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Abstract 

The quality of attractor reconstruction using the method of delays is known to be sensitive to the delay 
parameter, T. Here we develop a new, computationally efficient approach to choosing T that quantifies 
reconstruction expansion from the identity line of the embedding space. We show that reconstruction expansion is 
related to the concept of reconstruction signal strength and that increased expansion corresponds to diminished 
effects of measurement error. Thus, reconstruction expansion represents a simple, geometrical framework for 
choosing T. Furthermore, we describe the role of dynamical error in attractor expansion and argue that algorithms 
for determining T should be considered as attempts at estimating an upper bound to the optimal delay. 

1. Introduction 

Attractor reconstruction is usually the first 
step in the analysis of dynamical systems. Typi
cally, an experimenter obtains a scalar time 
series from one observable of a multi-dimension
al system; state-space reconstruction is then 
needed for the indirect measurement of the 
system's properties, e.g., dimension. Several 
techniques for attractor reconstruction are cur
rently employed, such as derivative coordinates 
[1,2] and principal components (or singular value 

• Corresponding author; present address: Michael T. Rosen
stein, Dynamical Research, 15 Pecunit Street, Canton, MA 
02021-1219, USA. 

decomposition) [3]. The method of delays [1,2] is 
the most widespread approach because it is the 
most straightforward and the noise level is con
stant for each delay component [4]. However, 
the drawback with the method of delays is that 
the quality of the reconstruction depends upon 
the delay parameter, 'T, and presently, there is no 
commonly accepted procedure for choosing 'T. 

The method of delays reconstructs the attrac
tor dynamics by using delay coordinates to form 
multiple state-space vectors, Xi' That is, the 
reconstructed trajectory, X, is given by 

(1) 

For an N-point time series, {XI' X 2, ••• , x N } , the 
reconstructed state of the system at each discrete 
time i is 
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(2) 

where J is the reconstruction delay or lag, and m 
is the embedding dimension. If the time series 
represents a continuous flow with samples taken 
every !:it seconds, then the delay parameter may 
be expressed as 

T = J tu . (3) 

According to Taken's theorem [2], a faithful 
reconstruction, i.e., an embedding, is guaranteed 
as long as the embedding dimension is greater 
than twice the topological dimension n: 

m>2n. (4) 

By "faithful" reconstruction, we refer to one 
that preserves the system invariants, e.g., dimen
sion, Lyapunov exponents. Unfortunately, 
Takens' theorem assumes the availability of an 
infinite amount of noise-free data. (In this ideal, 
one may choose any value of T that does not lead 
to a degenerate reconstructionf"]. In real experi
ments, i.e, experiments with noisy, finite data 
sets, a value of T that is too small results in little 
information gain, i.e. redundance [4], between 
successive delay coordinates, and the recon
structed trajectory becomes compressed along 
the main diagonal, qr identity line, of the em
bedding space. With chaotic systems and large 
values of T, successive delay coordinates may 
become causally unrelated, and the reconstruc
tion is no longer representative of the true 
dynamics. Casdagli et al. [4] called this pheno
menon irrelevance. 

A related difficulty with attractor reconstruc
tion involves the choice of m. Normally, one has 
no a priori knowledge regarding the topological 
dimension, and it is unclear what values of m will 
satisfy Eq. (4)"'2. This problem was addressed 

.., For example, a limit cycle with period T is not properly
 
reconstructed whenever 'lIT is rational [4].
 
.. 2 The usual solution is to increase m gradually until a
 
suitable statistic, e.g, dimension, largest Lyapunov exponent,
 
converges for two or three consecutive values of m.
 

elsewhere [5-8], and for the purposes of this 
paper, we assume that a suitable value for m has 
been chosen. This is an important assumption 
since previous research [3,8-10] suggests that it 
may be more appropriate to fix the reconstruc
tion window, T w , rather than T alone, where Tw is 
the length of the interval spanned by the first and 
last delay coordinates: 

'". = T(m - 1) . (5) 

For example, Martinerie et al. [10] showed that 
the correlation integral is sensitive to 'w' but not 
to T and m individually. Hence, we reformulate 
the problem addressed in this paper to that of 
choosing the proper T once the embedding 
dimension is fixed. (In the remainder of this 
paper, T and 'w are interchanged as dictated by 
the particular context.j 

From the above discussion one can see that 
choosing proper reconstruction delays is, inher
ently, an ill-defined problem. Nevertheless, a 
suitable approach to choosing the reconstruction 
delay is desirable, and in section 2 we present a 
brief review of the existing methods. However, 
these methods are often inconsistent or too time
consuming for practical applications. Hence, 
section 3 presents a computationally-efficient, 
geometry-based approach that is derived from 
the consideration of intrinsic reconstruction er
rors. As shown in section 4, this method yields 
values of 'w that lead to acceptable state-space 
reconstructions. In section 5, we discuss some of 
the theoretical and practical implications of the 
proposed method. Finally, section 6 contains a 
summary of our conclusions. 

2. Previous methods 

2.1. Autocorrelation 

A number of criteria for selecting Tw depend 
upon the autocorrelation function, RzAT). The 
autocorrelation function provides a measure of 
the similarity between a signal, x(t), and a 
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delayed version of itself; thus, Rx/T) is maxi
mized when the delay is zero. The autocorrela
tion function is expected to provide a reasonable 
measure of the transition from redundance to 
irrelevance (as a function of delay). Typically, Tw 

is chosen as the delay where Rxx(T) first drops to 
a certain fraction of its initial value, e.g. lie [9]. 
Similarly, Tw may be chosen by locating the first 
inflection point of Rx/T) [11]. A related criterion 
derived from the Fourier transform of R (1'),. xx 
i.e. the power spectrum of x(t), is the inverse of 
the band-limiting frequency [3]. 

