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Frequency Parameters of the Myoelectric Signal as a 
Measure of Muscle Conduction Velocity 

FOSTER B.STULEN, MEMBER, IEEE, AND CARLO J. DE LUCA,SENIOR MEMBER, IEEE 

Abstract-During a sustained muscle contraction, the lpectlUm of the 
myoelectric lignal is known to undergo compression as a function of 
time. Previous investigators have shown that the frequency compres­
sion is related to the decreasing conduction velocity of the muscle fi­
bers. It is proposed that the frequency compression may be tracked by 
obtaining a continuous estimate of a characteristic frequency of the 
spectrum, such as the mean and median, or the ratioof low-frequency 
components to high-frequency components of the speetrum. A theo­
retical analysis was performed to investigate the restrictions in estimat­
ing the three parameters, as well as their sensitivity to the conduction 
velocity. The ratio parameter was found to be mostsensitive to con­
duction velocity, but was the least reliable of the three. The median 
frequency was the least sensitive to noise. Therefore, from a theoretical 
point of view, the median frequency is the preferred parameter. A 
technique is described which determines an unbiased consistent esti­
mate of the median frequency. The technique may be readily imple­
mented in analog hardware. 

I 
INTRODUCTION 

N THE study of localized muscular fatigue, the analysis of 
the myoelectric (ME) signal has been employed extensively. 

Since the historic work of Piper (I], the frequencies of the ME 
signal have been known to decrease during a sustained contrac­
tion. Cobb and Forbes [2] noted this shift in the frequency 
components with fatigue, but also observed a consistent in­
crease in amplitude of the ME signals recorded with surface 
electrodes. Many other investigators have noted an increase in 
ME signal amplitude [3]-[11]. The frequency shift has also 
often been observed [12]-[19]. 

Lindstrom et al. [15] have developed a mathematical model 
of the power density spectrum of the MEsignalwhich explicitly 
depends on the conduction velocity of action potentials along 
the muscle fibers, Their model demonstrates that both the 
shift in the spectrum towards lower frequencies and the in­
crease in the ME signal during a sustained contraction may be 
accounted by a single physiological correlate, the conduction 
velocity. If the model is indeed faithful to the underlying 
physiology, then either the changes in the frequency content 
or the amplitude of the MEsignal ought to be useful for deter­
mining changes in the conduction velocity and, therefore, the 
progressionof muscle fatigue. 
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Several investigators have in fact attempted to use the 
change in amplitude as an empirical measure of muscle fatigue 
[6], [20], [8]. Although the amplitude is indeed dependent 
on the conduction velocity, it is a second-order effect [21]. 
Furthermore, the amplitude is also known to varywith the type 
of electrode used to detect the signal, as well as the placement 
of the electrode. Stulen and De Luca [ll] analyzed the ampli­
tude change in 11 subjects performing sustained contractions 
at the identical relative force levels. Even when the amplitude 
was normalized, the variations could be as high as 30 percent. 
Thus, the use of a simple amplitude parameter of the MEsig­
nal is unsuitable for measuring the conduction velocity and the 
associated muscle fatigue. 

The model of Lindstrom et al. (15] has shown that what has 
been referred to as a spectral shift is more accurately described 
as a spectral compression. Hence, to monitor the decrease in 
conduction velocity, it is only necessary to track the changes 
in a characteristic frequency of the spectrum. Some preferred 
candidates for the characteristic frequency are the mode, the 
mean, and the median frequency of the spectrum. In this 
article, the suitability of these three characteristic frequencies 
measuring the conduction velocity of the muscle fibers is ex­
amined. Another parameter associated with the median fre­
quency, the ratio parameter, is also examined. 

MODEL FOR THE MYOELECTRIC SIGNAL 

To examine the behavior of the spectral parameters, a model 
for the ME signal is required. The model should reasonably 
represent the ME signal which is detected with differential 
surface electrodes and must explicitly depend on the conduc­
tion velocity of the muscle fibers. 

