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bstract

An advanced volume conductor model was used to simulate the surface-detected motor unit action potentials (MUAPs) due to current sources
ocated at different depths within the muscle tissue of the biceps brachii. Seven different spatial filters were investigated by linear summation of
he monopolarly detected surface MUAPs on a square array of nine electrodes. The criterion of the relative energy-of-difference (EOD) between
he MUAPs was used to rank spatial filters for their ability to distinguish two motor units located at different depths. Using the same criterion pair
ise combinations of spatial filters were ranked for their ability to generate different MUAP shape representations of the same motor unit. In both
nalyses, the bi-transversal double-differential (BiTDD) configurations and pair wise combinations involving a BiTDD configuration consistently
anked highest. Varying electrode spacing did not change the results in a relevant way. Based on the EOD calculations, a four-channel detection
ystem using all available electrodes of the array is proposed. The implications of using only six electrodes, effectively reducing contact area of
he sensor in half, are discussed.

2007 Elsevier B.V. All rights reserved.

r

L
a
s
T
t
1

i
a
a
1
k
m
b

eywords: Surface electromyography; Electrode array; Motor unit; Spatial filte

. Introduction

During the past three decades there have been several
ttempts at developing techniques and technologies for decom-
osing the electromyographic (EMG) signal into the constituent
ction potentials (Broman, 1988; De Luca and Adam, 1999; De
uca and Forrest, 1972; Fang et al., 1999; Hochstein et al., 2002;
eFever and De Luca, 1982; LeFever et al., 1982; Mambrito
nd De Luca, 1984; McGill et al., 1985; Nawab et al., 2004a,b;
tashuk and de Bruin, 1988; Zennaro et al., 2001). These have
ttained varying degrees of success. The difficulty of obtain-
ng successful and useful decompositions of EMG signals that
ontain more than three motor units is such that only signals
etected by indwelling sensors, which are inherently the most

elective, have been attempted. These indwelling sensors have
arious forms such as the commonly used monopolar needle
ensor (McGill et al., 1985), the quadrifilar needle sensor (De
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uca and Adam, 1999; De Luca and Forrest, 1972; LeFever
nd De Luca, 1982) and more recently the quadrifilar wire sen-
or, that are inserted via a needle (De Luca and Adam, 1999).
he latter two sensors are used with our own decomposition

echnique, called precision decomposition (De Luca and Adam,
999; LeFever et al., 1982; Mambrito and De Luca, 1984).

The EMG signal decomposition studies performed with
ndwelling sensors have proved to be fruitful for physiological
nd clinical investigations. Physiological investigations (Adam
nd De Luca, 2005; LeFever and De Luca, 1982; LeFever et al.,
982; Mambrito and De Luca, 1984) have provided considerable
nowledge about the common behavior of concurrently active
otor units that has given new insight to the mechanisms used

y the CNS to regulate the production of force in the muscle.
linical investigations have provided new knowledge of motor
ontrol in the aging CNS (Erim et al., 1999) and in acute cerebel-
ar stroke (Sauvage et al., 2006). However, indwelling sensors

ave obvious limitations that considerably restrict their usabil-
ty. For example, needle sensors cause discomfort, especially for
hildren and elderly. Consequently they are not typically used
or recording sessions of more than a few minutes duration and

mailto:jlee@kangwon.ac.kr
dx.doi.org/10.1016/j.jneumeth.2007.09.007
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Fig. 1. The model configuration for the simulation of surface-detected MUAPs.
A three-layer cylindrical volume conductor was used to represent muscle, fat,
and skin tissue. The center of the surface electrode array was positioned at lon-
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the simulation are provided in Fig. 1 and Table 1, respectively.
The choice of model parameter values reflects the anatomy of the
biceps brachii muscle (Basmajian and De Luca, 1985; Masuda et
al., 1985) and commonly used muscle, fat, and skin tissue prop-

Table 1
Selected model parameters to generate the MUAP signals

Description of the parameter (symbol) Default value

Radius of muscle compartment (Rc) (mm) 38
Radius of fat + muscle compartment (Rb) (mm) 39
Volume conductor radius (Ra) (mm) 40
Volume conductor length (Lv) (mm) 200
Conductivity of muscle compartment, axial (� m−1) 0.5
Conductivity of muscle compartment, radial (� m−1) 0.1
Conductivity of fat compartment (� m−1) 0.05
Conductivity of skin compartment (� m−1) 1.0
Muscle fibers belonging to one motor unit 200
Muscle fiber conduction velocity (m/s) 3.125
Mean fiber length (LF) (mm) 100, S.D. = 20
Electrode array distance (LE) from mean endplate position

