMBINATION IS COMPARED. SENSITIVITY AND SPECIFICITY

RESULTS ARE FOR MISCLASSIFICATION RATES � ��%. ANALYSIS INCLUDED

POSTPROCESSING USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

assessment technology can be used to monitor the abnormal
ADLs of a patient population, which in our case consisted of
hemi paretic stroke patients having mild to moderate dysfunc-
tion. By using hybrid ACC and sEMG sensor pairs only four
pairs were required to provide the highest sensitivity and speci-
ficity for the identification tasks. One pair was located on each
arm, one pair on the forearm, and one pair on the thigh.

The high levels of sensitivity and specificity (i.e., better
than 90% on average) that were achieved in this study were
accomplished while limiting misclassifications of nonidentifi-
cation tasks to an average of less than 10%. The inclusion of
nonidentification tasks into the study design was also unique
compared to some other activity monitoring studies [5], [7]–[9].
The inclusion of nonidentification tasks was done to develop a
more “real-world” monitoring condition where tasks containing
similar limb trajectories and movements as the identification
task set could be analyzed to see whether they confound the
classification algorithms. In fact, the neural networks were
designed so that the output represented the identification tasks
as orthogonal in order to minimize such misclassifications. This
approach decreased the likelihood that the output of the neural
network would select a target associated with an identification
task when processing a feature set derived from a nonidentifi-
cation task. The neural network also provided a reduction of the
dimensionality of the classification space that was necessary
for utilizing the adaptive neuro-fuzzy inference system. Fuzzy
postprocessing proved beneficial because when it was imple-
mented, the neural network provided sensitivity and specificity
values above 90% for all 11 identification tasks. Without the
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ANFIS, only 8 of the 11 identification tasks achieved this 90%
level of performance, for misclassifications averaging below
10%. This task-specific advantage of using the ANFIS was
consistent with findings from previous studies [17]–[21].

The inclusion of both sEMG and ACC sensors for monitoring
functional activities has rarely been reported in the literature
[18]–[21]. The results of this study demonstrate that the inclu-
sion of sEMG sensors to an ACC-based monitoring system was
useful in attaining the highest level of classification accuracy
with the least number of sensors for patients with stroke. This
advantage was not seen in previous work among healthy con-
trol subjects where a 4 sEMG sensor system was sufficient in
achieving sensitivity and specificity results in the 90% range
for misclassifications less than 10%, providing that a neuro-
fuzzy inference system was included as a part of the analysis
[18]–[20]. The scarcity of EMG-based approaches for activity
monitoring may be due to the generally held belief that sEMG
techniques are not amenable to home use. This perception has
likely been perpetuated because of previous sensor technologies
that did not incorporate active electronics at the recording site,
thereby requiring time-consuming skin preparation and immo-
bilization of sensor leads to reduce baseline noise and motion
artifact, respectively. Recent advances in sEMG sensor design
and signal conditioning hardware have greatly reduced the need
for such preparations. Improvements in sensor miniaturization
and digital circuitry also make it feasible to consider combining
ACC and sEMG signal detection into the same hybrid sensor
circuit board and encapsulation.

In our attempt to reduce the overall number of sensors,
we considered the ACC sensors as the “primary” sensors for
classification because the predominant number of wearable
monitoring systems in the literature rely on ACC sensors
[8]–[10]. Furthermore, as reported in preliminary work on
control subjects, ACC data provided better classification per-
formance overall than sEMG data when classifying these tasks
[17], [18]. However, there were several individual identification
tasks that were classified with greater sensitivity and specificity
when sEMG data were combined with ACC data. It may be that
the ability of sEMG data to characterize such motor control
features as muscle coordination, loading, and co-contraction
was particularly useful in identifying these tasks.

There are several basic limitations associated with the
methodology of this study that will need further development
in the future to provide a wearable sensor system for use in
the home under “real world” conditions. The algorithms were
trained separately for each individual and required multiple
repetitions of the task to obtain sufficient data for training and
testing purposes. The need for such individualized training may
be unrealistic for use on people with moderate to severe motor
impairments who might not have the stamina or time for this
requirement. A generic approach will need to be developed
that utilizes algorithms that are applicable to a population of
targeted users without the need for extensive individualized
training. This study was also limited to monitoring “scripted”
tasks in a laboratory environment. Some of these tasks were
repetitive, such as walking or brushing teeth, whereas others
were nonrepetitive, such as bringing a telephone receiver to
the ear. Although all tasks were repeated for the purposes

of training, it is not clear what the impact is of identifying
repetitive versus nonrepetitive activities in a larger task set
encountered in real life. Monitoring was also limited to tasks
performed in isolation during well-delineated time segments. It
is not known how well the algorithms developed in this fashion
would perform for data collected outside the laboratory during
unscripted free-form activities. These conditions will need to be
explored and dealt with before this system can be implemented
effectively for clinical use.
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