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Random Walking during Quiet Standing 
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During quiet standing. the human body continually moves about in an erratic, and possibly chaotic. 
fashion. Here we show that postural sway is indistinguishable from correlated noise and that it can 
be modeled as a system of bounded, correlated random walks. These novel results suggest that the 
postural control system incorporates both open-loop and closed-loop control mechanisms. 

PACS numbers: 87.45.0£. 05.45.+b 

Noiselike fluctuations abound in physiological systems 
and processes [1]. It has been suggested that the com
plex, unpredictable behavior exhibited by the mammalian 
nervous [2] and muscular systems [3] may be instances 
of deterministic chaos. A likely candidate for physio
logical chaos is the human postural control system, the 
output of which is highly irregular [4], as illustrated in 
Fig. 1. The identification of postural sway as an instance 
of chaos would suggest that there is a simple, dynamical 
mechanism at work in balance regulation and may make 
possible new therapeutic and preventative strategies for 
postural instability. 

Chaotic systems are typically characterized by the ex
istence of an attractor that has a fractal structure and a 
sensitive dependence upon initial conditions. Numerical 
algorithms which quantify either of these properties have 
been developed to detect the presence of deterministic 
chaos in experimental time series [5-7]. (In the case of 
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FIG. 1. (a) A typical90-s center-of-pressure (COP) trajectory. 
where x and y correspond to the mediolateral and anteroposte
rior directions, respectively. The corresponding time series are 
given in (b) and (c). A Kistler9287 multicomponent force plat
form and signal conditioner were used to collect COP trajecto
ries on ten healthy subjects-five males and five females-of 
similar age (19-24 yr, mean 22 :t 2 yr), height (1.60-1.80 rn, 
mean 1.69 :t 0.08 m), and body weight (54.4-77.1 kg, mean 
64.3 :t 8.4 kg). Each subject stood barefoot in an uprightpos
ture in a standardizedstance on the platformfor a seriesof five 
90-s trials under eyes-open conditions. The COP signals were 
antialiased using a second-order low pass filter (with a cutoff 
frequency of 34.1 Hz) and subsequently sampled at a rate of 
100 Hz. 

scalar time series, such algorithms usually require one to 
reconstruct first the system's attractor by embedding the 
time series in m-dimensional phase space [8].) The most 
common way to approximate the fractal structure of a sys
tem's attractor is to calculate the correlation dimension, 
D2 [5]. Chaotic systems are generally characterized by 
finite, noninteger, i.e., fractal, values for D2. To compute 
D2, one first calculates the correlation sum, C(e), which is 
the fraction of pairs of points (on the reconstructed attrac
tor) that are separated by a distance less than e, for various 
values of e, The correlation dimension can then be deter
mined from the slope of a suitable; linear scaling region 
in the plot of lnC(£) versus Ins. A system's sensitivity 
to initial conditions can be quantified by computing its 
Lyapunov characteristic exponents. Lyapunovexponents 
provide a measure of the rate at which initially nearby 
trajectories on an attractor diverge or converge as time 
progresses. The presence of a positive Lyapunov expo
nent is sufficient for diagnosing chaos and reflects the fact 
that nearby trajectories diverge at an exponential rate. For 
experimental time series, the largest Lyapunov exponent 
Al can be determined from the slope of a suitable, linear 
scaling region in the plot of (lndj(i» versus itu, where 
dj(i) is the distance between the jth pair of nearest neigh
bors (on the reconstructed attractor) after i discrete time 
steps, the symbol I-) denotes an average over all values 
of j, and at is the sampling period of the time series [7]. 