(mm)
20

Mean end plate position (EP) (mm) 0, S.D. = 10
J. Lee et al. / Journal of Neuro

ften require re-insertions to obtain a high quality signal that is
candidate for decomposition. If not used properly, they have

he potential of transmitting various diseases. They invariably
igrate during a contraction, even an isometric constant force

ontraction, causing change in the shape and amplitude of the
ction potentials. This alteration can cause havoc in the algo-
ithms that are used for decomposing the EMG signals, resulting
n failure. Also, they may cause damage to the muscle fibers in
he proximity of the sensor and small blood pools in the vicinity
f the detection surfaces can cause dramatic deterioration of the
uality of the signal.

For those muscles that are not in contact with the skin, the
eedle sensor remains the only viable option. However, for the
est it would be preferable to be able to decompose the EMG
ignal detected from a surface sensor. The purpose of this study
as to design a surface EMG sensor that could be used with
ur precision decomposition technique. Recent improvements
Hochstein et al., 2002; Nawab et al., 2004a) to the algorithms
ave resulted in higher accuracy (>95%) and a short time to
ecomposition (<8 times acquisition time), making it suitable
or clinical purposes. This recent version would benefit from a
urface sensor.

Herein we describe an approach for designing a surface sen-
or based on a two-dimensional electrode array that would suit
he purpose. Although two-dimensional electrode arrays were
roposed more than 15 years ago (Reucher et al., 1987a,b) and
number of subsequent studies investigated their performance

Dimitrov et al., 2003; Disselhorst-Klug et al., 1997; Farina and
escon, 2001; Farina and Merletti, 2001; Farina and Rainoldi,
999; Farina et al., 2002, 2003, 2004; Helal and Bouissou, 1992;

¨ stlund et al., 2004; Schneider et al., 1991; among others), none
ave explored their suitability for discriminating amongst the
hapes of the detected action potentials.

. Methods

In developing the approach for designing the electrode array
ensor, we focused on maximizing the difference in shape and
mplitude of the motor unit action potentials (MUAPs) in the
MG signal that would be detected. The efficacy of the sensor
as assessed by the following two criteria. First, which spa-

ial filter maximizes the shape difference between two MUAPs?
econd, which multi-channel configuration of spatial filters
aximizes the shape difference between two different chan-

els? We used the energy-of-difference (EOD), a variation of
he standard measure of the difference in energy (Oppenheim
nd Schafer, 1975), to quantify the shape difference between
wo mathematically generated MUAPs.

.1. The model

We used an advanced analytical volume conductor model
eveloped by Blok et al. (2002) to evaluate several array con-

gurations. The model can generate single MUAPs resulting
rom the linear summation of bioelectric sources in a finite,
ylindrical, and anisotropic volume conductor that consists of
hree layers, representing muscle, subcutaneous fat, and skin

M
S
M
D

itudinal distance LE from the midline of the cylinder and detected the electrical
ctivity of two motor units located at depths DF and DF + d below the skin. See
able 1 for a description of additional model parameters.

issue. While the model can accommodate any current-density
ource, we chose to adopt the analytical expression of the
ntracellular action potential (IAP) proposed by Rosenfalck
Andreassen and Rosenfalck, 1978), although other analytical
ource expressions exist in the literature (Griep et al., 1982;

cGill et al., 2001; Merletti et al., 1999a,b). Previous studies
Blok et al., 2002; Farina et al., 2002) have shown that the
osenfalck source closely matched real signals and that
ifferences among MUAPs generated by other commonly used
ource functions were small. The IAP is given as voltage V(z),
here z is the spatial dimension along the fiber:

(z) = 96z3exp(−z) − 90 [mV] (1)

The model was used to calculate the monopolar MUAP at a
oint along the outer surface (skin) of the volume conductor. An
verview of the model geometry and important parameters for
ean tendon position (mm) ±50, S.D. = 10
ample frequency (Hz) 2000
uscle fiber depth (DF) of MU#1 (mm) 3–5; 3–13
ifference in depth (d) between MU#1 and MU#2 (mm) 1–10
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Fig. 2. A schematic representation of the spatial filter configurations on a nine-
electrode grid aligned with respect to the muscle fiber direction. Bold connection
lines indicate the electrodes used for a single realization. Signed, bold numbers
indicate the weighting factors of the electrodes. Unsigned numbers indicate the
numbering of configurations if alternative arrangements were realized. All the
electrodes are dimensionless points and are positioned on a grid with the same
inter-electrode distance. The abbreviations for spatial filter configurations are:
LSD, longitudinal single differential; TSD, transversal single differential; LDD,
longitudinal double differential; TDD, transversal double differential; BiTDD,
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rties (Blok et al., 2002; Disselhorst-Klug et al., 1998; Farina
nd Rainoldi, 1999; Roeleveld et al., 1997).