The autocorrelation-based methods have the 
advantage of short computation times when 
calculated via the fast Fourier transform (FFT) 
algorithm. As suggested by the numerous varia
tions, however, these methods tend to be incon
sistent [9,10,12]. That is, a particular criterion 
may be superior for one dynamical system and 
poor for another. This is not surprising given the 
ill-defined relationship between the spatial dis
tribution of a reconstructed attractor and the 
temporal autocorrelation of a single time series. 
(In section 5.3, we provide some insight into this 
relationship.) For this reason, Fraser and Swin
ney [12] suggested a spatial measure based on 
mutual information. 

2.2. Mutual information 

In contrast to the linear dependence measured 
by autocorrelation, mutual information, 1(1'), 
supplies a measure of general dependence [12]. 
Therefore, 1(1') is expected to provide a better 
measure of the shift from redundance to irrele
vance with nonlinear systems. Mutual informa
tion answers the following question [12]: Given 
the observation of x(t), how accurately can one 
predict x(t +T)? Thus, successive delay coordi
nates are interpreted as relatively independent 
when the mutual information is small. Fraser and 
Swinney [12] associated the greatest indepen
dence, i.e., the lowest /(1'), with the least re
dundance and, therefore, the best attractor re
construction. (This assumption is discussed fur

ther in section 3.1.) For this reason, they select
ed l' as the lag that produces a local minimum of 
1(1'). Typically, the first local minimum is the 
preferred choice [12,13]. (Note that Fraser and 
Swinney originally considered this method as 
establishing the value of 1', not T w • However, in 
light of the work by Martinerie et al. [10], it 
seems more appropriate to interpret the result as 
Tw ' ) Liebert and Schuster [13] showed that the 
minima of 1(1') coincide with those of the correla
tion integral, Cm(r; 1'). The correlation integral, 
which requires less computation than /(1') [13], is 
defined as 

where M is the number of reconstructed points, 
6['] is the Heavyside function, and 11·11 denotes 
the Euclidean norm. It follows that an algorithm 
for calculating correlation dimension [14] is easi
ly adapted to estimate T. The primary drawback 
of this approach is the enormous computational 
costs. For each value of 1', Eq. (6) requires four 
or five orders of magnitude more computation 
than the FFT. Furthermore, Martinerie et al. 
[10] showed that mutual information is also in
consistent in identifying the optimal value of Tw • 

2.3. Higher-order correlations 

Albano et al. [15] developed a method for 
choosing l'w by examining higher-order moments 
of x(t) , i.e. correlation functions up to the fourth 
order. They observed that several such correla
tion functions (though not always the same ones) 
exhibit coincident extrema, and the delay at the 
first coincident extremum, i.e., the "coincident 
time" (T

C
) , may be a characteristic time that 

serves as a good candidate for Tw • The main 
advantages of this approach are twofold: (1) 
reasonable computation times (roughly one 
order of magnitude longer than autocorrelation 
alone), and (2) consistent results. Albano et al. 
[15] found that using Tc resulted in estimates of 
the correlation dimension which were consistent
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ly within 10% of those calculated with larger and 
more precise data sets. (However, they also 
found that 'Tc did not always lead to the best 
estimate of dimension.) Though the empirical 
results are compelling, the primary drawback of 
this approach is its weak theoretical basis. 
Nevertheless, "even in the absence of a rigorous 
theoretical justification for its choice, ['Tel can 
serve as a standard for use in the analysis of 
experimental data" [IS, p. 96]. 

2.4. Fill factor 

Buzug and Pfister [16,17] proposed the "fill 
factor" as a spatial measure for determining the 
reconstruction delay. The fill factor quantifies an 
attractor's utilization of embedding space as a 
function of 'T. This is accomplished by computing 
the average volume of numerous m-dimensional 
parallelepipeds, where m + 1 randomly chosen 
points are used to define the vertices of each 
parallelepiped. The optimal 'T is then selected as 
the one that maximizes the fill factor, i.e., the 
one that leads to the most voluminous recon
struction. (This method also considers 'T to be 
fixed for different embedding dimensions.) One 
difficulty with this criterion is that it cannot 
account for the "overfolding" of the attractor 
once the reconstruction has expanded (with 
increasing 'T) from the main diagonal [16]. A 
more serious problem is that attractors with 
more than one unstable focus, e.g., the Lorenz 
attractor [18], have no significant fill-factor ex
trema for locating 'T [16]. 

As a solution to the difficulties related to the 
fill-factor criterion, Buzug and Pfister [16] chose 
the delay that minimizes a local measure of 
attractor deformation. However, this method is 
somewhat more complicated and requires a 
significant amount of additional computation. In 
[17], Buzug and Pfister described another, less
complicated local measure that also requires 
more computation than the fill-factor approach. 
(The increased computation times associated 
with these local measures is due to the need to 
perform a costly nearest-neighbors search.) It is 

important to note that the computational cost of 
the fill factor exhibits an (approximately) ex
ponential increase with increasing embedding 
dimension. Thus, the fill factor, itself, requires a 
substantial number of calculations for embedding 
dimensions greater than three or four. (For 
example, with m = 4, the computational cost of 
the fill-factor algorithm is about two orders of 
magnitude greater than that of autocorrelation.) 

