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Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest 
Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and 
estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an 
experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate 
because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to 
changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. 
Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of 
computations will yield an estimate of both the level of chaos and the system complexity. . 

1. Introduction 

Over the past decade, distinguishing deter
rmmsnc chaos from noise has become an im
portant problem in many diverse fields, e.g., 
physiology [18], economics [11]. This is due, in 
part, to the availability of numerical algorithms 
for quantifying chaos using experimental time 
series. In particular, methods exist for calculat
ing correlation dimension (D2 ) [20], Kolmogorov 
entropy [21], and Lyapunov characteristic expo
nents [15,17,32,39]. Dimension gives an estimate 
of the system complexity; entropy and charac
teristic exponents give an estimate of the level of 
chaos in the dynamical system. 

The Grassberger-Procaccia algorithm (GPA) 
[20] appears to be the most popular method used 
to quantify chaos. This is probably due to the 

., 

'Corresponding author. 

simplicity of the algorithm [16] and the fact that 
the same intermediate calculations are used to 
estimate both dimension and entropy. However, 
the GPA is sensitive to variations in its parame
ters, e.g., number of data points [28], embedding 
dimension [28], reconstruction delay [3], and it is 
usually unreliable except for long, noise-free 
time series. Hence, the practical significance of 
the GPA is questionable, and the Lyapunov 
exponents may provide a more useful characteri
zation of chaotic systems. 

For time series produced by dynamical sys
tems, the presence of a positive characteristic 
exponent indicates chaos. Furthermore, in many 
applications it is sufficient to calculate only the 
largest Lyapunov exponent (AI)' However, the 
existing methods for estimating AI suffer from at 
least one of the following drawbacks: (1) unreli
able for small data sets, (2) computationally 
intensive, (3) relatively difficult to implement. 
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For this reason, we have developed a new meth
od for calculating the largest Lyapunov expo
nent. The method is reliable for small data sets, 
fast, and easy to implement. "Easy to imple
ment" is largely a subjective quality, although 
we believe it has had a notable positive effect on 
the popularity of dimension estimates. 

The remainder of this paper is organized as 
follows. Section 2 describes the Lyapunov spec
trum and its relation to Kolmogorov entropy. A 
synopsis of previous methods for calculating 
Lyapunov exponents from both system equations 
and experimental time series is also given. In 
section 3 we describe the new approach for 
calculating Al and show how it differs from previ
ous methods. Section 4 presents the results of 
our algorithm for several chaotic dynamical sys
tems as well as several non-chaotic systems. We 
show that the method is robust to variations in 
embedding dimension, number of data points, 
reconstruction delay, and noise level. Section 5 is 
a discussion that includes a description of the 
procedure for calculating Al and D 2 simulta
neously. Finally, section 6 contains a summary of 
our conclusions. 

2. Background 

For a dynamical system, sensitivity to initial 
conditions is quantified by the Lyapunov expo
nents. For example, consider two trajectories 
with nearby initial conditions on an attracting 
manifold. When the attractor is chaotic, the 
trajectories diverge, on average, at an exponen
tial rate characterized by the largest Lyapunov 
exponent [15]. This concept is also generalized 
for the spectrum of Lyapunov exponents, Ai (i = 

1,2, ... ,n), by considering a small n-dimension
al sphere of initial conditions, where n is the 
number of equations (or, equivalently, the num
ber of state variables) used to describe the sys
tem. As time (t) progresses, the sphere evolves 
into an ellipsoid whose principal axes expand (or 
contract) at rates given by the Lyapunov expo

nents. The presence of a positive exponent is 
sufficient for diagnosing chaos and represents 
local instability in a particular direction. Note 
that for the existence of an attractor, the overall 
dynamics must be dissipative, i.e., globally sta
ble, and the total rate of contraction must out
weigh the total rate of expansion. Thus, even 
when there are several positive Lyapunov expo
nents, the sum across the entire spectrum is 
negative. 

Wolf et al. [39] explain the Lyapunov spec
trum by providing the following geometrical in
terpretation. First, arrange the n principal axes 
of the ellipsoid in the order of most rapidly 
expanding to most rapidly contracting. It follows 
that the associated Lyapunov exponents will be 
arranged such that 

(1) 

where Al and An correspond to the most rapidly 
expanding and contracting principal axes, .respec
tively. Next, recognize that the length of the first 
principal axis is proportional to e AI

' ; the area 
determined by the first two principal axes is 
proportional to e(A\ +A2) 1; and the volume de
termined by the first k principal axes is propor
tional to e(A\+A2+···+Ak ) l. Thus, the Lyapunov 

spectrum can be defined such that the exponen
tial growth of a k-volume element is given by the 
sum of the k largest Lyapunov exponents. Note 
that information created by the system is repre
sented as a change in the volume defined by the 
expanding principal axes. The sum of the corre
sponding exponents, i.e., the positive exponents, 
equals the Kolmogorov entropy (K) or mean 
rate of information gain [15]: 

(2) 

When the equations describing the dynamical 
system are available, one can calculate the entire 
Lyapunov spectrum [5,34]. (See [39] for example 
computer code.) The approach involves numeri
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cally solving the system's n equations for n + 1 
nearby initial conditions. The growth of a corre
sponding set of vectors is measured, and as the 
system evolves, the vectors are repeatedly reor
thonormalized using the Gram-Schmidt proce
dure. This guarantees that only one vector has a 
component in the direction of most rapid expan
sion, i.e., the vectors maintain a proper phase
space orientation. In experimental settings, how
ever, the equations of motion are usually un
known and this approach is not applicable. 
Furthermore, experimental data often consist of 
time series from a single observable, and one 
must employ a technique for attractor recon
struction, e.g., method of delays [27,37], singular 
value decomposition [8]. 