The surface ME signal is assumed to be a Gaussian random 
process. Several investigators have observed that the amplitude 
of ME signals obtained with surface electrodes is indeed well 
described by a Gaussian distribution [22]- [24]. Note that 
such a description for an MEsignal composed of one or a very 
few motor unit action potential trains would be inappropriate 
since there are finite time intervals in a train when no motor 
unit action potential is present. Although the instantaneous 
amplitude of ME signals obtained with surface electrodes may 
be well described as a Gaussian random variable, it is not a suf­
ficient condition for describing the ME signal as a Gaussian 
random process. Yet, for the purposes of this analysis, the ME 
signal is assumed to be a Gaussian random process because it 
greatly simplifies the analysis without compromising the r 

results. 
The assumption of a Gaussian random process significantly 

defines the MEsignal;however, it does not define the shape of 
the spectrum of the signal. Therefore, it is assumed that the 
power density spectrum of the MEsignal can be expressed as a 
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Fig. 1. Model for the power density spectrum of the myoelectric signal. 

rational function of frequency. That is, the spectrum is as­
sumed to be a ratio of two polynomials in frequency and, fur­
thermore, that only even powers of frequency have nonzero 
coefficients. The latter assumption allows the signal to be 
modeled later as white noise passing through a linear filter. 
The order and coefficients of the polynomials are determined 
by empirically obtained power spectra of ME signals. 

Hogan [25] and Shwedyk et al. [26] both observed that the 
power density spectra of surface ME signals obtained from the 
biceps brachii are accurately described by a rational function 
of frequency. Both observed a flat asymptotic behavior about 
the mode (peak) of the spectrum and the similar rolloff in 
spectrum as frequencies increased above this region. Below 
the flat region of the spectrum, Shwedyk et al. [26] noted a 
more shallow rolloff in the spectrum as frequency decreased 
than did Hogan [25]. The shallower rolloff ir.iplles lower or­
der polynomials which yield a simpler expression for the shape 
of the spectrum. Thus, a rational function of the form observed 
by Shwedyk et al. [26] is selected for the shape of the spectrum 

k 2fh4f 2 
(1) 

where G(I) denotes the shape of the spectrum as a function 
of frequency f with Ii and fh being the low and high cutoff fre­
quencies, respectively, and k 2 being a scaling factor. Fig. lea) 
presents this spectrum plotted as a function of frequency and 
Fig. l(b) presents the asymptotic behavior of this spectrum. 

While this rational function approximation of the spectrum 
is adequate for the discussion presented here, there are two 
features which have been omitted. The first is the presence of 
"dips" in the high-frequency region of the spectrum. The oc­
currence of these "dips" were first predicted and observed by 
Lindstrom et al. [15]. More recently they have also been ob­

served by Hogan [25] and others. The second is the occur­
rence of peaks in the low-frequency region of the Spectrum. 
These peaks, which were predicted by leFever and De Luca 
[27] and Lago and Jones [28], are dependent on the statistics 
of the firing patterns of the motor units. The analysis per­
formed by Lefever and De Luca [27] showed that when 
many motor units are active, each with slightly different statis­
tics, the peaks tend to average out. Thiscondition is best met 
with surface electrodes for which the model is being developed. 

In the model of Lindstrom et al. [15], the Fourier transform 
of the ME signal may be used to derive the following expres­
sion for the spectrum: 

S(I) =(1/v 2 
) GUd/v) (2) 

where v is the conduction velocity. It can be seen from this 
expression that the conduction velocity explicitly affects sig­
nal amplitude by a factor of l/u. The conduction velocity also 
inversely scales the frequency components of G, so that a 
decrease in conduction velocity compresses the spectrum. The 
frequency is also scaled by the factor d, which is the interelec­
trode distance of the bipolar- recording electrode. For conve­
nience, d is assumed to have a value of 1. Conceivably, this 
scaling factor could be maintained throughout the following 
equations, but it would serve no useful purpose. 