2.5. Wavering product 

Like the fill factor, the wavering product, 
W(m, 'T), provides a spatial criterion for choosing 
the optimal delay [19]. The wavering product 
quantifies the distribution of numerous sets of 
nearest neighbors for successive values of m. 
Thus, W(m, 'T) is useful for estimating the small
est embedding dimension that preserves the 
topological invariants. This is accomplished after 
recognizing that spurious nearest neighbors are 
present when the embedding dimension is too 
small. (Previous methods for choosing m, e.g., 
[5,7], are based on this approach.) The wavering 
product is also dependent upon 'T, since W(m, 'T) 
utilizes nearest neighbors that are reconstructed 
using the method of delays. Liebert et al, [19] 
found that the first minimum of W(m, 'T) with 
respect to 'T corresponds to a suitable choice for 
the reconstruction delay. (Like the mutual-in
formation and fill-factor criteria, the wavering 
product - as proposed in [19] - does not account 
for the embedding dimension when determining 
the proper delay.) Note that W(m, 'T) led to 
values of 'T that. are 10-15% less than those 
previously found by Liebert and Schuster [13] via 
the mutual-information criterion [19]. Further
more, the wavering product requires a consider
able amount of computation time (20 times more 
than the fill-factor method [16] or about three 
orders of magnitude more than autocorrelation). 

2.6. Small-window solution 

As a follow-up to their work on state-space 
reconstructions in the presence of noise [4], 
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Gibson et at. (20] derived the relationships 
between three different reconstruction tech
niques: delays, derivatives, and principal com
ponents. Much of their analysis was based on the 
assumption that the system observable, x(t), is 
analytic such that for sufficiently small windows, 
one may replace x(t + 'T,...) with a Taylor expan
sion about x(t): 

sc ('Tw ); d(;j 

x(! + 'T",,) = L -.,- (i) x(t) . (7) 
;=0 l. dt 

Eq. (7) allowed Gibson et at. (20] to show that 
under certain conditions, principal components 
are a rotation of derivative coordinates which, in 
turn, are a rotation of delay coordinates. They 
proceeded to show that the "small-window solu
tion" is valid for 'T,... <;g 'T:, where 'T: is the critical 
window width: 

2._V3(X ) (8)'T,...-2 (x 2 ) ' 

« .) denotes an average over the time index.) 
Using Eq. (8) and a time series, one may 

calculate a suitable window length as 

(9) 

where IL is chosen to fit the particular application 
and data set. (Based on empirical results (20], 
IL =! appears to be a good estimate.) The 
advantages of this method are a sound theoret
ical basis and short computation times (roughly 
10 times shorter than autocorrelation). The pri
mary drawback involves the need to calculate x 
in Eq. (8). Since differentiation amplifies noise, 
one typically requires a suitable noise-reduction 
technique for experimentally obtained data. 

While formulating the small-window solution, 
Gibson et aI. [20] also developed a mathematical 
framework for understanding the relationship 
between reconstruction errors and 'T. In the next 
section, we derive a similar relationship from a 
geometry-based perspective and show that the 
size of the reconstructed attractor is related to 
the influence of measurement error. Further
more, we confirm the result that "good delay 
reconstructions sit on the upper edge of the 

small-window solution" [20, p. 18]. Specifically, 
we show that the optimal delay depends upon 
the details of the time series (not just the 
dynamics), and that in general, one can only 
estimate an upper bound to the optimal delay. 

3. Reconstruction expansion and optimal delay 

3.1. Reconstruction errors 

One may view the method of delays as a 
bridge between the temporal fluctuations of a 
single system observable and the spatial charac
teristics of a dynamical system. However, we 
reiterate that Takens' theorem provides no assis
tance when selecting a reconstruction delay for 
experimentally obtained data. For that reason, 
one seeks the delay that results in the optimal 
tradeoff between redundance and irrelevance 
[4]. Fig. 1 shows a schematic of this tradeoff. 

.For small delays, redundance is relatively high 
since additive measurement error (including 
quantization error) is comparatively large with 
respect to the average difference, i.e., infor
mation gain, between successive delay coordi
nates. If one increases the delay, the difference 
between successive delay coordinates increases, 
and the relative impact of the measurement error 
declines, i.e., redundance decreases. Note that 
the "redundance error" indicated in Fig. 1 

TotalEnor 

.....
....

.....
 

'-: " 
=' " 
~ ,~"'----------------

,:' RedondanceEnor 
- - -' j Optimal Delay -_.- :/ 

Rccoostruc:tion Delay 

Fig. 1. Schematic of the reconstruction errors inherent to the 
method of delays. The optimal delay corresponds to the 
minimum total error. 
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reaches a plateau because attractors are bounded 
in state space. In other words, there is a limit to 
the maximum difference between delay coordi
nates, and, hence; there is a limit to the im
provements gained with larger delays. (Note that 
we associate the term "measurement error" with 
a time series and the term "redundance error" 
with a reconstruction. An analogous usage ap
plies to the terms "dynamical error" and "irrele
vance error" used below.) 

With chaotic systems, i.e. bounded-output 
systems with sensitivity to initial conditions, 
small perturbations of a system's state result in a 
type of error that may grow exponentially. The 
manifestation of this dynamicaL error is denoted 
"irrelevance error" in Fig. 1. (Notice that the 
irrelevance error also reaches a limit because the 
system is bounded in state space.) Increases in 
reconstruction delay - which correspond to' re
duced effects from measurement error - trans
late into extended time for exponential growth 
and, hence, into greater effects from dynamical 
error. It follows, as illustrated in Fig. 1, that the 
optimal delay balances the redundance and ir
relevance errors such that the total error is 
minimized. 