As suggested above, one cannot calculate the 
entire Lyapunov spectrum by choosing arbitrary 
directions for measuring the separation of nearby 
initial conditions. One must measure the separa
tion along the Lyapunov directions which corre
spond to the principal axes of the ellipsoid previ
ously considered. These Lyapunov directions are 
dependent upon the system flow and are defined 
using the Jacobian matrix, i.e., the tangent map, 
at each point of interest along the flow [15]. 
Hence, one must preserve the proper phase 
space orientation by using a suitable approxi
mation of the tangent map. This requirement, 
however, becomes unnecessary when calculating 
only the largest Lyapunov exponent. 

If we assume that there exists an ergodic mea
sure of the system, then the multiplicative er
godic theorem of Oseledec [26] justifies the use 
of arbitrary phase space directions when calculat
ing the largest Lyapunov exponent with smooth 
dynamical systems. We can expect (with prob
ability 1) that two randomly chosen initial condi
tions will diverge exponentially at a rate given by 
the largest Lyapunov exponent [6,15]. In other 
words, we can expect that a random vector of 
initial conditions will converge to the most un
stable manifold, since exponential growth in this 
direction quickly dominates growth (or contrac
tion) along the other Lyapunov directions. Thus, 

the largest Lyapunov exponent can be defined 
using the following equation where del) is the 
average divergence at time t and C is a constant 
that normalizes the initial separation: 

(3) 

For experimental applications, a number of 
researchers have proposed algorithms that esti
mate the largest Lyapunov exponent [1,10,12, 
16,17,29,33,38-40], the positive Lyapunov spec
trum, i.e., only positive exponents [39], or the 
complete Lyapunov spectrum [7,9,13,15,32, 
35,41]. Each method can be considered as a 
variation of one of several earlier approaches 
[15,17,32,39] and as suffering from at least one 
of the following drawbacks: (1) unreliable for 
small data sets, (2) computationally intensive, 
(3) relatively difficult to implement. These draw
backs motivated our search for an improved 
method of estimating the largest Lyapunov 
exponent. 

3. Current approach 

The first step of our approach involves recon
structing the attractor dynamics from a single 
time series. We use the method of delays [27,37] 
since one goal of our work is to develop a fast 
and easily implemented algorithm. The recon
structed trajectory, X, can be expressed as a 
matrix where each row is a phase-space vector. 
That is, 

(4) 

where Xi is the state of the system at discrete 
time i. For an N-point time series, {x., 
x 2 ' ••• , x N }, each Xi is given by 

(5) 

where] is the lag or reconstruction delay, and m 
is the embedding dimension. Thus, X is an M x 
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m matrix, and the constants rn, M, J, and N are 
related as 

M = N - (m - l)J . (6) 

The embedding dimension is usually estimated in 
accordance with Takens' theorem, i.e., m > 2n, 
although our algorithm often works well when m 

is below the Takens criterion. A method used to 
choose the lag via the correlation sum was ad
dressed by Liebert and Schuster [23] (based on 
[19]). Nevertheless, determining the proper lag is 
still an open problem [4]. We have found a good 
approximation of J to equal the lag where the 
autocorrelation function drops to 1 - 1/ e of its 
initial value. Calculating this J can be accom
plished using the fast Fourier transform (FFT) , 
which requires far less computation than the 
approach of Liebert and Schuster. Note that our 
algorithm also works well for a wide range of 
lags, as shown in section 4.3. 

After reconstructing the dynamics, the algo
rithm locates the nearest neighbor of each point 
on the trajectory. The nearest neighbor, Xl' is 
found by searching for the point that minimizes 
the distance to the particular reference point, Xi" 
This is expressed as 

d(O) = min Ilx; - Xlii, (7)
} xi 

where dj(O) is the initial distance from the jth 
point to its nearest neighbor, and II II denotes 
the Euclidean norm. We impose the additional 
constraint that nearest neighbors have a tempo
ral separation greater than the mean period of 
the time series" 1 : 

Ij - JI > mean period. (8) 

This allows us to consider each pair of neighbors 
as nearby initial conditions for different trajec
tories. The largest Lyapunov exponent is then 

"We estimated the mean period as the reciprocal of the 
mean frequency of the power spectrum, although we expect 
any comparable estimate. e.g., using the median frequency of 
the magnitude spectrum. to yield equivalent results. 

estimated as the mean rate of separation of the 
nearest neighbors. 