As shown in Fig. 1, the source fibers (200/motor unit) lie
arallel to the cylinder axis (z direction) with the motor end-
lates (the innervation region of the muscle fibers) in the middle
f the cylinder. All source fibers belonging to the same motor
nit were located at the same depth below the skin, but dif-
ered in the position of the endplate and the tendon insertion,
nd thus fiber length. The tendon and endplate positions of the
bers were drawn at random from a normal distribution (tendon:
ean = ±50 mm, S.D. = 10; endplate: mean = 0 mm, S.D. = 10).
he central electrode of the array was located above the fiber
xis at an axial distance of LE = 20 mm from the mean endplate
osition. The location of motor units below the skin was defined
s the depth of motor unit #1, DF, and the incremental depth
f motor unit #2, DF + d. With this fixed simulation setup we
enerated all the MUAPs while only varying the depth param-
ters. The range of motor unit depths (3–15 mm) was selected
y considering practically useful values for SEMG in the biceps
rachii.

.2. The detection system

A comparison of different types of spatial filters configu-
ations was obtained by calculating monopolar MUAP signals
etected on a square grid of nine point electrodes. These
onopolar MUAP signals were then selected and summed,

sing appropriate weights for each electrode, to derive the spa-
ial filter configurations. The following types of spatial filters
ere investigated: the longitudinal single differential (LSD), the

ransversal single differential (TSD), the longitudinal double dif-
erential (LDD), the transversal double differential (TDD), the
ormal double differential (NDD) (Reucher et al., 1987b; Farina
t al., 2003), the bi-transversal double differential (BiTDD)
Dimitrov et al., 2003), and the inverse binomial of order two
IB2) (Disselhorst-Klug et al., 1997). Fig. 2 shows the electrode
rrangements and the filter coefficients for each of these seven
ypes of spatial filters. The figure also indicates every possi-
le arrangement for each of the spatial filter configurations that
an be derived from the array of nine electrodes. In total, 22
onfigurations can be formed. Because of the symmetry of the
imulation setup around the center row of electrodes, which are
ligned with the motor unit axes, we only report on 16 different
onfigurations (Table 3).

.3. Criterion for assessing the difference between two
UAPs

The aim of this study was to investigate which spatial filter
onfiguration maximizes the difference in MUAP shape between
wo different motor units. From the preliminary data analysis and
he review of previous work by Dimitrov et al. (2003), Farina et
l. (2002) and Dimitrova et al. (1999) we found that the factors

hat contributed most to the difference in MUAP shape between

otor units were waveform amplitude and duration. Thus, we
ave selected the relative energy-of-difference (EOD) defined by
q. (2) as the criterion for measuring MUAP shape differences.

e
t
l
s

i-transversal double differential; NDD, normal double differential; IB2, second
rder inverse binominal.

OD =
∫ T

0 |S1(t) − S2(t)|2 dt
∫ T

0 {|S1(t)|2 + |S2(t)|2} dt
(2)

here S1(t) and S2(t) are MUAP time series in the interval 0
o T = 25 ms generated from MU#1 and MU#2, respectively.
he EOD value is the energy of the point-by-point difference
etween S1(t) and S2(t) relative to the sum of their individual
nergies. The EOD is sensitive to differences in the amplitude
s a function of time. By simply computing the difference in the
nergy of each signal one would lose the timing information.
ince differences in timing and shape are critical to detect
hape difference between two signals, we opted for the standard
easure to compute such differences. A higher value of the
OD represents a greater difference between the MUAPs of

wo motor units.

