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AR Modeling of Myoelectric Interference
 
Signals During a Ramp Contraction
 

Tohru Kiryu, Member, IEEE, Carlo J. De Luca, Fellow, IEEE, and Yoshiaki Saitoh, Memher, IEEE 

Abstract- We investigated the time-varying behavior of the 
autoregressive (AR) parameters in a myoelectric (ME) signal 
detected during a linear force increasing contraction. The AR pa­
rameters of interest were the reflection coefficients, the AR model 
spectrum, and the prediction errors. We used well-conditioned 
ME signals for which the complete time record of the motor units 
firings was available. In addition, the influence of the recruitment 
of a new motor unit, the conduction velocity of action potentials, 
and additive broad-band noise were investigated using simulated 
ME signals. The simulated ME signals were constructed from 
a selected group of the available motor unit action potential 
trains. The results revealed that, as the contraction progressed, 
the AR parameters displayed a time-varying behavior which 
coincided with the recruitment of newly recruited motor units 
whose spectrum of the waveform differed from that of the rest of 
the ME signal. This property of the AR parameters was obscured 
by the presence of broad-band noise and low-amplitude motor 
unit action potentials, both of which are more pronounced during 
low-level force contractions. 

I. INlRODUCfION 

I T HAS BECOME common practice to use the frequency 
spectrum of the surface myoelectric (ME) signal as a fatigue 

index for sustained muscle contractions (see reviews by De 
Luca [1] and Merletti et al. [2], among others). For such 
analysis, it is important that the ME signal be stationary. This 
is an important concern because motor units (MU's) may be 
recruited or derecruited during a contraction due to fluctuations 
in the force output of the muscle: Such fluctuation may occur 
even in attempted constant-force isometric contractions. 

Previous approaches for analyzing the time-varying aspects 
of the ME signals have used a linear prediction model. Among 
them, the autoregressive (AR) model has been used to deal 
with time-varying ME signals because it emphasizes spectral 
peaks for time records having a small number of samples 
[3]. This approach was introduced by Graupe and Cline [4] 
who attempted to use the surface ME signal for controlling 
prostheses. Subsequently, Sherif et al. [5] studied the behavior 
of autoregressive integrated moving average (ARIMA) coef­
ficients of the ME signals from the deltoid muscle during 
dynamic contractions. Recently, Capponi et al. [6] represented 
ME signals, detected from the biceps and triceps muscles, with 
the time courses of AR coefficients during rapid isometric 
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contractions. The benefit of the AR model in ME signal 
analysis has been confirmed for applications in prosthesis 
control [4], [7], functional electrical stimulation [8], and 
clinical diagnosis [9]. These applications notwithstanding, the 
problems of applying AR model to time-varying ME signals 
and the time-varying behavior of AR parameters have not been 
studied in detail. 

The use of AR modeling for physiological interpretation 
of the behavior of the ME signal has been limited. In an 
early report, Inbar and Noujaim [9] described the influence of 
the statistics of MU's firing characteristics to AR parameters. 
Later, Paiss and Inbar [10] analyzed the AR coefficients of 
surface ME signals from the biceps brachii muscle to monitor 
localized muscle fatigue. They reported that the first AR 
coefficient could be used to monitor local fatigue. However, 
they did not describe it in terms of recruitment order of 
MU's. More recently, Kiryu et al. [11] achieved a less biased 
estimation of AR coefficients for surface ME signals of the 
masseter muscles performing a rapid open-dose movement. 
They described the correlation among the firings of MU's and 
the levels of the reflection coefficients (one of the indexes 
of AR parameters), especially the third reflection coefficient, 
during dynamic movement. However, because their work was 
limited to a muscle-structured computer simulation, physio­
logical interpretations were not possible. 

In order to further investigate the physiological interpreta­
tion of AR modeling, we analyzed the time-varying behavior 
of AR parameters for well-conditioned ME signals detected 
during an isometric force-varying ramp contraction. 