To this point, our approach for calculating Al 

is similar to previous methods that track the 
exponential divergence of nearest neighbors. 
However, it is important to note some differ
ences: 

(1) The algorithm by Wolf et al. [39] fails to 
take advantage of all the available data because 
it focuses on one "fiducial" trajectory. A single 
'nearest neighbor is followed and repeatedly re
placed when its separation from the reference 
trajectory grows beyond a certain limit. Addi
tional computation is also required because the 
method approximates the Gram-Schmidt proce
dure by replacing a neighbor with one that pre
serves its phase space orientation. However, as 
shown in section 2, this preservation of phase
space orientation is unnecessary when calculating 
only the largest Lyapunov exponent. 

(2) If a nearest neighbor precedes (temporal
ly) its reference point, then our algorithm can be 
viewed as a "prediction" approach. (In such 
instances, the predictive model is a simple delay 
line, the prediction is the location of the nearest 
neighbor, and the prediction error equals the 
separation between the nearest neighbor and its 
reference point.) However, other prediction 
methods use more elaborate schemes, e.g., poly
nomial mappings, adaptive filters, neural net
works, that require much more computation. 
The amount of computation for the Wales meth
od [38] (based on [36]) is also greater, although 
it is comparable to the present approach. We 
have found the Wales algorithm to give excellent 
results for discrete systems derived from differ
ence equations, e.g., logistic, Henon, but poor 
results for continuous systems derived from dif
ferential equations, e.g., Lorenz, Rossler. 

(3) The current approach is principally based 
on the work of Sato et al. [33] which estimates AI 

as 

(9) 
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where D.l is the sampling period of the time 
series, and d/i) is the distance between the jth 
pair of nearest neighbors after i discrete-time 
steps, i.e., i D.l seconds. (Recall that M is the 
number of reconstructed points as given in eq. 
(6).) In order to improve convergence (with 
respect to i), Sato et al. [33] give an alternate 
form of eq. (9): 

1 1 M-k d(i+k) 
A1(i, k) = k D.l (M _ k) j~ In J dj(i) (10) 

In eq. (10), k is held constant, and A( is extrac
ted by locating the plateau of AI (i, k) with 
respect to i. We have found that locating this 
plateau is sometimes problematic, and the result
ing estimates of A( are unreliable. As discussed 
in section 5.3, this difficulty is due to the nor
malization by dj(i). 

The remainder of our method proceeds as 
follows. From the definition of A( given in eq. 
(3), we assume the jth pair of nearest neighbors 
diverge approximately at a rate given by the 
largest Lyapunov exponent: 

(11 ) 

where C, is the initial separation. By taking the 
logarithm of both sides of eq. (11), we obtain 

(12) 

Eq. (12) represents a set of approximately paral
lel lines (for j = 1, 2, ... , M), each with a slope 
roughly proportional to A\. The largest 
Lyapunov exponent is easily and accurately cal
culated using a least-squares fit to the "average" 
line defined by 

y(i) = L(In d/i) , (13) 

sets. Note that in eq. (11), Cj performs the 
function of normalizing the separation of the 
neighbors, but as shown in eq. (12), this nor
malization is unnecessary for estimating At. By 
avoiding the normalization, the current approach 
gains a slight computational advantage over the 
method by Sato et al. 

The new algorithm for calculating largest 
Lyapunov exponents is outlined in fig. 1. This 
method is easy to implement and fast because. it 
uses a simple measure of exponential divergence 
that circumvents the need to approximate the 
tangent map. The algorithm is also attractive 
from a practical standpoint because it does not 
require large data sets and it simultaneously 
yields the correlation dimension (discussed in 
section 5.5). Furthermore, the method is accur
ate for small data sets because it takes advantage 
of all the available data. In the next section, we 
present the results for several dynamical systems. 

Estimate lag and 
mean period using 
the FFT. 

•
Reconstruc1 attractor 
dynamics using method 
of delays. 

-t
 
Rnd nearest neighbors. 
Constrain temporal 
separation. 

Measure average •
I separation or neighbors. 
Do not normalize. 

•
Use least squares 10 
fit a line 10the data. 

where ( ) denotes the average over all values of 
j. This process of averaging is the key to calculat Fig. 1. Flowchart of the practical algorithm for calculating 
ing accurate values of A) using small, noisy data largest Lyapunov exponents. 
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4. Experimental results	 4,--------------------;c,...--.., 

Table 1 summarizes the chaotic systems pri 1\ 

';;' 2marily examined in this paper. The differential o
c 
OJ)equations were solved numerically using a 
c 

:; 

fourth-order Runge-Kutta integration with a '0
> 

:s 0
step size equal to f).t as given in table 1. For each v 

system, the initial point was chosen near the 
attractor and the transient points were discarded. -2 -I----r---_---+--_~___+_-----< 
In all cases, the x-coordinate time series was o 0.5 1.5 2 2.5 3 

used to reconstruct the dynamics. Fig. 2 shows a Time (5) 

typical plot (solid curve) of (In d;(i) versus Fig. 2. Typical plot of (In( divergence» versus time for the 
Lorenz attractor. The solid curve is the calculated result; the i /).{#2; the dashed line has a slope equal to the 
slope of the dashed curve is the expected result. 