The previous equations may be combined resulting in the 
following expression: 

(3) 

where Ii has been expressed as a fraction of fh' 

Ii = pfh for 0 <p< 1. 

Although this mathematical expression is at best an approxi­
mation of an actual ME spectrum, it does explicitly depend on 
conduction velocity and represents a shape typical of ME sig­
nals obtained with surface electrodes. 

MEDIAN AND MEAN FREQUENCIES 

Since all the frequencies are scaled by the same factor, a 
spectral compression may be observed by tracking any charac­
teristic frequency. Two obvious candidates are the median and 
mean frequencies. The median frequency fmed is the fre­
quency at which the spectrum is divided into two regions with 
equal power. This condition may be stated mathematically by 
the following equation: 

r S(l)df= [00 S(f)df= tiOO 
S(l)df. (4) 

o ~ed 0 

The mean frequency fmean is the average frequency and may 
be expressed by 

100 

fS(l)df 
fmean = . (5)0 001 S(I) df 

o 
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Fig. 2. Signal plus noise model of the myoelectric signal: 

The signal obtained from a contracting muscle contains the 
desired ME signal m and some ambient noise u from the record­
ing arrangement and equipment. The addition of this noise 
leads to errors in the subsequent estimation ofthe characteristic 
frequencies. The effects of noise are examined with the scheme 
shown in Fig. 2. The ME signal is generated by passing white 
noise through a shaping filter whose transfer function has the 
form 

(6) 

The power density spectrum of the white noise is Sww = 1. 
The power density spectrum of the output is the ME spectrum 
defined by (3). For this analysis, the conduction velocity is 
assumed to be constant and equal to one. This represents the 
desired ME signal m. White noise u is added to the desired sig­
nal and the result represents the observable ME signal. In 
reality, the noise is band limited; however, it may extend well 
beyond the frequency range of the desired signal. This situa­
tion may be modeled by passing the observed ME signal through 
a low-pass filter whose gain and cutoff frequency are optimally 
selected. Then, the output of this filter mbecomes an esti­
mate of the desired signal m. The gain and cutoff frequency 
are chosen to minimize the average steady-state squared error, 
E[(m - m)2]. The derivation is presented in the Appendix. 

Although Shwedyk et al. [26] did not state the break fre­
quencies, they appear to be approximately 40 and 80 Hz from 
the data presented in their paper. Thus a p of 0.5 was used for 
the analysis. The amplitude of noise was set at several differ­
ent levels. For each noise level the optimal filter was deter­
mined. The median and mean frequencies of the output mof 
the optimal filter were determined, The percentage error be­
tween these frequencies and the median and mean frequencies 
of the desired signal m were calculated. The signal-to-noise 
ratio (SNR) was calculated as the ratio of signal power in mdue 
to the desired signal m to the signal power in mdue to the 
noise u. 

The percentage error in the median and mean frequencies are 
plotted as a function of SNR in Fig. 3. The results show that 
the error in median frequency is less than the error in the mean 
frequency for any SNR. Even at relatively poor levels of SNR 
between 3 and 10, the error in median frequency is less than 
10 percent, while for the mean frequency the error ranges be­
tween 55 and 20 percent. When the SNR is above 100 the er­
ror is negligible in both. This error is inherent to the signal ac­
quisition and amplification system used. It represents a bias in 
the median and mean frequencies which is introduced before 
any technique is used to actually determine the frequencies. 
The final bias, accuracy, stability, and resolution of the esti­
mates of the median and mean frequency are also strongly de­
pendent on the technique and its implementation. 