II. EXPERIMENTAL PROCEDURE 

Five subjects volunteered for the experiment. All the sub­
jects signed an informed consent form approved by the local 
Institute Review Board. The first dorsal interosseous (FDI) 
muscle was chosen for this study. The hand of each subject 
was placed in a specially designed device that constrained 
the FDI to contract isometrically and substantially isolated 
the force being generated by the FDL The maximal voluntary 
contraction (MVC) level was measured for each subject. Each 
subject was asked to contract the FDI with maximal effort for 
a period of two to three seconds. Three trials were performed 
with a rest interval of two minutes between attempts. The 
highest value was taken as representing the MVC. The subjects 
were instructed to contract the FDI so as to generate a force­
time course which tracked trajectory displayed on a monitor. 
The trajectory consisted of a ramp (10% MVC/s) for 5 s up 
to 50% MVC. 
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A special quadrifilar needle electrode was inserted into 
the muscle. ME signals were obtained from three differential 
combinations of the four wires (75 JLm in diameter) exposed 
in cross-section at a side-port on the cannula of the needle, 
as well as from the cannula itself. The signals from the side­
port wires were amplified with a bandwidth of I kHz-IO kHz 
and were digitized at a rate of 50 kHz. Filtering the side­
port wires ME signals reduced the amplitude of motor unit 
action potential (MUAP) waveform having slower rise-time 
and produced by muscle fibers distant from the recording 
site [12]. The ME signals from the side-port wires were 
decomposed into their constituent MUAPT's by the Precision 
Decomposition technique to obtain the map of MU firings. 
The Precision Decomposition technique is a template matching 
technique which arrives at decisions for identifying the shape 
of individual MU's by a weighted combination of probability 
of occurrence and the least-squared signal space distance 
between the MUAP and an established template. The technique 
also continuously updates the templates if the shape of the 
MUAP's is modified slowly. For more details the reader is 
referred to Le Fever and De Luca [12] and Mambrito and De 
Luca [13]. 

The ME signal from the cannula was amplified with a 
bandwidth of 10Hz to I kHz and was digitized at a rate 
of 2048 Hz. We then estimated the AR parameters from the 
cannula ME signals, which in many ways have properties 
similar to those of surface ME signals. The AR parameters 
of interest were the reflection coefficients, the AR model 
spectrum, and the prediction errors. 

III. SPECfRUM MODEL AND SIMULATION 

A. Spectrum ModeL 

Let us consider a spectrum model of ME signals which 
emphasizes the relationship between the recruitment order 
and the power spectrum. For a set of active MU's, M, the 
time-varying power spectrum of the ME signal, PMdw, t), is 
represented by 

M(t) 

PME(W,t) = 2: IEm(wWIMPm(w,t)!2/FRm(w,tW, (1) 
.,.=1 

where E(w), MP(w,t) and FR(w,t) are, respectively, the 
Fourier transforms of the spatial filter, the MUAP waveform, 
and the firing train. The spatial filter includes filtering effects 
related to the anatomical structure of the muscle and, for the 
purpose of this study, is considered to be stationary. It should 
be noted that PME(w, t) is nonstationary mainly because the 
number of active MU's, M, is a function of time; M(t) 
increases in a step-wise fashion during a task that requires MU 
recruitment. Also, it should be noted that MUAP waveform 
contributes to the global pattern of the ME power spectrum, 
whereas the firing rate only creates a relative insignificant peak 
in the low frequency range of the spectrum [10], [14]. 

B. Physiological Evaluation Using Computer Simulation 

In order to study the influence of newly recruited MU's, two 
important considerations must be studied ahead of performing 
AR analysis of the ME signals which are detected during force­
varying contractions: a) the effect of broad-band noise; and b) 
the effect of the conduction velocity of the action potentials. 

The broad-band noise will arise from random noise present 
in physiological systems as well as in the detection and 
recording systems. This noise will be essentially independent 
of the ME signal. Another source of broad-band noise will 
be the background activity of low-amplitude MUAP's in the 
ME signal. The amplitude of additive broad-band noise is not 
negligible when the muscle contraction level is relatively low, 
for example, during the early stage of a ramp contraction. 
This is of particular concern because it has been reported that 
AR model may show discrepancies for contaminated signals 
with additive broad-band noises [15]. To remove the influences 
of the broad-band noise on the AR parameters, we simulated 
noncontaminated ME signals on a computer. This task was 
accomplished by selecting the higher amplitude MUAPT's 
from the decomposed ME signals and using their firing times 
to estimate the trigger-averaged MUAP wavefonns from the 
cannula ME signal. This time history of the firings of these 
MUAP waveforms produced a noise-free cannula ME signal. 