Since one typically cannot measure dynamical 
error, methods for determining the proper re
construction delay work with the implicit as
sumption that irrelevance error is small in com
parison to redundance error. Under this assump
tion, one simply estimates 1" as the delay that 
minimizes the redundance error. However, the 
validity of this assumption is questionable and 
may be the source of much of the inconsistency 
present in the literature. Thus, a more conserva
tive view is to consider previous methods (as well 
as the approach described in section 3.3) as 
techniques for determining an upper bound to 
the optimal delay. 

3.2. Expansion and measurement error 

Geometry-based methods for determining 1" 
may be interpreted as various attempts to answer 

the following question: What value for the delay 
results in the most space-filling reconstruction? 
The difficulty with this sort of approach is that 
one has no guarantee that the reconstruction will 
become less space-filling as the lag increases 
beyond the optimal value. Hence, we attempt to 
answer an alternate question that views the 
problem from a slightly different perspective: 
For a given delay, is the reconstruction suffi
ciently expanded from the line of identity? As 
shown below, we refer to "sufficient expansion" 
as an adequate reduction in redundance error. 

Before examining redundance error, one re
quires a concept of reconstruction signal strength 
(RSS). As suggested in the previous section, the 
two-dimensional RSS is related to the difference 
between delay coordinates; we quantify this 
difference as follows: 

where the subscripted "2" refers to a two-dimen
sional reconstruction. Fig. 2 shows a plot of 
RSSz{1") for Gaussian noise and the x-coordinate 
time series from the Lorenz attractor. (The noise 
time series has a variance equal to one-tenth that 
of the Lorenz time series.) Notice that for white 
noise the RSS is independent of lag. Thus, if one 
considers redundance as a measure of a clean 
signal's RSS as compared to that of additive 

10 ;------------------, 

noise..............- _ - _.._ _._ _ -_ -..
 

~o __--+-__-+-__--t --1 

o 0.1 0.2 03 0.4 05 

Lag{s) 

Fig. 2. Plot of two-dimensional reconstruction signal strength 
versus 'T for the Lorenz attractor (e-coordinate time series) 
and Gaussian noise. 
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Fig. 3. Two-dimensional phase portraits for the time series used to generate Fig. 2. Lag equals: (a) 0.05 s; (b) 0.15 s; (c) 0.25 s; 
(d) O.40s. 

Gaussian noise, then minimizing the redundance 
error is equivalent to maximizing the RSS of the 
noise-free signal. 

Geometrically, RSS(T) is a measure of an 
attractor's expansion as a function of delay. 
Expansion from the identity line is illustrated in 
Fig. 3, which shows two-dimensional reconstruc
tions of the time series used to generate Fig. 2. 
Notice that for increasing lag, the reconstructed 
attractor expands whereas the noise fills an area 
of approximately constant size. At a lag of about 
0.15 s, the attractor appears to be "sufficiently" 
expanded. Thus, a larger delay is not expected to 

yield a substantial reduction in the total recon
struction error. 

It is conceivable that one may devise numer
ous methods for quantifying expansion from the 
main diagonal. (See, for example, the alternative 
methods described in sections 5.2 and 5.3#3.) 
With regards to established theory, there is no a 
priori reason to assume one approach will be 
better than another. Hence, we recommend 

..) Also, see the work of Kember and Fowler [21]. which was 
published after the submission of our revised manuscript. 
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some practical guidelines for selecting techniques 
to quantify reconstruction expansion. Compara
tively, the best methods will: (1) be computa
tionally efficient, (2) work well with noisy data 
sets, and (3) lead to consistent, accurate esti
mates of dimension. In the next section, we 
present the average-displacement method which 
satisfies each of the above guidelines. 

3.3. A verage displacement 

We have found that expansion from the main 
diagonal IS best quantified by measuring the 
average displacement, (Sm)' of the embedding 
vectors from their original locations on the line 
of identity. That is, we calculate (Sm) as a 
function of T such that 

(11) 

where the superscripts denote the delay between 
successive embedding components. Using the 
scalar time series, (Sm) is computed as follows: 

m-l 

2: (Xi+i/ - X;)2 • (12) 
j=l 

One may interpret (Sm) as a multi-dimension
al extension of RSS2 (see Eq. (10». Thus, (Sm) 
is useful for quantifying the decrease in redund
ance error with increasing T. Fig. 4 shows the 
relation between (Sm) and T for the time series 
used to generate Figs. 2 and 3. (The embedding 
dimensions are m = 2, 5, and 8.) As the lag 
increases from zero, the reconstructed trajectory 
expands from the main diagonal and the average 
displacement increases accordingly. It is impor
tant to recognize that with larger values of m, 
reconstruction expansion reaches a plateau at 
smaller values of T. This is a convenient 
geometrical feature that helps maintain an ap
proximately constant embedding window - and 
therefore a constant level of dynamical error 
between the first and last embedding comp
onents - for increasing values of m. (The impor

i m=8 

m=51"\ 
~ 
:5 
" ~ 10
U 
> -< 

tl/-···~····-·-··· -..-..-.- - - --. 
o ::..- -~,-----~....j 

o 0.1 0.2 0.3 

Lag(s) 

Fig. 4. Typical plot of (S~) versus l' for the same data sets 
used to generate Figs. 2 and 3. (The curves for m = 2 are the 
same as those shown in Fig. 2.) 

tance of a fixed embedding window is discussed 
further in section 5.1.) 