theoretical value of AI' After a short transition, 
there is a long linear region that is used to 
extract the largest Lyapunov exponent. The 4.1. Embedding dimension 
curve saturates at longer times since the system 
is bounded in phase space and the average diver Since we normally have no a priori knowledge 
gence cannot exceed the "length" of the at concerning the dimension of a system, it is im
tractor. perative that we evaluate our method for differ

The remainder of this section contains tabu ent embedding dimensions. Table 2 and fig. 3 
lated results from our algorithm under different show our findings for several values of m. In all 
conditions. The corresponding plots are meant to but three cases (m = 1 for the Henon, Lorenz 
give the reader qualitative information about the and Rossler systems), the error was less than 
facility of extracting At from the data. That is, ± 10%, and most errors were less than ±5%. It 
the more prominent the linear region, the easier is apparent that satisfactory results are obtained 
one can extract the correct slope. (Repeatability only when m is at least equal to the topological 
is discussed in section 5.2.) dimension of the system, i.e., m ~ n, This is due 

to the fact that chaotic systems are effectively 
stochastic when embedded in a phase space that 
is too small to accommodate the true dynamics. #1 In each figure ''(In(divergence))'' and "Time (s)" are 

used to denote (In diU» and j t:..t, respectively. Notice that the algorithm performs quite well 

Table 1
 
Chaotic dynamical systems with theoretical values for the largest Lyapunov exponent, ,I.,. The sampling period is denoted by t:..t.
 

System [ref. )	 'Equations Parameters t:..t (s) Expected A, [ref.] 

Logistic [IS]	 X i H = JLxi(l- x,) JL =4.0 0.693 [IS] 

Herron [22]	 x; ... ,=l-a.x;+Yi a = 1.4 0.418 [39]
 

Yi+l = bx, b =0.3
 

Lorenz [24]	 x=u(y-x) a = 16.0 om 1.50 [39]
 
Y= x(R - z) - Y R =45.92
 
i. = xy - bz	 b = 4.0 

Rossler [31]	 x=-y-z a = 0.15 0.10 0.090 [39]
 
Y= x + ay b = 0.20
 
i = b + z(x - c) c = 10.0
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(c) 
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Fig. 3. Effects of embedding dimension. For each plot, the solid curves are the calculated results, and the slope of the dashed 
curve is the expected result. See table 2 for details. (a) Logistic map. (b) Henon attractor. (c) Lorenz attractor. (d) ROssler 
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altractor. 

when m is below the Takens criterion. There
fore, it seems one may choose the smallest em
bedding dimension that yields a convergence of 
the results. 

4.2. Length of time series 

Next we consider the performance of our algo
rithm for time series of various lengths. As 
shown in table 3 and fig. 4, the present method 
also works well when N is small (N = 100-1000 
for the examined systems). Again, the error was 
less than ± 10% in almost all cases. (The greatest 
difficulty occurs with the Rossler attractor. For 
this system, we also found a 20-25% negative 
bias in the results for N = 3000-5000.) To our 
knowledge, the lower limit of N used in each 
case is less than the smallest value reported in 

the literature. (The only exception is due to 
Briggs [7], who examined the Lorenz system 
with N =600. However, Briggs reported errors 
for AI that ranged from 54% to 132% for this 
particular time series length.) We also point out 
that the literature [1,9,13,15,35] contains results 
for values of N that are an order of magnitude 
greater than the largest values used here. 

It is important to mention that quantitative 
analyses of chaotic systems are usually sensitive 
to not only the data size (in samples), but also 
the observation time (in seconds). Hence, we 
examined the interdependence of Nand N t:J.t for 
the Lorenz system. Fig. 5 shows the output of 
our algorithm for three different sampling condi
tions: (1) N = 5000, t:J.t = 0.01 s (N t:J.t= 50 s); (2) 
N = 1000, t:J.t = 0.01 s (N t:J.t = 10 s); and (3) N = 

1000, t:J.t = 0.05 s (N t:J.t = 50 s). The latter two 
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Table 2 Table 3 
Experimental results for several embedding dimensions. The Experimental results for several time series lengths. The 
number of data points, reconstruction delay, and embedding number of data points, reconstruction delay, and embedding 
dimension are denoted by N, J, and m, respectively. We were dimension are denoted by N, J, and m, respectively. 
unable to extract AI' with m equal to one for the Lorenz and 
Rossler systems because the reconstructed attractors are 
extremely noisy in a one-dimensional embedding space. 