THE RATIO PARAMETER 

An alternative approach for tracking the spectral compres­
sion is by monitoring the ratio of the nns value of the high­
frequency components to the nns value of the low-frequency 
components. The separation point between the high- and 
low-frequency regions may be any convenient characteristic 
frequency, such as the mean or median of the spectrum, 
chosen at the initiation of a contraction. This parameter is 
very appealing and convenient to monitor and, in fact, has 
been used by some investigators. However, this parameter has 
several drawbacks because of its dependence on the spectral 
shape and the value of the initial characteristic frequency. 
These points become evident by the following analysis. 

The ratio parameter may be mathematically expressed by 

J
1/2f ctlf 

S(f/v) df 

(7)R= i 
o 

00 SU/v) df 
f<fu 

where R is the ratio parameter and a. is the initial character­
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Fig. 3. Percentage error in the mean and median frequency of the myo­
electric signal as a function of signal-to-noise ratio. 

istic frequency. For the purpose of this analysis the median 
frequency was used as the characteristic frequency. The above 
expression for the ratio parameter may be evaluated by sub­
stituting (3) into (7) and integrating by parts. 'Thisexpression 
was evaluated for several spectra of the form given by (3) with 
p =0.1,0.3,0.5,0.7 as a function of conduction velocity nor­
malized by its initial value. The results are shown in Fig. 4. 
The plots indicate that the ratio parameter is sensitive to the 
shape of the spectrum as indicated by the family of curves 
generated for p. 'This is a drawback since in practice the spec­
tral shape of the ME signal is not exactly known and, further­
more, is variable among muscles, and among subjects [29]. 

Another detraction of this parameter is its dependence on 
the determination of the initial characteristic frequency. In 
practice the value of the characteristic frequency derived from 
any technique is an estimate of the true value. Hence, the 
ratio represents one sample curve for a sample value of the 
initial characteristic frequency. A Monte Carlo simulation was 
used to determine the bias and variance in the ratio parameter 
for a given coefficient of variation in the initial characteristic 
frequency. 

The distribution of the initial median frequency was assumed 
to be Gaussian with a mean which equalled the "true" initial 
median frequency fcltc and variance a2

• A total of200 sample 
values of the initial median frequency was determined and 
the corresponding ratio curve was obtained as a function of 
normalized conduction velocity V. The percentage bias in the 
ratio was estimated by 

I N * -- L Rj(V) - R (V) 
N j=l 

(8) 
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Fig.4. Ratio parameter as a function of the change in the conduction 
velocity of the muscle fibers. The conduction velocity wasnormalized 
to the value at the beginning of the muscle contraction (uO), and it 
decreases as contraction time increases. The four C1lIVes are obtained 
by using slightly different shapes of the myoelectric signal spectrum 
as indicated by the parameter p (0.1,0.3,0.5, 0.7). See text for details. 

also obtained. (The coefficient of variation is the ratio of 
standard deviation to the mean.) The percentage bias and co­
efficient of variation of the ratio parameter for a spectrum of 
the form of (3) with p =0.5 are plotted in Fig. 5 for different 
coefficients of variations in the initial median frequency. There 
are two major observations that may be made in Fig. 5. First, 
there is a nonzero bias in the ratio parameter which is depen­
dent on the coefficient of variation of the initial median fre­
quency. Second, the coefficient of variation in the ratio 
parameter is approximately 30 percent greater than that in the 
initial median frequency. 

SENSITIVITY TO CONDUCTION VELOCITY 

Since the parameters of the spectrum are all dependent on 
the conduction velocity, it is necessary to determine the de· 
gree of their dependence (sensitivity) on the conduction 
velocity. For the median frequency the necessary expression 
may be obtained by substituting (2) into (4): 

LI med G(fju) I 1~ G(fju)
--df=- --df (9) 

o u2 2 0 u2 

which reduces to 

f / medl u " 11~ 
G(fju) d(fju) =- G(fju) d(fju). (10) 

o 2 ° 
The right-hand side of the above equation is constant, hence 

where Rj(V) is the ratio curve for a given sample value of ini­ the upper limit of integration of the left-hand integral must be 
tial median frequency, R*(V) is the ratio curve for the true constant. If one defines the initial medial frequency f~ed as 
initial median frequency, and N equals 200. The coefficient of the median frequency when the conduction velocity is at its 
variation in the ratio as a function of conduction velocity was initial value UO then 
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fmed == (:o)f~ed'	 (11) 

The median frequency is therefore linearly proportional to the 
conduction velocity. 