4. Numerical results 

4.1. Correlation dimension 

Table 1 summarizes the dynamical systems 
examined in this section (which are similar to 
those in {15]). The differential equations were 
solved numerically using a fourth-order Runge
Kutta integration with a step size equal to ~ as 
given in Table 1#4. For each system, a 10000
point time series was generated for further 
analysis; with the Lorenz and Rossler attractors, 
the x-coordinate time series was used to recon
struct the dynamics. When implemented on a 25 
MHz desktop computer, our method for choos
ing T requires less than 5 s of computation time 
using a 25QO-point time series from the Lorenz 
attractor and a seven-dimensional embedding 
space. (This compares to approximately 2 s for 

•• For the ROssler and Mackey-Glass systems, the step size 
was 10 times smaller than the sampling period. The resulting 
time series were then downsampled by a factor of 10 to 
achieve the desired At. 

30.,--,-----------------.

0.4 05 
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Table 1
 
Summary of the examined dynamical systems.
 

System [ref.] Equations Parameters 6.1 (s) 

Lorenz (18) i =<r(y -x) 
y =x(R -z)-y 
i =xy -bz 

o: = 10.0 
R = 28.0 
b = 2.667 

0.01 

Rossler [22j i = -y - z 
y =x +ay 
i =b +z(x -c) 

a = 0.20 
b = 0.40 
c =5.7 

0.10 

three-torus (lSI 

Mackey-Glass (23J 

x(t) = sin(w,t) + sin(w,t) + sin(w,l) 

ax(t-s) 
i = I + (x(t _ s>r - bx(t) 

w, =0.060 
w, =0.171 
w, = 0.314 

a=0.2 
b =0.1 

0.25 

0.25 

c = 10.0 
s = 17.0 

the autocorrelation-based methods described in 
section 2.1.) 

Figs. 5-8 show curves of (Sm) versus r for the 
respective dynamical systems, where the embed
ding dimension was chosen to be the minimum 
value that satisfies Takens' theorem, i.e., m = 7. 
In each graph, the selected value of r, which is 
denoted as 1"5' is distinguished using a dashed 
vertical line. (For comparative purposes, the 
points that correspond to the critical window 
width, 1":, are marked with open circles.) Based 
on empirical results, we quantified 'Ts as the point 
where the slope first decreased to less than 40% 

30,----,-----------------, 

0.2 0.3 0.4 0.5 

Lag(s) 

Fig. 5. (S.) versus 1" for the Lorenz attractor with m =7 and 
N = 2500. The value of 1"s (the delay &;rresponding to the 
40% slope threshold) is distinguished using a dashed vertical 
line. The point corresponding to 1": (the critical window 
width) is marked with an open circle. 

01---~--+-----+----+__--_+_------< 

o	 2 3 4 5 

Lag(s) 

Fig. 6. (S.) versus 1" for the ROssler attractor with m =7 
and N = 2500. The value of 1"s is distinguished using a dashed 
vertical line. The point corresponding to < is marked with 
an open circle. 

5,-----~-------------~ 

2.5 5 7.5 10 12.5 

Lag(s) 

Fig. 7. (S.) versus 1" for the three-torus with m=7 and 
N =2500. The value of "s is distinguished using a dashed 
vertical line. The point corresponding to ..: is marked with 
an open circle. 
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c:., 0.75 
E., 
~
 

~
 is 05 
., 
~
 
~ 0.25
 

2.5 5 7.5 10 125 

Fig. 8. (S~) versus T for the Mackey-Glass system with 
m = 7 and N = 2500. Thc value of TS is distinguished using a 
dashed vertical line. The point corresponding to T: is marked 
with an open circle. 

of its initial value #5. This criterion is somewhat 
arbitrary since we have no knowledge of the 
dynamical error needed to estimate the true 

Lag (s) 

5 

4 
0 '" 

'OJ 
C..
 e 3 

i:S 
.g'" 
;;; 2 
<l 
I: 

8 

-3 -2 -1 0 

In r/r_max 

Fig. 9. D, versus In rlrmu for the Lorenz attractor with 
m==7, N=2500 and T=O.06, 0.07, 0.08, 0.09, and O.lOs. 
(The heavy line corresponds to T == Ts = 0.08 s. Delays of 
O.06s and 0.10s coincided with slope thresholds of 60% and 
20%, respectively.) 

#, As expected, we observed that an anomalous jump in S", 
from T= 0 to T == AI (or equivalently from J =0 to J = 1) is 
associated with noisy data sets. Thus, one should exclude 
S",(O) when calculating the initial slope. 

optimal delay (described in section 3.1). How
ever, as illustrated for the Lorenz attractor in 
Fig. 9, acceptable reconstructions may be ob
tained using a range of lags in the vicinity of the 
40% slope threshold. By choosing T near TS' one 
expects the greatest information gain between 
successive delay coordinates, i.e., the least re
dundance, while avoiding excessive dynamical 
error. 

Fig. 10 shows plots of correlation dimension 
(Dz) [14] versus In r/ rmax for each dynamical 
system, where T = TS as marked in Figs. 5-8. For 
each curve, D2 was calculated via Eq. (6), i.e., 
the correlation sum [14], using approximately 103 

embedding vectors formed from the original 
10000-point data set #6. As expected, one ob
serves a plateau of D 2 near the expected dimen
sion, i.e. D 

2 
= 2 for the chaotic systems, and 

D2 = 3 for the three-torus. Thus (Sm) (and, 
presumably, other measures of reconstruction 
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Fig. 10. D, versus Inrlrm .. for the dynamical systems sum
marized in Table 1. The respective values for T correspond to 
Ts as marked in Figs. 5-8. 

#6 The vectors had a uniform temporal sampling equal to ten 
times the sampling period shown in Table 1. This strategy 
allowed us to study the effects of small changes in T without 
the burden of the unnecessary computations normally associ
atcd with large, over-sampled data sets. 
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expansion) is useful for the implementation of 
the method of delays with experimentally ob
tained data. 