System N J m Calculated AI % error 

Logistic 500 1 
2 
3 
4 
5 

0.675 
0.681 
0.680 
0.680 
0.651 

-2.6 
-1.7 
-1.9 
-1.9 
-6.1 

Henon 500 1 
2 
3 
4 
5 

0.195 
0.409 
0.406 
0.399 
0.392 

-53.3 
-2.2 
-2.9 
-4.5 
-6.2 

Lorenz 5000 11 1 
3 
5 
7 
9 

1.531 
1.498 
1.562 
1.560 

2.1 
-0.1 

4.1 
4.0 

Rossler 2000 8 1 
3 
5 
7 
9 

0.0879 
0.0864 
0.0853 
0.0835 

-2.3 
-4.0 
-5.2 
-7.2 

time series were derived from the former by 
using the first 1000 points and every fifth point, 
respectively. As expected, the best results were 
obtained with a relatively long observation time 
and closely-spaced samples (case (1». However, 
we saw comparable results with the long obser
vation time and widely-spaced samples (case 
(3». As long as !:i.t is small enough to ensure a 
minimum number of points per orbit of the 
attractor (approximately n to lOn points [39]), it 
is better to decrease N by reducing the sampling 
rate and not the observation time. 

4.3. Reconstruction delay 

As commented in section 3, determining the 
proper reconstruction delay is still an open prob
lem. For this reason, it is necessary to test our 
algorithm with different values of J. (See table 4 

System	 N J m Calculated Al % error 

Logistic	 100 2 0.659 -4.9 
200 0.705 1.7 
300 0.695 0.3 
400 0.692 -0.1 
500 0.686 -1.0 

Henon	 100 2 0.426 1.9 
200 0.416 -0.5 
300 0.421 0.7 
400 0.409 2.2 
500 0.412 -1.4 

Lorenz	 1000 11 3 1.751 16.7 
2000 1.345 -10.3 
3000 1.372 -8.5 
4000 1.392 -7.2 
5000 1.523 1.5 

Rossler	 400 8 3 0.0351 -61.0 
800 0.0655 -27.2 

1200 0.0918 2.0 
1600 0.0984 9.3 
2000 0.0879 -2.3 

and fig. 6.) Since discrete maps are most faithful
ly reconstructed with a delay equal to one, it is 
not surprising that the best results were seen 
with the lag equal to one for the logistic and 
Henon systems (errors of -1.7% and -2.2%, 
respectively). For the Lorenz and Rossler sys
tems, the algorithm performed well (error s 7%) 
with all lags except the extreme ones (J = 1, 41 
for Lorenz; J = 2, 26 for Rossler). Thus, we 
expect satisfactory results whenever the lag is 
determined using any common method such as 
those based on the autocorrelation function or 
the correlation sum. Notice that the smallest 
errors were obtained for the lag where the au
tocorrelation function drops to 1 - 1/ e of its 
initial value. 

4.4. Additive noise 

Next, we consider the effects of additive noise, 
i.e., measurement or instrumentation noise. This 

~BBt,~¥...~~~~~~~~~~~ 
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Fig. 4. Effects of time series lengths. For each plot, the solid curves are the calculated results, and the slope of the dashed curve 
is the expected result. See table 3 for details. (a) Logistic map. (b) Henon attractor. (c) Lorenz attractor. (d) Rossler attractor. 
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3 

Fig. 5. Results for the Lorenz system using three different 
sampling conditions. Case (1): N = 5000, D.t = 0.01 s (N D.t = 
50 s); case (2): N = 1000, D.t = 0.01 s (N D.t = 10 s); and case 
(3): N = 1000, D.t = 0.05 s (N D.t = 50 s). The slope of the 
dashed curve is the expected result. 

was accomplished by exarmrung several time 
series produced by a superposition of white noise 
and noise-free data (noise-free up to the compu-: 
ter precision). Before superposition, the white 
noise was scaled by an appropriate factor in 
order to achieve a desired signal-to-noise ratio 
(SNR). The SNR is the ratio of the power (or, 
equivalently, the variance) in the noise-free sig
nal and that of the pure-noise signal. A signal-to
noise ratio greater than about 1000 can be re
garded as low noise and a SNR less than about 
10 as high noise. 

The results are shown in table 5 and fig. 7. We 
expect satisfactory estimates of Al except in ex
tremely noisy situations. With low noise, the 
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Table 4 
Experimental results for several reconstruction delays. The 
number of data points, reconstruction delay, and embedding 
dimension are denoted by N, J, and m, respectively. The 
asterisks denote the values of J that were obtained by 
locating the lag where the autocorrelation function drops to 
I-lie of its initial value. 

System N J m Calculated A, % error 

Logistic 500 l' 2 0.681 -1.7 
2 0.678 -2.2 
3 0.672 -3.0 
4 0.563 -18.8 
5 0.622 -10.2 

Herron 500 1 2 0.409 -2.2 
2 0.406 -2.9 
3 0.391 -6.5 
4 0.338 -19.1 
5 0.330 -21.1 

Lorenz 5000 1 3 1.640 9.3 
11 1.561 4.1 
21 1.436 -4.3 
31 1.423 -5.1 
41 1.321 -11.9 

Rossler 2000 2 3 0.0699 -22.3 
8 0.0873 -3.0 

14 0.0864 -4.0 
20 0.0837 -7.0 
26 0.0812 -9.8 

error was smaller than ± 10% in each case. At 
moderate noise levels (SNR ranging from about 
100 to 1000), the algorithm performed reason
ably well with an error that was generally near 
±25%. As expected, the poorest results were 
seen with the highest noise levels (SNR less than 
or equal to 10). (We believe that the improved 
performance with the logistic map and low 
signal-to-noise ratios is merely coincidental. The 
reader should equate the shortest linear regions 
in fig. 7 with the highest noise and greatest 
uncertainty in estimating AI') It seems one can
not expect to estimate the largest Lyapunov 
exponent in high-noise environments; however, 
the clear presence of a positive slope still affords 
one the qualitative confirmation of a positive 
exponent (and chaos). 