The conduction velocity (CV) of the ME signal is a nec­
essary consideration because it is well-known that the CV 
of the MUAP's of MU's recruited at higher force thresholds 
increases. Therefore, as the force output of a muscle increases, 
so does the average CV of the ME signal [l6]-{18]. We 
performed two simulations. In the first simulation, the MUAP 
waveforms were assumed to be time-invariant. That is, they 
had constant CV's throughout the time sequence. Thus, with 
this approach, we were limited to studying only the contri­
bution of the individual MUAP waveforms and the map of 
the MU firings to the ME power spectrum during a ramp 
contraction. In the second simulation, we wished to investigate 
the influence of the CV during ramp contractions. This increase 
in the CV was simulated by a reduction function of the MUAP 
duration, R( t), as follows 

R(t) = 0, 0 ~ t < ts, (2.1) 

R(t) = «; [1- Ct; ~ t:r], 

(2.2) 

R(t)=Rm tf~t, (2.3) 

MUAP duration (t) = MUAP duration (ts)[l- R(t)], (2.4) 

where Rm is the maximum rate of the decrease (0 < Rm < 
1), t .. is the time at which MU recruitment occurs, and t f is 
the time at which the decrease rate reaches Rm. Then, the 
time-varying increase rate of the CV, C(t), is calculated by 

1 
(3)C(t) = 1 _ R(t) 

The initial conditions of MtrAP waveforms and the map of the
 
MU firings were identical to those used in the first simulation.
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Fig. I. Geo~etrical relation of PE vectors. If the minimum norm of the for­
ward PE vector, r». is achieved by the LS estimation, /(q) is perpendicular 
to the subspace n that defines the estimate vector, s. The backward PE vector, 
K(q)b(q-l), and s exist in the same subspace. 

IV. TiME-VARYING SPECIRUM ANALYSIS 

A. Time-Varying AR Parameters 

Estimation of time-varying AR parameters provides a direct 
solution for time-varying spectrum analysis. A p-th order AR 
model is given by 

p 

Sn =Lap') Sn-i + ~~), (4) 
i=1 

where Sn is a signal sample digitized at time instant rio The 
linear prediction coefficients, ap') for i = 1, ... ,p, and previ­
ous sample sequence, Sn-i for i = 1, ... ,p, predict Sn with 
the residual, ~~) . Although the use of locally quasistationary 
processing has been shown to be effective for analyzing the 
ME signals during dynamic contractions [11], for the sake 
of convenience, we estimated the AR parameters, assuming 
the ME signals to be locally stationary. In this approach, a 
set of linear prediction coefficients, [a~q)], is estimated in a 
specific block (interval) segmented from the ME signal, and 
the ME signal is assumed to be stationary in the block. The 
sliding block procedure shifts the overlapping block every one 
sample along the time axis to obtain the time courses of AR 
parameters. 

The time-varying power spectrum obtained by the maximum 
entropy method (MEM) is expressed as [3] 

1 
P(w) = p (5)

11- L: a~p)z-iI2 
i=1 t z=exp(jw) 

The q-th reflection coefficient (RC), K(q), is defined by the 
q-th linear prediction coefficient of the q-th order AR model, 
a~q). The order update from q to q + 1 affects [a~q)] and, 
therefore, the MEM power spectrum, but does not influence 
RC's of the order below q. RC's up to p-th can be transformed 
into the p set of linear prediction coefficients, [a~q) for i = 
1, ... , q and q = 1, ... ,p], and vice versa [19]. 

B. Prediction Error Analysis 

We have shown previously that the prediction error (PE) 
analysis can be used to analyze the ME signals from the 
masseter muscle during a rapid open-close movement [20]. 
This approach has several advantages. Unlike the successive 
estimation of time-varying AR parameters at every interval, 
the PE analysis only compares time-varying properties of ME 

signals with the reference of a sustained contraction, thus 
resulting in lower computational cost. The PE includes all of 
the time-varying residual components which the reference AR 
coefficients cannot predict from time-varying ME signals at 
every interval. 