. Results

.1. Example MUAP waveforms

Fig. 3 shows examples of MUAP signals detected by seven
ifferent spatial filter configurations that were derived from nine

lectrodes spaced on a 2.3 mm grid. Each graph consists of
wo MUAP signals originating from two different motor units
ocated at 3 mm (MU#1) and 5 mm (MU#2) below the skin. Each
ignal was normalized with respect to the peak amplitude of the
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Fig. 3. Examples of simulated MUAP signals detected by the seven different spatial filters. The signals from single differential (TSD, LSD), double differential
(LDD, TDD) and more complex (BiTDD, NDD, IB2) spatial filter configurations are shown. Each graph contains two MUAP signals originating from two different
m U#1
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otor units, located depths of 3 mm and 5 mm below the skin. The MUAPs of M
U#1. The position of the electrode array on the skin surface was fixed at an ax

re indicated in Table 1 and Fig. 1.

UAP of MU#1 for easy comparison. (See Fig. 1 for additional
etails of this simulation.)

The graphs in Fig. 3 illustrate the difference in MUAP shape,
mplitude and duration for two motor units located at differ-
nt depths. We chose to plot the results for a depth difference
f d = 2 mm because at that depth difference the EOD values
xhibited the largest variation among the several electrode con-
gurations. The attenuation of the amplitude of the deeper motor

nit (MU#2) depended on the spatial filter, as indicated by
everal previous studies. (Dimitrov et al., 2003; Farina et al.,
002, 2003). In order to evaluate the difference in MUAP shape
uantitatively, we calculated traditional EMG variables: signal

c
o
f
o

able 2
valuation of EMG variables of Fig. 3

patial filter Duration (ms) %, (MU#1/MU#2) Peak am

SD 2.8 (18/18.5) −84.7 (0
SD 0 (19/19) −78.7 (0
DD 5.6 (18/19) −80.5 (0
DD 0 (19/19) −83.7 (0
iTDD 40 (12.5/17.5) −89.5 (0
DD 36 (12.5/17) −84.6 (0

B2 19.2 (13/15.5) −83.7 (0

he duration, amplitude and energy are given as a % difference between MU#1 and M
he EMG variables are shown in parentheses. The EOD was calculated by Eq. (2).
(solid line) and MU#2 (dotted line) were normalized by the peak amplitude of
tance LE = 20 mm from the endplate region. Other parameters of the simulation

mplitude (positive peak), duration (time from generation to
xtinction), and energy (Table 2). These variables are expressed
s the percentage difference between MU#1 and MU#2 values.
n addition, the energy of difference (EOD) in MUAP waveforms
as obtained by Eq. (2).
The increased fiber depth of MU#2 in comparison to MU#1

esulted in an equal or increased duration of its MUAP, but
ecreased peak amplitude and energy, for every spatial filter

onfiguration tested (Table 2). The shortest duration MUAP
f MU#1, the superficial motor unit, was 12.5 ms, estimated
rom the NDD and the BiTDD detection. The shortest MUAP
f MU#2, the deeper motor unit, was 15.5 ms, estimated from

plitude (mV) %, (MU#1/MU#2) Energy % EOD

.52/0.08) −96.2 0.67

.14/0.03) −92.0 0.56

.11/0.02) −94.4 0.62

.10/0.02) −95.8 0.67

.83/0.09) −98.3 0.79

.27/04) −96.3 0.69

.12/0.02) −95.8 0.67

U#2 (located at a depth of 3 mm and 5 mm, respectively). Absolute values of
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Fig. 4. (A) The estimation of the relative energy-of-difference (EOD) as a func-
tion of electrode spacing and difference in fiber depth for each spatial filter
configuration. Every EOD value was calculated from the MUAP signals from
two different motor units (MU#1 and MU#2). MU#1 was fixed at a depth of
3 mm below the skin and the location of MU#2 varied from 4 mm to 13 mm in
1 mm steps. Dashed lines connect EOD values from the same depth difference
(d) as indicated on the right. For clarity, only results for four depth differences (1,
2, 3, and 10 mm) are shown. For example, the graph tagged by “d = 1 mm” con-
tains the information for MU#1 and MU#2 located at depths of 3 mm and 4 mm.
The labels on the x-axis indicate the different spatial filter configurations (see
Fig. 2) and are ordered by increasing complexity of implementation. The EOD
values for three different electrode spacing values (1.6 mm, 2.3 mm, 3.1 mm) are
plotted with different symbols (circle, dot, cross). (B) The EOD values plotted
as a function of spatial filter configuration for different ranges of motor unit
depths. The EOD values for the three different sets of depths were calculated
as in (A) with the electrode array spacing fixed at 2.3 mm. To investigate the
three depth ranges, the depth of MU#1 was fixed at 3 mm (circles), 4 mm (dots),
or 5 mm (circles) while the depth of MU#2 varied from 4 mm to 13 mm, 5 mm
t
c