It is important to mention that the adopted 
noise model represents a "worst-case" scenario 
because white noise contaminates a signal across 

an infinite bandwidth. (Furthermore, we con
sider signal-to-noise ratios that are substantially 
lower than most values previously reported in 
the literature.) Fortunately, some of the difficul
ties are remedied by filtering, which is expected 
to preserve the exponential divergence of nearest 
neighbors [39].,Whenever we remove noise while 
leaving the signal intact, we can expect an im
provement in system predictability and, hence, 
in our ability to detect chaos. In practice, how
ever, caution is warranted because the underly
ing signal may have some frequency content in 
the stopband or the filter may substantially alter 
the phase in the passband. 

4.5. Two positive Lyapunov exponents 

As described in section 2, it is unnecessary to 
preserve phase space orientation when calculat
ing the largest Lyapunov exponent. In order to 
provide experimental verification of this theory, 
we consider the performance of our algorithm 
with two systems that possess more than one 
positive exponent: Rossler-hyperchaos [30] and 
Mackey-Glass [25]. (See table 6 for details.) The 
results are shown in table 7 and fig. 8. For both 
systems, the errors were typically less than 
± 10%. From these results, we conclude that the 
algorithm measures exponential divergence 
along the most unstable manifold and not along 
some other Lyapunov direction. However, 
notice the predominance of a negative bias in the 
errors presented in sections 4.1-4.4. We believe 
that over short time scales, some nearest neigh
bors explore Lyapunov directions other than that 
of the largest Lyapunov exponent. Thus, a small 
underestimation (less than 5%) of AI is expected. 

4.6. Non-chaotic systems 

As stated earlier, distinguishing deterministic 
chaos from noise has become an important prob
lem. It follows that effective algorithms for de
tecting chaos must accurately characterize both 
chaotic and non-chaotic systems; a reliable algo
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rithm is not "fooled" by difficult systems such as 
correlated noise. Hence, we further establish the 
utility of our method by examining its per
formance with the following non-chaotic sys
tems: two-torus, white noise, bandlimited noise, 
and "scrambled" Lorenz. 

For each system, a 2000-point time series was 
generated. The two-torus is an example of a 
quasiperiodic, deterministic system. The corre
sponding time series, x(i), was created by a 
superposition of two sinusoids with incommensu
rate frequencies: 

xCi) = sin(21T/I • i ill) + sin(21T/2' i ilt) , (14) 

where II = 1.732051 =V3 Hz, 12 = 2.236068 = 
v'5Hz, and the sampling period was ill = 0.01 s. 
White noise and bandlimited noise are stochastic 

systems that are analogous to discrete and con
tinuous chaotic systems, respectively. The 
"scrambled" Lorenz also represents a continuous 
stochastic system, and the data set was generated 
by randomizing the phase information from the 
Lorenz attractor. This procedure yields a time 
series of correlated noise with spectral charac
teristics identical to that of the Lorenz attractor . 

For quasiperiodic and stochastic systems we 
expect flat plots of (In dj(i) versus i ill. That is, 
on average the nearest neighbors should neither 
diverge nor converge. Additionally, with the sto
chastic systems we expect an initial "jump" from 
a small separation at t = O. The results are shown 
in fig. 9, and as expected, the curves are mostly 
flat. However, notice the regions that could be 
mistaken as appropriate for extracting a positive 
Lyapunov exponent. Fortunately, our empirical 
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Table 5 
Experimental results for several noise levels. The number of 
data points, reconstruction delay, and embedding dimension 
are denoted by N, J, and m, respectively. The signal-to-noise 
ratio (SNR) is the ratio of the power in the noise-free signal 
to that of the pure-noise signal. 

System N J m SNR 

Logistic 500 2 1 
10 

100 
1000 

10000 

Herron 500 1 2 1 
10 

100 
1000 

10000 

Lorenz 5000 11 3 1 
10 

100 
1000 

10000 

Rossler 2000 8 3 I 
10 

100 
1000 

10000 

Calculated A, % error 

0.704 1.6 
0.779 1204 
0.856 23.5 
0.621 -lOA 
0.628 -904 

0.643 53.8 
0.631 51.0 
0.522 24.9 
0.334 -20.1 
0.385 -7.9 

0.645 -57.0 
1.184 -21.1 
1.110 -26.0 
1.273 -15.1 
1.470 -2.0 

0.0106 -88.2 
0.0394 -56.2 
0.0401 -55.4 
0.0659 -26.8 
0.0836 -7.1 

Table 7
 
Experimental results for systems with two positive Lyapunov
 
exponents. The number of data points, reconstruction delay,
 
and embedding dimension are denoted by N, J, and m,
 
respectively.
 