We represent the equations that will be necessary 10 under­
stand the PE analysis because the article [20] was written in 
Japanese. Let the maximum order of the AR model be p, and 
consider two tyres of PE vectors: the forward and backward 
PE vectors, f(q and b(q), for q = 1, ... ,p, respectively. The 
time-varying components of both q-th PE vectors at time n in 
a block have been given by Markel and Gray [19]: 
Forward Prediction Error Components (refer to (4» 

q 

f (q) - - '"' (q) . 
n - Sn L...J a i Sn-t> (6) 

i=1 

where [a~q)] is the forward linear prediction coefficients of a 
q-th AR filter; 
Backward Prediction Error Components 

q 

b(q ) - - '"' /3(q) . n - Sn-(q+l) L...J i Sn-t> (7) 
i=1 

where L8~q)] is the backward linear prediction coefficients 
of the q-th AR filter. The relationship between forward and 
backward PE vectors is 

(8) 

where K(q) is the q-th Re. 
According to the geometrical interpretation of the least­

squares estimation of [a~q)], the optimum forward PE vector, 
r». should be perpendicular to the subspace n that defines s 
(orthogonality principle) [19], [21]. Fig. I shows that 

f(q)=s-s, (9) 

where s is the estimate vector of the observed signal vector 
s. Since the backward PE vector K(q)b(q-l) and s exist in 
the same subspace, f(q) and b(q-l) are orthogonal with each 
other in a specific block where the AR filter is designed, for 
q = 1, ... , p, in the least-squares estimation sense. 

The reference AR coefficients of the standard AR filter, 
[a~~] and L8i~], should be estimated in a specific locally 
stationary block, a reference block, in advance. Unlike AR 
parameters poorly estimated in successive blocks of a time­

varying ME signal, the PE components calculated by [a~~ ] 
and L8i~] can treat all of the time-varying residue that 
reference AR coefficients cannot predict. Now, we can define 

• (q) .
the PE index, JFB EO for q = 1, ... ,p, as 

(f(q)T b(q-l)y2
( )J q - 1 - (10)
FBEO - If(q)1 2I b(q- I ) 12 ' 

where T denotes the transpose. Then, (10) is rewritten as 

J (q ) - 1 2 e (11)FBEO - - cos , 

where e is the angle between f(q) and b(q-l). The PE index 
has a value of 1.0 only if the feature in a block is identical to 
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Fig. 2. Time courses of AR parameters for an actual cannula ME signal 
during a ramp contraction: (a) force output; (b) cannula ME signal with the 
arrows indicating the location of MU recruitment; (c) time courses of PE 
indexes, [J~~EO' for q =1, ... ,5]; (d) time courses of RC's, [](q), for 
q = 1, ... ,5]. PE indexes and RC's showed the time-varying behavior. 

that in the reference block. That is, it shows whether or not 
the feature in a block 'is similar to that in the reference block, 
using [a~q:] of the standard AR filter. It should be noted that 
6(q-l) is ~culated by j<q), j<q-l), and «», using (8). The 
concept of the PE index stems from the similarity function 
which was proposed by Iijima [22] and has greatly contributed 
to the development of the optical character recognition. 

Since the PE index is evaluated at each order, it can 
also express a practically required AR order to represent the 
observed signal in a block of interest. That is, the q-th PE 
index shows around 1.0 if the practically required AR order 
is more than q. 

V. REsULTS 

A. Time-Varying AR Parameters of Original ME Signals 

The time courses of AR parameters for an actual cannula 
ME signal during a ramp contraction is presented in Fig. 2. 
The force output of the muscle contraction level increased 
almost linearly, as shown in Fig. 2(a), reaching values of 28% 
MVC in 5 s. The arrows in Fig. 2(b) indicate the location of 
MU recruitment as revealed by the Precision Decomposition 
technique.: 

The design of standard AR filters for PE analysis was 
executed in the reference block ranging from 8.88 s to 9.17 
s (outside Fig. 2). In this interval, the subject produced a 
relatively constant force after a ramp contraction of 5 s (see 
Section II). The PE indexes up to fifth order were calculated 
for each sliding block of about 50 ms (or 101 samples). The 

first and second PE indexes reached a value of 1.0 at about 
1.3 s, corresponding to the beginning of the contraction. The 
fourth and fifth PE indexes reached a value of 1.0 at around 
2.5 s at which the force level reached around 6% MVC. 