With short, noisy time series. the aforementioned algo
rithms can give spurious results; i.e., they can indicate 
the presence of chaos in systems that are not chaotic. 
Recently, surrogate data techniques have been developed 
to detect such "false chaos positives" [9,10]. Surrogate 
data sets are created by randomizing some property of the 
original time series. (For example, a surrogate data set 
can be formed by taking the Fourier transform of a time 
series, randomizing the phase information, and then taking 
the inverse Fourier transform; this procedure yields a data 
set of correlated noise with amplitude.spectral characteris
tics identical to that of the original time series.) The sur
rogate sets are then processed according to the identical 
algorithms that are applied to the original time series, and 
the results are analyzed to test the null hypothesis that the 
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properties of the surrogate data sets are sufficient to ac
count for the results obtained from the original time series. 
(The null hypothesis tested with phase-randomized surro
gates is that the original time series is correlated noise 
[9,10].) If the results from the surrogates and the origi
nal time series are not significantly different, then the null 
hypothesis cannot be rejected. 

We applied the above techniques to an analysis of the 
human postural control system. We quantified postural 
sway in ten subjects (see Fig. I caption) by measuring 
the time-varying displacements of the center of pressure 
(COP) under each individual's feet (Fig. I). We tested 
the null hypothesis that postural sway can be modeled 
as a correlated noise process. We found that although 
there appeared to be some structure in the reconstructed 
COP phase portraits [Fig. 2(a)], similar patterns were 
apparent in the phase portraits for the phase-randomized 
surrogates [Fig. 2(b)]. Likewise, the plots of InC{e) 

.versus lne for the original COP data [Fig. 2(c)] and the 
phase-randomized surrogates [Fig. 2(d)] were virtually 
indistinguishable. In each case, there was no clear 
linear scaling region of significant length (12] and the 
slopes of the plots failed to converge with increasing 
embedding dimension m, (Thus, it was not practical 
to extract values for D2') These qualitative results are 
those expected for a stochastic system. The Lyapunov 
exponent results were similar-the plots of (IndJ{i)} 
versus i4t for the original posture data [Fig. 2(e)] and the 
phase-randomized surrogates [Fig.2{0] were essentially 
identical. Although there was no clear linear scaling 
region in the respective plots, the region between 0.5 and 
15 s (in particular, for m < 14) could be mistaken as 
appropriate for extracting a positive Lyapunov exponent 
We therefore estimated Al over this region for the original 
COP data and found that the computed values appeared 
to converge for embedding dimensions of 6, 8, and 10 
[Fig.2(g)]. However, a similar convergence was found 
in the results for the ensemble of surrogate data sets 
[Fig. 2(g)]. In addition, this anomalous scaling region, 
in the original and surrogate data sets, flattened out with 
increasing embedding dimension [Fig. 2(g)], as would 
be expected for a stochastic system [7]. For m > 4, 
there were no statistically significant differences between 
the computed values of Al for the original posture data 
and the phase-randomized surrogates [Fig.2{h)]. (The 
significant differences found for m :5 4 can be attributed 

.in part to the ill-defined nature of the scaling region for 
these small values of m [Figs. 2{e) and 2(0].) Similar 
results were obtained for all 10 subjects (Fig. 3). 