System N J m Calculated AI % error 

Rossler-hyperchaos 8000 9 3 0.048 -56.8 
6 0.112 0.9 
9 0.112 0.9 

12 0.107 -3.6 
15 0.102 -8.1 

Mackey-Glass 8000 12 3 4.15E - 3 -5.0 
6 4.87E - 3 11.4 
9 4.74E - 3 8.5 

12 4.80E - 3 9.7 
15 4.85E - 3 11.0 

dimension. Finite dimensional systems exhibit a 
convergence once the embedding dimension is 
large enough to accomodate the dynamics, 
whereas stochastic systems fail to show a conver
gence because they appear more ordered in high
er embedding spaces. With the two-torus, we 
attribute the lack of convergence to the finite 
precision "noise" in the data set (Notice the 
small average divergence even at i tJ.t = 1.) Strict
ly speaking, we can only distinguish high-dimen
sional systems from low-dimensional ones, al
though in most applications a high-dimensional 
system may be considered random, i.e., infinite
dimensional. 

results suggest that one may still detect non
chaotic systems for the following reasons: 

(1) The anomalous scaling region is not linear 
since the divergence of nearest neighbors is not 
exponential. 

(2) For stochastic systems, the anomalous 
scaling region flattens with increasing embedding 

Table 6 
Chaotic systems with two positive Lyapunov exponents (A.. Az) . To obtain a better representation of the dynamics, the numerical 
integrations were performed using a step size 100 times smaller than the sampling period, f!1t. The resulting time series were then 
downsampled by a factor of 100 to achieve the desired f!1t. 

System [ref'.] Equations Parameters f!1t (s) Expected A" Az [ref.) 

Rossler-hyperchaos [30] i=-y-z a = 0.25 0.1 AI = 0.111 [39] 
y = x + ay + w b = 3.0 Az =0.021 [39] 
i = b + xz c =0.05 
w= cw- dz d =0.5 

Mackey-Glass [25] i = 
ax(t + s) 

1 + [x(t + sW - bx(t) a =0.2 0.75 A, = 4.37E - 3 [39] 

b = 0.1 Az = 1.82E - 3 [39] 
c = 10.0 
s =31.8 
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S. Discussion 

5.1. Eckmann-Ruelle requirement 

In a recent paper, Eckmann and Ruelle [14] 
discuss the data-set size requirement for estimat
ing dimensions and Lyapunov exponents. Their 
analysis for Lyapunov exponents proceeds as 
follows. When measuring the rate of divergence 
of trajectories with nearby initial conditions, one 
requires a number of neighbors for a given refer
ence point. These neighbors should lie in a ball 
of radius r, where r is small with respect to the 
diameter (d) of the reconstructed attractor. 
Thus, 

r 
- =d p~ 1 . (15) 

(Eckmann and Ruelle suggest p to be a maxi
mum of about 0.1.) Furthermore, the number of 
candidates for neighbors, F(r), should be much 
greater than one: 

r(r) s-t . (16) 

Next, recognize that 

r(r) = const. x r" , (17) 

and 

F(d)=N, (18) 

where D is the dimension of the attractor, and N 
is the number of data points. Using eqs. (16)
(18), we obtain the following relation: 

50 
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(19) 

Finally, eqs. (15) and (19) are combined to give 
the Eckmann-Ruelle requirement for Lyapunov 
exponents: 

log N > D 10g(l/p).	 (20) 

For p = 0.1, eg. (20) directs us to choose N 
such that 

(21) 

This requirement was met with all time series 
considered in this paper. Notice that any rigor
ous definition of "small data set" should be a 
function of dimension. However, for compara
tive purposes we regard a small data set as one 
that is small with respect to those previously 
considered in the literature. 

5.2. Repeatability 

When using the current approach for estimat
ing largest Lyapunov exponents, one is faced 
with the following issue of repeatability: Can one 
consistently locate the region for extracting Al 
without a guide, i.e., without a priori knowledge 
of the correct slope in the linear region'"? To 
address this issue, we consider the performance 
of our algorithm with multiple realizations of the 
Lorenz attractor. 

Three 5000-point time series from the Lorenz 
attractor were generated by partitioning one 
15000-point data set into disjoint time series. 
Fig. 10 shows the results using a visual format 
similar to that first used by Abraham et al. [2] 
for estimating dimensions. Each curve is a plot 

#'In tables 2-4, there appear to be inconsistent results 
when using identical values of N, J, and m for a particular 
system. These small discrepencies are due to the subjective 
nature in choosing the linear region and not the algorithm 
itself. In fact, the same output file was used to compute Al in 
each case. 

3,--~~~--~-----~------, 

2 

O-l---~-- --_-~ ---i 

o	 0.5 1.5 2 2.5 3 

Time(s) 

Fig. 10. Plot of (d/dt (In d,(i» versus i tJ.t using our algo
rithm with three 5000-point realizations of the Lorenz at
tractor. 

of slope versus time, where the slope is calcu
lated from a least-squares fit to 51-point seg
ments of the (In dj(i) versus i 6.t curve. We 
observe a clear and repeatable plateau from 
about i !it = 0.6 to about i 6.t = 1.6. By using this 
range to define the region for extracting At, we 
obtain a reliable estimate of the largest 
Lyapunov exponent: A( = 1.57 ± 0.03. (Recall 
that the theoretical value is 1.50.) 