The block length for RC's estimation was approximately 70 
ms (or 143 samples). The second RC, K(2), which corresponds 
to a~2) of the second order AR model, showed time-varying 
features from 0.0 to -0.8 of the value. However, the RC's 
over the fourth order were too random to evaluate. Comparing 
RC's with the times at which the MU's were recruited, we 
found that they did not correspond consistently with the times 
indicated by the arrows in Fig. 2(b). 

B. RC's and MEM Power Spectra of Both 
Original and Simulated ME Signals 

We further investigated the time-varying behavior of AR 
parameters for well-conditioned ME signals and simulated ME 
signals. AR parameters employed in the subsequent detailed 
analysis were RC's and MEM power spectrum. The MEM 
power spectra were obtained in every nonoverlapping interval 
of 0.25 s (or 512 samples) during a positive ramp contraction, 
using (5). The AR model of the order 20 was used for the 
MEM power spectrum because a detailed structure of the 
power spectrum was required.' 

The time course values of RC's and the MEM power 
spectrum of another cannula ME signal are presented in Fig. 3. 
Unlike Fig. 2, the time courses of RC's (Fig.3(c» did not 
demonstrate the time-varying behavior. In our experiment, 
two of the subjects showed the time-varying behavior of AR 
parameters, the others did not. Furthermore, it was difficult 
to identify the correlation between random peaks and the re­
cruitment order by modifications in the MEM power spectrum 
(Fig. 3(d». The difference between the results of Figs. 2 and 
3 seems to be caused by the influence of the low-amplitude 
MUAPT's and random noise. 

Producing noise-free ME signals by computer simulation, 
we evaluated the influences of MU firings and the time­
varying CV's, removing the low-amplitude MUAPT's and the 

".	 random noise. The map of MU firings was the same as that 
indicated in Fig. 3(b). The MUAP waveforms of individual 
MU's, shown in Fig. 4, were recovered from the cannula ME 
signal by trigger-averaging with the firing times of the MU's. 
The numbers of samples ranged from 97 to 358 for individual 
MU's of Fig. 3, whereas it was from 8 to 74 for those of Fig. 2. 
Thus, we used the data of Fig. 3 for the computer simulation. 

Figs. 5 and 6 show the results of simulated ME signals. 
Fig. 5 presents the results of the first simulation where the 
CV's were assumed to be time-invariant. The ME signal of 
the second simulation contained. the same MUAP's as those 
in the first simulation but with time-varying CV's (Fig. 6(b». 
Although the time-varying behavior of AR parameters was 
difficult to recognize in Fig. 3, it was moderately apparent in 
Figs. 5 and 6. 

The behavior of the time courses of RC's revealed a random 
fluctuation near zero until the recruitment of MU #1 (Figs. 5(b) 
and 6(c». The succeeding abrupt change of RC's during the 
beginning phase of a contraction, from 1.25 s to 2.0 s, was 
generated by sparse firing of MU #1. As for the effect of 
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MU#I I I I III : J 11111111111111111111111111111/11/1111111' /1111 
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K (4) K (2) time [5] 

MEM power spectrum 
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Fig. 3. RC's and MEM power spectrum with respect to time for another 
cannula ME signal during a ramp contraction: (a) cannula ME signal with 
the arrows indicating the location of MU recruitment; (b) firing table for the 
selected MU's; (c) time courses of RC's, [[«q), for q = 1, ... ,5]; (d) MEM 
power spectrum change. RC's and MEM power spectrum did not indicate 
noticeable time-varying behavior. 

MUll 13 #5 #6 

--f'~ <i> ~'-~ 

~-~~-++
 
39m. 