4.2. Redundance error 

As detailed in section 3, reconstruction expan
sion is related to a notion of reconstruction 
signal strength. Furthermore, reconstruction ex
pansion, i.e., an increase in RSS, .corresponds to 
a decrease in redundance error. To illustrate this 
phenomenon, we utilized numerical experiments 
involving the Lorenz attractor (the x-coordinate 
time series) with superimposed Gaussian noise. 
(The Lorenz time series had a variance equal to 
1000 times that of the noise time series.) By 
adding noise to the clean data set, we introduced 
a substantial measurement error. However, as 
illustrated below, the addition of noise resulted 
in modest amounts of redundance error with 
large delays. 

Fig. 11 shows D2 versus In rlrmax for the noise
free data set and three different values of 1": (1) 
1"=1"s (heavy, solid line), (2) 1"=1"s /4 (light, 
solid line), and (3) 1"=47"s (dashed line). All 
three cases yielded acceptable estimates of D 2 , 

although case (2) clearly underestimated the true 
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Fig. 11. D 2 versus 1nrlr.... for the Lorenz attraetor with 
m = 7 and three values of r: (1) .,.= TS = 0.08 s (heavy, solid 
line), (2) T = "'s/4 =0.02 s (light, solid line), and (3) T = 4'fs = 
0.32 s (dashed line). 
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Fig. 12. Effects of redundance error. The change in D 2 (as 
compared to the noise-free case in Fig. 11) is plotted for the 
Lorenz attractor with m = 7 and three values of T: (1) 
T = Ts = 0.08 s (heavy, solid line), (2) T = Ts / 4 = 0.02 s (light, 
solid line). and (3) T = 4Ts = 0.32 s (dashed line). 

dimension (=2.06). Fig. 12 shows the corre
sponding results from the noisy data set. As 
expected, the noise appears to have a progres
sive effect as the lag decreases. In particular, the 
plateau of D 2 was lost with 1" = 1"s /4 , whereas the 
plateau for 1" = 4TS was virtuaIly unchanged. 

4.3. Irrelevance error 

Next we illustrate the impact of irrelevance 
error using an example similar to the one pre
sented in the previous section. Specifically, Fig. 
11 serves as a "baseline" derived from the noise
free data set, and Fig. 13 shows the corre
sponding results when the dynamical error is 
purposely exaggerated. Our paradigm for dy
namical error was as follows: the Lorenz equa
tions were numerically integrated using a sam
pling interval of 0.04 s; then, linear interpolation 
was performed to simulate the sampling interval 
(At = 0.01 s) used with the noise-free data set. By 
increasing the step size of the numerical integra
tion, we sufficiently introduced a perturbation 
that was allowed to propagate and alter the 
system's state-space trajectory. 

It can be seen in Fig. 13 that the dynamical 



93 M. T. Rosenstein et al. I 

2 ,...-r-.-------------
c: 
o 

'in .,c:

E 1 
Ci 
c: 
.s 
~ 0 

8 
.5 
., -1 
~ 
L: '" 
U
 

-2 ~'------+-----+--~--+-----

-4 -3 -2 -1 o 
In r/r_max 

Fig. 13. Effects of irrelevance error. The change in D, (as 
compared to the noise-free case in Fig. 11) is plotted for the 
Lorenz attractor with In = 7 and three values of 1': (1) 
l' = TS = 0.08 s (heavy, solid line), (2) l' = 1'5/4 = 0.02s (light. 
solid line), and (3) l' = 41's = 0.32 s (dashed line). 

error had the greatest effect on the reconstruc
tion from the largest delay. For the intermediate 
delay, i.e. for T = the plateau of D2 wasTS' 

nearly identical to that of the noise-free data set. 
We also observed an unintended shift in D 2 for 
the smallest delay. This change may be attribu
ted to redundance error that arises from the 
inaccuracies related to linear interpolation. 
Thus, our model incorporated measurement 
error in addition to dynamical error. As desired, 
however, the value of T selected using <S",) 
balanced both forms of error and yielded the 
best reconstruction for this example. 

5. Discussion 

5.1. Embedding window vs. lag 

As stated in section 1, previous research 
[3,9,10] suggests that one should specify the 
length of the embedding window, Tw , rather than 
T and m separately. In Fig. 14 we provide 
additional evidence that choosing T w is of greater 
relevance. For the investigated systems, we ob
served a dependence of T S on the embedding 
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Fig. 14. Normalized window length versus embedding di
mension for the dynamical systems summarized in Table 1. In 
order to calculate a more precise estimate of T w ' the algo
rithm inputs were 10 OOO-point data sets. each with a sam
pling interval equal to one-fourth the 6./ given in Table I. For 
each system, the values of T w were divided by the mean 
window length. Group means were as follows: (I) Lorenz 
attractor, T w =0.41 :!::O.02s, (2) Rossler attractor, 'Tw = 
2.95±0.12s, (3) three-torus. 'Tw = 11.1:!:0.5s. and (4) Mac
key-Glass system, Tw = 21.9 ± 0.6 s . 

dimension such that Tw was roughly independent 
of m. That is, 

Tw(m) = (m - 1)' Ts(m) = constant . (13) 

Fig. 14 illustrates this m-independence of Tw • 

From Eq. (13) it follows that one may select Tw 

after quantifying reconstruction expansion using 
just one embedding dimension. However, note 
the slight upward trend of the curves in Fig. 14. 
We suspect that this trend is due either to the 
geometry of the reconstructions or to estimation 
errors associated with finite data sets. Thus, the 
more prudent approach is to calculate Tw explicit
ly for each value of m. 