5.3. Relation to the Sato algorithm 

As stated in section 3, the current algorithm is 
principally based on the work of Sato et al. [33]. 
More specifically, our approach can be consid
ered as a generalization of the Sato algorithm. 
To show this, we first rewrite eq. (10) using < ) 
to denote the average over all values of j; 

(22) 

This equation is then rearranged and expressed 
in terms of the output from the current algo
rithm, y(i) (from eq. (13»: 

At(i, k) = k ~t [(In di(i + k» - (In diU»] 

1 =k [y(i + k) - yU)] . (23) 
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Eq. (23) is interpreted as a finite-differences 
numerical differentiation of y(i), where k 
specifies the size of the differentiation interval. 

Next, we attempt to derive y(i) from the 
output of the Sato algorithm by summing AI (i, 
k). That is, we define y'(i') as 

, 

y'(i') = L AI(i, k) 
i=O 

1 ( j' j') 
= k ~ y(i + k) - ~ y(i) . (24) 

By manipulating this equation, we can show that 
eq. (23) is not invertible: 

1 i'+k k-l j' ) 

y'(i') = k (~o y(i) - i~ y(i) - ~ y(i) 

= ~ (~*~) y(i) - :~ y(i») 

1 j'+k 

(25)= k j~~+1 y(i) + const. 

If we disregard the constant in eq. (25), y'(i') is 
equivalent to yU) smoothed by a k-point 
moving-average filter. 

The difficulty with the Sato algorithm is that 
the proper value of k is not usually apparent a 
priori. When choosing k, one must consider the 
tradeoff between long, noisy plateaus of A1U, k) 
(for small k) and short, smooth plateaus (for 
large k). In addition, since the transformation 
from y(i) to Al(i, k) is not invertible, choosing k 
by trial-and-error requires the repeated evalua
tion of eq. (22). With our algorithm, however, 
smoothing is usually unnecessary, and A) is ex
tracted from a least-squares fit to' the longest 
possible linear region. For those cases where 
smoothing is needed, a long filter length may be 
chosen since one knows the approximate loca
tion of the plateau after examining a plot of 
(In di(i» versus i /1t. (For example, one may 
choose a filter length equal to about one-half the 
length of the noisy linear region.) 

5.4. Computational improvements 

In some instances, the speed of the method 
may be increased by measuring the separation of 
nearest neighbors using a smaller embedding 
dimension. For example, we reconstructed the 
Lorenz attractor in a three-dimensional phase 
space and located the nearest neighbors. The 
separations of those neighbors were then mea
sured in a one-dimensional space by comparing 
only the first coordinates of each point. There 
was nearly a threefold savings in time for this 
portion of the algorithm. However, additional 
fluctuations were seen in the plots of (in di ( i» 
versus i tu, making it more difficult to locate the 
region for extracting the slope. 

Similarly, the computational efficiency of the 
algorithm may be improved by disregarding 
every other reference point. We observed that 
many temporally adjacent reference points also 
have temporally adjacent nearest neighbors. 
Thus, two pairs of trajectories may exhibit iden
tical divergence patterns (excluding a time shift 
of one sampling period), and it may be un
necessary to incorporate the effects of both 
pairs. Note that this procedure still satisfies the 
Eckmann-Ruelle requirement by maintaining 
the pool of nearest neighbors. 

5.5. Simultaneous calculation of correlation 
dimension 

In addition to calculating the largest Lyapunov 
exponent, the present algorithm allows one to 
calculate the correlation dimension, D 2 • Thus, 
one sequence of computations will yield an esti
mate of both the level of chaos and the system 
complexity. This is accomplished by taking ad
vantage of the numerous distance calculations 
performed during the nearest-neighbors search. 

The Grassberger-Procaccia algorithm [20] 
estimates dimension by examining the scaling 
properties of the correlation sum, Crn(r). For a 
given embedding dimension, m, Crn(r) is defined 
as 
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(26) 

where 8( ) is the Heavyside function. Therefore, 
Cm(r) is interpreted as the fraction of pairs of 
points that are separated by a distance less than 
or equal to r. Notice that the previous equation 
and eq. (7) of our algorithm require the same 
distance computations (disregarding the con
straint in eq. (8)). By exploiting this redundancy, 
we obtain a more complete characterization of 
the system using a negligible amount of addition
al computation. 

6. Summary 

We have presented a new method for calculat
ing the largest Lyapunov exponent from ex
perimental time series. The method follows di
rectly from the definition of the largest 
Lyapunov exponent and is accurate because it 
takes advantage of all the available data. The 
algorithm is fast because it uses a simple measure 
of exponential divergence and works well with 
small data sets. In addition, the current approach 
is easy to implement and robust to changes in the 
following quantities: embedding dimension, size 
of data set, reconstruction delay, and noise level. 
Furthermore, one may use the algorithm to cal
culate simultaneously the correlation dimension. 
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