Fig. 4. Selected MUAP waveforms recovered from the cannula ME signal 
of Fig. 3(a) by trigger-averaging ....ith the firing times of the individual MU's. 

the CV change on the time courses of RC's, there was no 
notable difference between them. Note that Fig. 6(b) shows 
the time-varying increase rate for the CV's, C(t). The CV's 
of almost all the MU's were expected to increase by about 
30% at 5 s compared to the initial values at the beginning of 
the recruitment of individual MU's. 

The MEM power spectra for the simulated ME signals 
contained sharp peaks due to the limited number of MU's used 
to construct the ME signals. This detail was seen by comparing 
the simulation results (Figs. 5(c) and 6(d)) with the actual 
result (Fig. 3(d)). The third peak of the MEM power spectrum 
became prominent at about 3 s in Fig. 5(c). In Fig. 5(a), it 
appears that the third peak may be indirectly correlated to the 

first 

MEM powerspectrum	 ...··.....·'1 
",r'///......,. II 

(c) power 
[dB]···· 

~:::-._-----..:_~.:-i 

60 
dB .... 

o I .../ .....~:e [5] 

-40 "'--::----=----,/

o frequency [Hz] 102r- 05 

Fig. 5. Results of the first simulation with time-invariant CV's: (a) simulated 
ME signal with the arrows indicating the location of MU recruitment; (b) time 
courses of RC's, [[(q), for q =1, ... ,5]; (c) MEM power spectrum change. 
The slight change of RC's appeared after removing low profile MU's and 
random noise. The third peak: of the MEM power spectrum became prominent 
at about 3 s. 

recruitment of MU's, MU #6 and #9. Note that MU #8 and #10 
which were recruited at 5 s have sparse firings (Fig. 3(b)), and 
consequently these MU's did not influence the MEM power 
spectrum. In Fig. 6(d), the fourth peak of the MEM power 
spectrum appeared after 4 s, possibly due to the influence of 
the time-varying CV's. However, the peaks of the early phase 
did not shift towards a higher frequency at the latter phase. 

C. Influence of Additive Broad-Band Noises 

An example of the assessments of additive broad-band noise 
with a computer simulation is demonstrated in Fig. 7. The 
simulation model employed was a fifth order AR model with 
time-invariant linear prediction coefficients. The amplitude 
gradually increased to simulate the profile of an actual ME 
signal The additive broad-band noises were Gaussian of zero 
mean and with five levels of the variance, om,0.05, 0.1, 0.5, 
and 1.0. The noise signals were stationary. Fig. 7(b) presents 
the time course of the signal-to-noise ratio. The time course 
of the signal-to-noise ratio varied because the signal increased 
its amplitude as a function of time. The standard AR filters 
of the PE indexes were designed by the true linear prediction 
coefficients. 

Although the signal was synthesized by the time-invariant 
linear prediction coefficients, the behavior of estimated AR 
parameters was time-varying like those of Fig. 2. It is appar­
ent that the noise caused the time-varying behavior of AR 
parameters. Such behavior occurred when the signal-to-noise 
ratio was less than 30 dB. This observation was also confirmed 
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Fig. 6. Results of the second simulation with time-varying CV's: (a) simu­
lated ME signal with.the arrows indicating the location of MU recruitment; (b) 
schedule. C(t), of time-varying CV's for individual MU's; (c) time courses 
of RC's, [K(q), for q = 1, ... ,5]; (d) MEM power spectrum change. The 
change of RC's was the same as that of Fig. S(b). The fourth peak of the 
MEM power spectrum appeared after 4 s. 

by adding the broad-band noises with different variances to the 
simulated ME signals in Figs. 5 and 6, 

VI. DISCUSSION 

A. Contribution of MU Firings to AR 
Parameters During Recruitment 

When we analyzed well-conditioned ME signals, for which 
the complete map of the MU firings was available, we found 
that the time-varying behavior of RC's and MEM power spec­
tra during a ramp contraction were not directly related to the 
occurrence of MU recruitment (Figs. 2 and 3). However, when 
the low-amplitude MUAP's were removed in the computer 
simulations using the data of Fig. 3, the MEM power spectrum 
revealed the significant peaks related to the MU recruitment 
during the latter phase of a contraction (Figs. 4 and 5), but not 
in the RC's. This difference is most likely due to the nonlinear 
relationship between MEM power spectrum and RC's(refer 
to (5». Another concern was the firing rate of each MU's. In 
Fig. 4, MU #9 had a dense firing and a similar waveform to 
those of MU #1, #3, and #5, whereas MU #8 had a sparse 
firing and a different waveform to the previous ones. The 
difference in MU firings seemed to produce the prominent 
contribution of MU #9 and the minor contribution of MU #8 
to the MEM power spectrum profile. It appears that recruited 