In light of Takens' theorem, there is no 
theoretical basis to expect that T... is of greater 
importance than T. Thus, we associate this find
ing with the practical ramifications of analyzing 
noisy data sets. Fig. 14 shows that a fixed 
window length can lead to near-maximum expan
sion and, therefore, near-minimum redundance. 
Similarly, by employing a fixed window length, 
one ensures that the irrelevance error is held at 
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an acceptable level. That is, the first and last 
embedding components maintain a certain de
gree of causality. Increasing the number of 
components then increases the "precision" with 
which one may answer the following question: 
Given the observed measurements, what is the 
probability that the system is in a particular 
state? 

Conversely, the use of a fixed delay may result 
in the undesirable blurring of the information 
from two (or more) states as the number of delay 
coordinates increases. The notion of "blurred 
states" becomes important when dealing with 
approximations to true trajectories of a dynam
ical system. For example, consider the recon
struction of a system's dynamics with a fixed 
delay and twice the minimum number of delay 
coordinates required by Takens' theorem, i.e., 
4n + 2 coordinates. (Recall that n is the topo
logical dimension.) With true trajectories, the 
4n + 2 coordinates could be considered as an 
overly detailed specification of one state along 
one trajectory. With approximations to true 
trajectories, however, the first 2n + 1 coordinates 
and last 2n + 1 coordinates could be considered 
as specifications of two different states along two 
different (albeit nearby) trajectories. (Consid
ered together, the 4n + 2 coordinates for the 
approximated trajectory represent a blurred 
state that may not be sufficiently close to any 
true reconstructed state.) 

5.2. Effects of noise 

Prior to developing the average-displacement 
technique, we sought after the most computa
tionally efficient method for quantifying expan
sion from the main diagonal. As a first attempt, 
we measured the total reconstructed trajectory 
length, Ltotal, as a function of delay: 

M-I 

Ltotal(-r) = 2: IIx;+! - X; II . (14) 
j= 1 

Ltotal is attractive from a computational stand

point because the number of calculations in
volved is proportional to M and independent of 
«". With noise-free data, Eq. (14) yielded 
curves of Llolal versus T that had a similar shape 
to those of average displacement versus T. There
fore, in such cases, LIOIa l is the preferred method 
for choosing TS' Unfortunately, Llolal performed 
poorly with noisy time series. Even a modest 
amount of additive noise caused an undesirable 
increase in L"Hal - undesirable because the effect 
was greater with smaller values of T. Thus, as the 
noise level increased, curves of Ltota' versus T 

acquired a flatter appearance such that one could 
no longer estimate Ts consistently. Due to this 
failure of L t ota l ' we then turned to measuring 
displacements of a reconstructed point from the 

. d' 1",8malO lagona . 
Fig. 15 illustrates the performance of (Sm) for 

the Lorenz attractor and additive Gaussian 
noise. Before superposition with the original 
noise-free signal, the Gaussian noise was scaled 
to achieve a desired signal-to-noise ratio (SNR), 
where SNR equals the ratio of the powers in the 
noise-free and pure-noise signals. Even with 
extremely noisy data sets, i.e., SNR = 1-10, we 
were able to select T S with results almost identi
cal to those of the noise-free data set, i.e., 
SNR = 00. The present method works well with 
noisy data sets because additive noise predorni

*' For i = 1 to J -1, computing the Euclidean distance in Eq, 
(14) carries a computational cost proportional to m. How
ever, for each subsequent value of i, an efficient algorithm 
uses a fixed amount of additional computation. i.e., three 
additions, one multiplication, and one square root. 
.8 Before settling on (Sm), we tested the efficacy of quantify
ing attraetor expansion using the average perpendicular 
distance from the identity line, (S;;). Both (S.. ) and (S;;) 
gave similar results for the examined systems. However, 
curves of (S~) typically displayed a less prominent bend in 
the vicinity of 1"s. Thus, (S~) is expected to be more sensitive 
to variations in the slope threshold mentioned in Section 4. 
Furthermore, (S~) carries a larger computational cost than 
(Sm)' i.e., three extra additions and two extra multiplications 
per point. 
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Fig. 15. Effects of noise for the Lorenz attractor with m = 7. 
A signal-to-noise ratio (SNR) of eo denotes a time series that 
is noise-free up to the computer precision. The dashed 
vertical line marks the value of T S (0.08 s) chosen using the 
noise-free data set. With the SNR equal to I and 10, T S was 
found to be O.lOs and 0.095, respectively. 

nantly affects the accuracy of individual embed
ding vectors and not the overall volume of the 
attractor. That is, noise displaces some embed
ding vectors toward the main diagonal and 
others away from the diagonal such that the 
average displacement is approximately unaltered. 
However, notice the upward bias of the (Sm) 
versus T curve with increasing amounts of noise. 
We expect this characteristic due to the increased 
likelihood that a vector will be displaced to the 
"opposite side" of the main diagonal rather than 
simply closer to the diagonal. 

5.3. A verage displacement vs. autocorrelation 

In this paper we advocate geometry-based 
methods for choosing the reconstruction delay. 
To provide further insight into the advantages of 
quantifying reconstruction expansion, we ex
amined the relationship between average dis
placement and autocorrelation. Due to the 
square-root operation in Eq. (12), it is difficult 
to make a direct examination of this relationship, 
and therefore, we make an indirect comparison 
via average squared displacement, (S~). More 
specifically, we briefly describe the qualitative 

relationship between (S",) and (S~,), and then 
we derive the analytical relationship between 
(5~,) and n.; 

First we define average squared displacement 
in a similar fashion as average displacement 
(Eqs. (11) and (12)): 

(5;',(7) = ~ f IIx; - x~11l2 , (15) 
i= I 

I M ",-1 

(S~,,(JM)= M2. I (x;+iJ-xJ". (16) 
;= I i> I 

From our definitions, it follows that (S~.) may 
be interpreted as a scaled version of (Sm)' such 
that 

(17) 

where [(7) is a nonlinear function derived from 
the data set. Geometrically, [(7) represents a 
weighting function that disproportionately con
tracts and expands individual displacement vec
tors before the average displacement is com
puted. For example, the greater the displace
ment of a given vector from the main diagonal, 
the greater its influence on (S~). 