c
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he IB2 configuration. The percent difference in peak amplitude
etween the two MUAPs was greater than 80% for six out of
even spatial filter configurations, even through the signals orig-
nated from two motor units located only 2 mm apart in depth.
imilarly, the energy attenuation between MU#1 and MU#2 was
reater than 90% for all signals. The EOD value, which was used
s the main criterion in this simulation, presented the same trend
f variation as the energy attenuation. Overall, the BiTDD detec-
ion presented the largest peak amplitude difference (89.5%),
nergy attenuation (98.3%), and EOD (0.79) (Table 2).

.2. Effect of varying the difference in the relative depth of
wo motor units

Fig. 4A presents the EOD between the MUAP signals of
wo motor units as a function of spatial filter configuration
nd motor unit location (depth difference between MU#1 and
U#2). Here, the depth of MU#1, DF, was fixed at 3 mm while

hat of MU#2, DF + d, varied in 1 mm increments from 4 mm to
3 mm. The figure shows that increasing the depth difference,
, increased the EOD value for every spatial filter configura-
ion. The EOD value ranged from 0.14 at the smallest depth
ifference investigated (d = 1 mm) to 0.99 at the largest differ-
nce (d = 10 mm). The variation of the EOD among the spatial
lter configurations decreased as the depth difference increased.
Note however, that the variation of EOD at d = 2 mm is higher
han that at d = 1 mm.) This result shows that the EOD between
superficial and a deep motor unit (d > 2 mm) is affected less by

he spatial filter than that between two superficial motor units
d ≤ 2 mm). In line with the work of Gydikov et al. (1982), Farina
t al. (2002) and Ferdjallah et al. (1999), it is noted that the
natomical characteristics of the motor unit, such as depth below
he skin, have more impact on the surface-detected MUAP than
he characteristics of the spatial filter. In the case of the TSD
nd TDD filters, the EOD showed similar values for the dif-
erent configurations but there was a consistent variation in the
OD among the LSD and LDD configurations; the longitudinal
onfigurations located lateral to the fiber axis (i.e. 3LSD, 4LSD,
LDD) had lower EOD values than those located centrally. Thus,
he longitudinal detection scheme was the one most affected by
he detection position. Note that, across all simulation results,
he EOD values for the two BiTDD configurations were always
t least 10% greater than those of the other configurations. Based
n this criterion, the BiTDD spatial filter configurations were the
est for maximizing the energy difference between two MUAPs
or all motor unit depth difference simulated in this study.

.3. Effect of varying the electrode spacing

The influence of electrode spacing on EOD values between
he MUAPs of two motor units for different spatial filters was
nvestigated for three spacing values: 1.6 mm, 2.3 mm (used as
default spacing in this study), and 3.1 mm. These values were

hosen because they allow for a small electrode array that can
e used on small muscles of the hand and face as well as all
ther large muscles, such as the biceps brachii. As Fig. 4A illus-
rates, the trend in EOD variation for each spatial filter did not

m
s
a
c

o 14 mm, or 6 mm to 15 mm, respectively, in 1 mm increments. Note that for
larity, only four depth differences are plotted. BiTD = BiTDD.

hange by using different spacing values. The MUAPs of two
otor units detected with the two BiTDD configurations always
howed the highest shape difference, as measured by the EOD,
nd those detected with the LSD configurations the lowest in all
onditions. Overall, the EOD values decreased with increased
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Table 3
Average and range of EOD values for all depth differences and electrode spacing
values tested

Configuration Average EOD Range Rank

1BiTDD 0.89 (0.32–1.00) 1
2BiTDD 0.89 (0.32–1.00) 1
5TSD 0.86 (0.25–1.00) 3
3TDD 0.86 (0.25–1.00) 3
1TSD 0.85 (0.24–1.00) 5
2TDD 0.85 (0.24–1.00) 5
3TSD 0.85 (0.23–1.00) 7
1TDD 0.85 (0.23–1.00) 7
NDD 0.85 (0.23–1.00) 7
2LDD 0.85 (0.22–1.00) 10
IB2 0.84 (0.22–1.00) 11
1LDD 0.83 (0.20–1.00) 12
1LSD 0.78 (0.16–0.99) 13
2LSD 0.78 (0.14–0.99) 14
3LSD 0.76 (0.13–0.99) 15
4LSD 0.75 (0.13–0.99) 16

Ranking is based on the ability to maximize EOD based on average of all the
r
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pacing but the relative change in EOD between average values
t 1.6 mm and at 3.1 mm spacing was less than 3.5% (overall
ean decrease = 1.5%) for each spatial filter. In particular, the
OD between the signals from the 1TSD, 3TSD, and 5TSD, as
ell as the 1TDD and 2TDD configurations were nearly identi-

al for all of three spacing values. The results of this simulation
ndicate that the EOD changed little in the investigated spacing
ange.