Given these findings, we were unable to reject the 
null hypothesis that postural sway is correlated noise. 
We therefore concluded that the postural control system 
should not be modeled as a chaotic process and that it 
is better represented as a stochastic one. These general 
results are consistent with those obtained from surrogate 
analyses of other physiological time series, such as elec
trocardiograms [9], electroencephalograms [10], and H 
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FIG. 2. Dynamical systems analyses of a COP time series 
and phase-randomized surrogate data sets for a representative 
subject. All plots, in this figure and other figures, present 
results for the y-coordinate time series; similar findings were 
obtained for the x-coordinate time series. (a) A portion of the 
two-dimensional reconstructed phase portrait for the original 
COP time series. The reconstruction delay (Til) was determined 
using the reconstruction-expansion approach [II]. (b) As 
in (a), but for a phase-randomized surrogate data set [9,10] 
that was generated from the original COP time series in (a). 
(c) Plots of lnC(e) versus IDe for the original COP 
time series in (a) (s is in units of mm). The Grassberger
Procaccia algorithm [5] was used to compute C(e), and the 
reconstruction-expansion approach [II] was used to determine 
the reconstruction delays for the time-series embeddings. The 
results for embedding dimensions 2-20, in increments of 
2, are shown. (d) As in (c), but for the phase-randomized 
surrogate data set in (b). (e) Plots of (In div) versus time 
for the COP time series in (a). These plots were generated 
by computing the average separation of nearest neighbors on 
the reconstruction attractor [7]. Here "(In div)" and "Time 
(s)" are used to denote (lndJ(i» and itu, respectively. The 
results for embedding dimensions 2-20, in increments of 
2, are shown. (f) As in (e), but for the phase-randomized 
surrogate data set in (b). (g) Calculated values of the largest 
Lyapunov exponent, A"for the original time series (.6) in (e) 
and for phase-randomized surrogates (+). An ensemble of ten 
different phase-randomized surrogate data sets was generated 
from the original time series and subsequently analyzed. The 
results are plotted as a function of embedding dimension. All 
values for Al were extracted from the scaling region between 
0.5 and 1.5 s. (h) Significance of the differences between the 
computed AI values for the original COP time series and the 
surrogates in (g). The significance valuesand error bars were 
calculated according to the techniques described by Theiler 
et at. [10]. Here Us is the standard deviation of the Al values 
for the surrogates and t.:J.A I is the difference between the value 
of AI for the original COP time series and the mean value of AI 
for the surrogates. A dashed line is plotted at the significance 
level which corresponds to a p value of 0.05. 
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FIG. 3. Calculations of the largest Lyapunov exponent for the 
experimental population. (a) Calculated values of A( (for an 
embedding dimension of 12) for representative COP time series 
(6) and phase-randomized surrogates (+) for each of the ten 
subjects. These values were computed using the techniques 
described in the legend for Fig. 2(g). In each case, the same 
scaling region was used to extract AI values from the original 
COP time series and the surrogates. (b) Significance of the 
differences between the computed AI values for the original 
COP time series and the surrogates in (a). This plot was 
generated using the techniques described in the legend for 
Fig.2(h). 

reflexes [13]. Although deterministic chaos has been ob
served in perturbed biological preparations, e.g., periodi
cally stimulated chick heart cells [14] and squid axons 
[15], we are not aware of any documented cases wherein 
the "steady-state" behavior of a physiological system has 
been definitively identified (using surrogate data tech
niques) as an instance of chaos. 

Motivated by the above results, we then examined the 
hypothesis that postural sway can be modeled as a cor
related random walk. In a correlated random walk, past 
increments in displacement are correlated with future in
crements; i.e., the system has memory. These correlations 
can be quantified by computing the scaling exponent H 
from the relation [16] 

2H(a y2) = «Yi - Yi_.,.)2) - T , 

where (ayi) is mean square displacement and T is time 
interval. Scaling exponents can be any real number 
between 0 and 1. Classical random walks correspond to 
H =0.5. If H > 0.5, then past and future increments are 
positively correlated, whereas if H < 0.5, then past and 
future increments are negatively correlated [16]. 