The RC's were 0.7184, -0.9078, -0.4244, -0.0300, and -0.0186. These 
values were u~ t~ design the S~F·s. The amplitude was multiplied by 
n/1500 at the ume index n. The noise was Gaussian type with zero mean and 
the variance of 0.01. ~e block.of 101 samples in length was shifted every 
one sample. The behavior of estimated AR parameters was time-varying like 
those of Fig. I. 

MUAP waveforms which have more prominent firing rates 
contribute noticeably to the ME power spectrum [10]. 

B. Contribution ofCV· s to AR Parameters During Recruitment 

When the cV's were increased by 30% above the initial 
values, the magnitude of MEM power spectrum in the higher 
frequencies increased only during the latter phase of a con­
traction (Fig. 6(d». This makes sense because increasing CV's 
shortens the duration of MUAP waveforms, The influence of 
increasing CV's, as well as the effect of MU firings, was 
not identified in the time courses of RC's, apparently due 
to the nonlinear relationship between MEM power spectrum 
and RC's. Even supplemental simulations where the CV's 
increased by 40% above the initial values, RC's demonstrated 
only ,a slight decrease of the absolute values. However, such a 
dramatic increase in the value of the CV is not physiologically 
realistic. (For example, Sadoyama and Masuda [16] measured 
the time course of the CV's of individual MU's during 
a recruitment task in the biceps brachii and reported that 
the CV's of individual MU's increased by 20% during a 
contraction which spanned from 0 to 100% MVC.) 

C. Low-Amplitude MU's and Broad-Band Noises 

The almost time-invariant behavior in Fig. 3 might be 
caused by the low-amplitude MUAP's with the dense firing. 
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That is, a slight change of RC's appeared for the simulated 
ME signals, after removing low-amplitude MU's and random 
noise (Figs. 5(b) and 6(c». However, the remarkable time­
varying behavior seen in Fig. 2 was not identified due to the 
following reasons. Firstly, the above-mentioned influences of 
MU recruitment were noticeable only during the latter phase of 
a contraction on the computer simulations. Secondly, as seen 
in Fig. 7(d), the increase of the signal-to-noise ratio produced 
the increase of the absolute values of RC's (Fig. 7(d». This 
additive broad-band noise effect was noted in ME signals 
regardless of the differences in frequency components of 
recruited MUAP's, especially in the early phase of a con­
traction. In this case, it was difficult to identify whether the 
time-varying behavior was produced by the additive broad­
band noise or by the different frequency components of later 
recruited MUAP waveforms. This fact has been at times 
ignored by previous researchers. 

D. Dealing with ME Signals During an 
Early Phase of a Contraction 

We conclude that if the ME signal consists of predominarItly 
high-amplitude MUAPf's and it does not contain additive 
broad-band noise, a high order AR model and the MEM power 
spectrum may identify the occurrence of higher threshold MU 
recruited during the latter phase of a positive ramp contraction. 
Although ARMA modeling is generally recommended for a 
noisy signal [15], estimation of ARMA parameters is not cost 
effective because it is difficult to determine the optimum order 
in advance. The high order of the AR process can effectively 
represent the ARMA process' [23]. 

However, such application will have limited use because 
most ME signals detected with a surface electrode or a cannula 
electrode will contain low-amplitude MUAPT's which tend to 
be representative of MU's recruited at lower force threshold. In 
this case, the PE index can serve as a quality check to verify if 
the time-varying AR parameters correspond to physiologically 
realistic variations due to the MU recruitment because it 
indicates noticeable behavior in the presence of additive broad­
band noise. The PE index is also effective because it can 
deal with the time-varying residue that RC's and MEM power 
spectrum can not treat and has low computational cost. 
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