.4. Effect of variation in motor unit depth

Fig. 4B shows the behavior of the EOD of pairs of MUAPs
hose motor units differ in location but had the same depth dif-

erence (d). In all cases the highest EOD was always obtained
rom the BiTDD detection. For any given depth difference,
xcept at d = 1 mm, the EOD was generally higher the closer
U#1 was to the electrode array. Note that the EOD variation
as larger for the range of motor unit depths (Fig. 4B) than for

he range of contact pin spacing values (Fig. 4A). This is another
ndication of the observation that the anatomical location of the
wo motor units is a more important factor for estimating the
OD than the capability of the spatial filter.

.5. Which spatial filter configuration detects the MUAPs
f two motor units with the greatest shape difference?

Table 3 presents the average and range of EOD values across
ll motor unit depths for different contact spacing values. The
patial filter configurations were ranked by their ability to maxi-
ize MUAP shape differences based on the overall average EOD

alue. The range of EOD values for each configuration reflects
he values at the extreme depth differences. The two BiTDD con-
gurations had the overall highest average EOD values (0.89),
hile the four LSD configurations had the lowest (0.75–0.78).
hese rankings do no change when configurations are ranked
eparately for each of the spacing values.

.6. Which pair of array configurations detects the MUAP

f a motor unit with the greatest difference in shape?

Making use of the symmetry of the simulation setup we calcu-
ated the EOD for 120 pair wise combinations of the 16 different

p
t
e
w

able 4
he 10 configuration pairs with the greatest EOD values estimated from all configura

onfiguration pair Average EOD (range) Rank by EOD

TSD:2BiTDD 1.64 (1.30–1.77) 1
TSD:1BiTDD 1.33 (1.19–1.40) 2
LSD:1TDD 1.33 (1.01–1.83) 2
LSD:1TDD 1.32 (1.01–1.75) 4
TSD:2BiTDD 1.30 (1.00–1.43) 5
LDD:2BiTDD 1.24 (1.08–1.51) 6
LSD:NDD 1.21 (0.91–1.43) 7
TSD:4LSD 1.20 (1.01–1.59) 8
LSD:NDD 1.19 (0.91–1.34) 9
LSD:2LDD 1.18 (0.97–1.46) 10

he range of the EOD values is based on the simulation of 11 different motor unit de
esults. All EOD ranges were estimated by performing the calculation on two
otor units whose depth difference ranged from d = 1 mm to d = 10 mm.

patial filter configurations that can be derived from the nine
ontact points. The combination of any LSD and any double
ifferential configuration, of any TSD and any LSD, and of any
SD and any BiTDD configuration resulted in larger EOD val-
es than all the other pairs. The EOD values from the pairs in
hich both array configurations were oriented in parallel were

lways smaller than those of pairs oriented perpendicularly.
A summary of the results of all pair wise combinations of

patial filter configurations is given in Table 4. Only the pairs
ith the 10 largest average EOD values are listed. The pair of
TSD:2BiTDD always showed the greatest EOD values for all
he depth differences investigated and its average EOD value was
9% higher than the second place, which was shared by two con-
guration pairs. Among the 10 pairs shown in Table 4, the pair
f 3TSD:1BiTDD was least affected by motor unit depth differ-
nces (i.e., had the smallest EOD range) while the 4LSD:1TDD

air was the one most affected. In general, these results indicate
hat the EOD decreased with increasing motor unit depth. How-
ver, none of EOD values for any of the TSD:TDD pairs changed
ith varying motor unit depth and several pairs showed increas-

tion pairs of the nine-pin electrode array

Complexity (# electrodes) Rank by complexity

8 10
6 6
5 3
5 3
6 6
7 9
5 3
4 2
6 6
3 1

pths (13–3 mm in 1 mm steps).
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ng EOD with increasing depth (e.g. 1LSD:2TDD, 1LSD:2LDD,
LSD:NDD, 1LSD:1BiTDD). Configuration pairs were also
anked by implementation complexity, which was measured in
umber of electrodes needed for signal detection. Note that four
airs involving a BiTDD configuration and requiring as little as
ix electrodes were among the top 10 EOD values. In contrast,
he IB2 configuration, which requires all nine electrodes of the
rray, did not appear among the top 10 pairs (Table 4). Note
hat the simplest configuration pair among those with the top
0 largest EOD values, the 2LSD:2LDD combination, requires
nly the center row of three electrodes.