We applied these random walk techniques to the 
posture data. (Similar correlation techniques have been 
applied to DNA sequences (17] and heartbeat data 
(18].) We found that the double-logarithmic plots of 
mean square COP displacement versus T exhibited two 
scaling regions (Fig. 4(a)]: a short-term region over 
which the time series behaved as a positively correlated 
random walk (H > 0.5) and a long-term region over 
which it behaved as a negatively correlated random walk 
(H < 0.5) (19]. (A third, distinct region, over which 
H = 0, is also expected after a sufficiently large T given 
the fact that COP displacements are bounded by the 
base of support defined by an individual's feet; i.e., for 
bounded motion, (~y2) saturates to a constant value after 
a sufficiently large T [20]; the time series considered 
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FIG. 4. Random walk. analyses of COP time series and 
shuffled surrogate data sets. (a) A resultant double-logarithmic 
plot (solid line) of mean square COP displacement «Ay2» 
versus time interval (T) for the representative subject presented 
in Fig. 2. The displacement analysis was carried out by 
computing the square of displacements between all pairs of 
points separated in time by T. The square displacerncots were 
then averaged over the number of .,. making up the time series. 
This process was repeated for increasing values of r, The 
results from the 5 trials for each subject were then averaged 
to obtain a resultant plot of (Ay2) versus T for each subject. 
Shown also are .the fitted regression lines (dashed lines) for 
the short-term and long-term scaling regions and the respective 
computed values for the scaling exponents (H). (b) As in 
(a), but for shuffled surrogate random-walk data sets that were 
generated from the original COP time series.. (c) Calculated 
values of H for the short-term (0) and long-term (6) scaling 
regions of the original COP time series and for the shuffled 
surrogates (+) for eachof the ten subjects. For each subject, an 
ensemble of 10 different shuffled surrogate sets was generated 
from each of the 5 original COP time series and subsequently 
analyzed.. The regression lines fitted for computation of the 
respective scaling exponents had r 2 values that ranged from 
0.97 to 1.00. (d) Significance of the differences between 
the computed H values for the original COP time series and 
the surrogates in (c). These plots were generated using the 
techniques described in the legend for Fig. 2(h). A dashed 
line is plotted at the significance level which corresponds to a 
p value of 0.005. 

in this study were not long enough to characterize this 
scaling region reliably.) For the experimental population 
[Fig. 4(c)], the short-term H values ranged from 0.78 
to 0.90 (mean 0.83 :::!: 0.04), whereas the long-term H 
values ranged from 0.19 to 0.36 (mean 0.26 :::!: 0.06). 
The transition region over which the correlation changed 
polarity occurred in all subjects at T = I s. 

In order to determine whether these computed correla
tions were artefacts of the data-set size and/or the ampli
tude distribution of the increments, we randomly shuffled 
the temporal order of the increments .[21] making up the 
COP time series and then recombined the increments to 
form surrogate random-walk sequences. We found that 
the double-logarithmic plots of mean square displacement 
versus T for the shuffled surrogates displayed only a single 
scaling region [Fig. 4(b»), as would be expected for an un
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correlated random walk. The H values for the surrogates 
(range 0.47 -0.53, mean 0.50 :::!: 0.02) were also similar to 
those expected for a classical random walk [Fig. 4(c)], and 
they were significantly different from those computed for 
the original COP time series [Fig. 4(d)]. Thus, we were 
able to reject the null hypothesis that postural sway is an 
uncorrelated random walk. These results suggest that the 
correlations in the COP time series are due to underlying 
dynamic processes and that they are not artefacts of the 
analysis. We therefore concluded that postural sway can 
be modeled as a system of bounded, correlated random 
walks. 

From a physiological standpoint, the presence of short
range positive correlations in the COP data suggests that 
the postural control system utilizes open-loop control 
mechanisms over short-term intervals of time (T < I s) 
and small displacements. That is, the system allows the 
COP. tQ "drift" for some time and/or displacement. This 
Dovel finding, which suggests that the system allows a cer
tainamount of "sloppiness" in balance control, challenges 
the generally accepted notion that erect stance is always 
regulated by the action of feedback mechanisms [22]. It 
is important to note, however, that our analyses do not ex
clude the role of feedback mechanisms, such as the visual, 
vestibular, and proprioceptive systems, in the regulation 
of upright stance. In fact, the presence of longer-range 
negative correlations in the COP data suggests that closed
loop control mechanisms are utilized over long-term inter
vals of time (T > 1 s) and large displacements. That is, 
after some time and/or displacement, the postural control 
system shifts the COP back towards a relative equilibrium 
position. The integration of open-loop control schemes 
with closed-loop feedback mechanisms for balance regu
lation may have evolved to account for feedback-loop de
lays and inherent noise in the system (e.g.• due to inherent 
muscle force fluctuations [23]). and to simplify the task of 
integrating vast amounts of sensory information when the 
body is not in jeopardy of instability. 
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