Before deriving the relationship between (S~) 

and R ' we assume that R may be approxixx	 xx 
mated from a finite data set, where 

1 N-J 

Rx/1 ~t) "'" N -1 L x;x;+J . (18)
,=1 

Additionally, we assume that the number of 
scalar data points, N, is sufficiently large such 
that N is approximately equal to the number of 
reconstructed embedding vectors, M. Next, we 
square the quantity in parentheses from Eq. 
(16): 

1 M m-I 

(S~(J ~t) = M L 2. (x7+j/ - 2xi+jJX; + X7) 
;= 1 j= 1 

1 m-l M 

= M L L (x7+j/ - 2x;+ jJx)
j=1 ;=1 

+ constant.	 (19) 

Our third assumption is that M is sufficiently 
large such that 
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m-l I\{ m-I /1.1

" "x 2 
-"" X,] = constant. (20)LJ LJ i+jJ - LJ LJ 

j=1 ;~1 j=1	 ;=1 

It follows that 

m-I 

= constant - 2 L	 Ru( jf At) . (21) 
j=\ 

Since we are primarily interested in curve 
shapes, we can ignore the constant and multipli
cation factor in Eq, (21). Hence, 

m-\ 

(S~(J .M» ~ L	 Rxx(jJ M) , (22) 
j=\ 

where ..~" means "has the same shape as". 
From Eq. (22), one readily notices that the 
autocorrelation function may be interpreted in 
terms of the geometry. Specifically, Rxx has the 
same shape as (S ~) when m = 2. This result 
suggests a possible explanation for the difficulties 
associated with the use of Rxx for defining 
embedding windows. Since R <:> (S;), Rx x xx 

seems best suited for two-dimensional recon
structions; however, all chaotic flows have a 
topological dimension of at least three, and two
dimensional reconstructions violate Takens' 
theorem. 

Fig. 16 shows an overlay of curves derived 
from (Sm)' (S~), and Rxx for the Lorenz 
attractor and two embedding dimensions (m = 2, 
7). Note that (S~) and R are appropriatelyxx 

scaled and translated to facilitate a shape com
parison with (Sm)' As expected, (S~) and Rxx 

are nearly identical for m = 2. We attribute the 
slight discrepancies (between (S~) and R forxx 

m = 2) to the effects of working with finite data 
sets as well as our implementation of Eq. (18). 
(We used an algorithm based on the fast Fourier 
transform rather than a slower time-domain 
approach.) As illustrated in Fig. 16, curves of 
(Sm) typically exhibit a sharper bend, i.e. small
er radius of curvature, with respect to curves of 
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Fig. 16. (S.,>, (S~), and R.. versus T. The curves are 
appropriately scaled and translated to facilitate a shape 
comparison with (Sm)' For (Sm) and (S~), embedding 
dimension equals: (a) 2; (b) 7. 

(S~). Therefore, (S~) is expected to be more 
sensitive to variations in any criterion used to 
quantify T S' e.g., a slope threshold such as that 
described in section 4. This difficulty, which may 
lead to poorer estimates of dimension, seems to 
outweigh any computational advantages gained 
by eliminating the square-root operation in Eq. 
(12). 

6. Summary 

The problem of choosing the optimal window 
length for the method of delays was addressed in 
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this paper. We discussed the reconstruction er
rors inherent to the method of delays and 
showed that reconstruction expansion is related 
to a reduction in the effects of measurement 
error. We then developed a simple procedure 
that quantifies expansion from the identity line 
of the embedding space. Such a procedure may 
be used to estimate an upper bound to the 
optimal reconstruction delay. From a practical 
standpoint, this method has several advantages: 
(1) reliable with smaIl data sets, (2) reliable with 
noisy data sets, and (3) modest computational 
costs. In addition, we provided further evidence 
that suggests one should choose the embedding 
window length, rather than the reconstruction 
delay and embedding dimension separately. 

The main conclusions of this paper are 
twofold. First, the optimal delay time is partiaIly 
understood in terms of the geometry of the 
reconstruction. Specifically, the greater the size 
of the reconstruction, the smaller the effects of 
measurement error. From this statement and the 
fact that attractors are bounded in state space, it 
follows that there exists an upper bound to the 
optimal delay. Second, the optimal delay de
pends upon the details of the time series as well 
as the dynamics of the underlying system. For 
example, a system may possess a characteristic 
time that serves as a good choice for T with 
noise-free conditions; however, if the level of 
measurement error or dynamical error changes, 
the optimal delay also changes. Hence, we 
recommend choosing Tw using the 40% slope 
threshold with curves of average displacement; 
Gibson et al. [20], on the other hand, recom
mend choosing Twas one-half the critical window 
width. The relationship between these criteria 
remains a problem for future study. Regardless 
of the method used to estimate T, our work has 
shown that choosing the proper T is not as simple 
as finding a characteristic time. However, a 
geometry-based framework, i.e, reconstruction 
expansion, is useful for making an educated 
decision about the proper delay. 
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