. Discussion

Spatial filters can be described by various features such as
ains, bandwidth, and signal to noise ratio, among others. We
ocused on the single parameter of the energy-of-difference
EOD) between the shapes of the motor unit action potential
hapes because we were interested in identifying spatial filter
onfigurations that would provide the most distinction amongst
he detected action potentials. The algorithms that have proven
o be successful for decomposing the superimposed sEMG sig-
al rely heavily on the distinguishability of the shapes of the
ction potentials (De Luca et al., 2006). The greater the distinc-
ion amongst the action potential shapes, the greater the accuracy
f the decomposition and the greater the number of motor unit
ction potential trains that can be identified in the superimposed
MG signal.

This study fixed the geometry of the volume conductor and
he location of the electrode array on the surface of the skin to
acilitate comparison of the performance of various spatial filters
n distinguishing the action potentials of motor units located at
ifferent depth within the muscle. An extension of the results
o different muscle geometries, tissue conductivities, or sensor
ocations needs to proceed with caution.

.1. Maximum shape difference between two motor units

The results presented in Table 3 revealed that the BiTDD
patial filter provided the maximum energy difference (EOD)
etween the action potentials of two motor units located at dif-
erent depths. This result is consistent with previous reports
Arabadzhier et al., 2003; Dimitrov et al., 2003) indicating high
electivity of the electrode array. Several studies (Dimitrov et al.,
003; Disselhorst-Klug et al., 1997; Farina and Cescon, 2001;
arina et al., 2002, 2003) assessed shape difference, or spatial
lter selectivity, by measuring the MUAP amplitude and dura-

ion. While these parameters and the EOD show similar trends,
here are several discrepancies. Several reports (Dimitrov et al.,
003; Disselhorst-Klug et al., 1997; Farina et al., 2003; Kostov
t al., 1988) have indicated that the longitudinal selectivity of the
etection system is reflected in the duration of the MUAP with
horter duration indicating higher selectivity. However, selec-

ivity results were not consistent for a given set of spatial filter
onfigurations (Dimitrov et al., 2003; Disselhorst-Klug et al.,
997), because the ability of the spatial filters to reduce the
uration (or pick-up area) varied with the location of the motor

u
t

e Methods 168 (2008) 54–63

nit below the skin (see also Table 2 of this study). A few stud-
es assessed the transversal selectivity of the detection systems
n terms of the amplitude attenuation (Dimitrov et al., 2003;
imitrova et al., 1999; Farina et al., 2003; Helal and Bouissou,
992). They concluded that the higher rate of amplitude atten-
ation indicated the higher selectivity of the detection system.
or example, Dimitrov et al. (2003) indicated that LDD detec-

ion had always higher selectivity than TDD and NDD detection.
owever, this is not generally true. In the current study, the TDD

nd NDD configurations exhibited higher EOD values than the
LDD (and 3LDD, due to symmetry), but lower than the 2LDD
onfiguration (Fig. 4A).

Electrode spacing has also been investigated in the past.
ome reports (Dimitrova et al., 1999; Farina et al., 2002;
uglevand et al., 1992) indicated that larger spacing (wider
ick-up area) contributes to lower selectivity. However, from a
ractical perspective, small spacing in a two-dimensional elec-
rode array requires a small electrode/skin contact area (small
ins) rendering the sensor sensitive to artifacts, thus limiting
ts usefulness. In line with previous results, Fig. 4A shows
hat decreasing the electrode spacing of array increased the
OD value and hence selectivity, but this effect was small. In
omparison, the range of variation in the EOD value due to dif-
erent motor unit depths (Fig. 4B) was much larger. Thus, for
he given muscle architecture and the range of spacing values
nvestigated in this study, electrode spacing was not a critical
actor.

.2. Maximum shape difference among pairs of array
onfigurations

Pair wise combinations of spatial filter configurations were
anked by their ability to generate different MUAP shape rep-
esentations for the same motor unit. We found the following
ominant relationships:

1) Out of the top 10 combinations ranked by EOD (see Table 4),
four included BiTDD configurations, two of which ranked
#1 and #2, while the remaining always included one LSD
configuration.

2) The EOD between any LSD and any TSD configuration
was greater than that between all the other single differential
filter pairs. This result indicates that difference in orientation
of the spatial filters (i.e. longitudinal versus transversal) is an
important factor that contributes to a high EOD value. The
reason for this is that the MUAP shapes detected in each case
are dramatically different. For example, the signal detected
by a TSD spatial filter has a triphasic waveform and that
detected by LSD has biphasic waveform (Fig. 3).

3) The EOD of any SD:DD spatial filter pair (for example
LSD:TDD) was always greater than that of any DD:DD pair
because the double-differential configuration has a greater
selectivity (Farina et al., 2003) (see Tables 2 and 3).
Thus, as for the results of the EOD values at different motor
nit depths, the BiTDD spatial filter again stands out as the one
hat offers a highly distinguishable MUAP representation.
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.3. The proposed four-channel detection system for
urface EMG decomposition

We identified design choices for the sensor based on the
umber of channels and the application in an EMG signal
ecomposition system. Given an electrode array of nine contact
ins placed on a muscle in a fixed location, which spatial filter
onfiguration should one choose to get the best one-channel
ensor, i.e. the one that distinguishes between the action
otentials of motor units located at different depths, and which
dditional spatial filter configurations (up to a total of four)
hould one chose to get the best multi-channel sensor, such that
he representation of motor units in the channels is different.

For a one-channel detection system, where depth distinction
atters primarily, either one of the two BiTDD configurations
as always the best choice (Table 1). These configurations dis-
layed the highest EOD values irrespective of motor unit depth
nd electrode spacing, within the limits of our simulation setup
Fig. 4).

When adding a second, third, and fourth channel, depth selec-
ivity for each individual channel (i.e. the EOD values from
able 3) was weighed against inter-channel difference in MUAP
hape representation (Table 4) in the following manner:

ggregate EOD = (Average EOD of configuration pairs)

+ 1/2(Average EOD of configurations)

Thus, the average inter-channel difference was weighted
wice as high as the average depth selectivity. The resulting
ggregate EOD values were ranked and the highest value
hosen for our sensor design (Fig. 5). For a two-channel system,
he combination 2BiTDD and 3TSD emerged as the preferred
rrangement, which uses eight of the nine contact pins. For

three-channel system, the 1LSD configuration is added,
gain using eight out of nine electrodes. For a four-channel
ystem, addition of the 1TDD configuration provides the
ighest aggregate EOD requiring all nine electrodes. It should
e noted, that the second best two-channel arrangement was
he combination 1BiTDD and 3TSD, which requires only six
f the nine electrodes (Fig. 5, top right). The performance
rop incurred by using only six pins to generate two EMG
hannels is 15% (1.768 versus 2.071 aggregate EOD). Fig. 5
ndicates the four best configurations when one restricts the
nalysis to six electrodes, those of the 1BiTDD configuration,
hich makes for a sensor that occupies only half the contact

rea of the nine-electrode array (indicated by shaded circles
n Fig. 5). Surprisingly, the same configurations for channels
–4 are selected as in the case of a nine-electrode system. The
ifference in performance between the four-channel system
hat uses all nine electrodes and the one that uses only six is
ess than 5% (1.382 versus 1.319 aggregate EOD).

.4. Concluding remarks
The issue of concern for this work was to identify spatial fil-
er combinations that increased the distinction amongst detected
ction potentials. The decomposition algorithms which iden-

C
J

f up to four channels for application in SEMG decomposition. Shown are con-
gurations based on a nine-pin (open circles) and six-pin (grey circles) electrode
rray for each of the four channels. Note that channels 2–4 are identical in both
ases.

ify, track and assign the action potentials to a specific motor
nit are not discussed in this document. Those algorithms have
een described in numerous publications from our group dur-
ng the past three decades. Recent references are: De Luca and
dam (1999), Nawab et al. (2004a,b), De Luca et al. (2006) and
auvage et al. (2006). These algorithms are constructed from
omplex artificial intelligence constructs that involve a variety
f signal analysis concepts. Among numerous other tasks, the
lgorithms track the changing shapes of the action potential that
ccur during a contraction as a consequence of the movement
f the EMG sensor with respect to the location of the action
otential source.
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