The expression describing the sensitivity of the mean fre­
quency to the conduction velocity may be obtained by substi­
tuting (2) into (5): 

i OO 

(flv)G(flv)d(flv) 

[, == v .--------	 (12)
oo 

mean G(flv) d(flv)i
In this case, the quotient of integrals is a constant fmeanlv 
hence 

fmean _(v)- Vo ° fmean· (13) 

The expressions [(11) and (13)] for both characteristic fre­
quencies are equivalent. In fact, any characteristic frequency 
will be linearly proportional to the conduction velocity, since 
all frequencies of the ME signal are scaled inversely by the con­
duction velocity. However, other parameters that are associated 
with the spectrum are not necessarily linearly dependent on 
the conduction velocity. Such is the case for the ratio param­
eter. The necessary expression is given by (7). 
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Fig.6. Relationship between the ratio parameter and characteristic fre­
quencies and the conduction velocity of the muscle fibers. The con­
duction velocity was normalized to the value at the beginning of the 
muscle contraction (vo), and it decreases ascontraction time increases. 

Fig. 6 presents a plot of the relationships of the characteristic 
frequencies and ratio parameter as a function of conduction 
velocity. These are plots of (7) and (11). The value of the 
characteristic frequency and conduction velocity have been 
normalized to one, which represents the value at the beginning 
of a muscle contraction when no significant metabolic changes 
have occurred in the muscle. The characteristic frequencies 
decrease linearly and the ratio parameter increases nonlinearly 
as the conduction velocity decreases, as would be the case dur­
ing a sustained contraction. The value of the characteristic 
frequency progresses towards zero, whereas the value of the 
ratio parameter approaches infinity as the value of the con­
duction velocity approaches zero. 

It should be noted that although in Figs. 5 and 6 the spectral 
parameters have been calculated for conduction velocity values 
approaching zero, this situation does not occur in healthy 
muscles. In fact, the greatest decrease in the median frequency 
observed by Stulen [30] was to 30 percent of the initial value 
during a sustained isometric constant-force contraction of the 
first dorsal interosseous muscle. 

A TECHNIQUE TO ESTIMATE THE MEDIAN FREQUENCY 

Of the three parameters considered, it appears that under the 
conditions of the performed analyses, the median frequency 
provides the most accurate estimate of the conduction velocity. 
Therefore, a technique was developed for determining the 
median frequency of an ME signal on line and in real time. 
A schematic of the technique is shown in Fig. 7. The ME sig­
nal is passed through modulated low-pass and high-pass filters 
whose cutoff frequencies are constrained to be equal, but can 
be varied by a control voltage. The outputs of the filters are 
connected to nonlinear devices whose outputs are estimates of 
their variances (or monotonic function of the variance) of the 
input. These are in turn connected to a difference amplifier 
which is connected to an integrator. The output of the inte­
grator varies the cutoff frequency of the filters. Thus, when 
the variances of the two outputs of the filters are equal, the 

C 
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Fig. 7. Technique for estimating the median frequency of the myoelec­
tric signal. 

difference ~ is zero and the mean value of the integrator out· 
put corresponds to the median frequency. When the integrator 
output is not at the median frequency there willbe a difference 
in the variance of the two signals. This difference forces 
the integrator output to vary about the value that corresponds 
to the median frequency. 

The performance of the proposed technique may be ana­
lyzed in the following manner. The input to the low-pass and 
high-pass filters is assumed to be a Gaussian random process 
with zero mean. The filters are linear, which implies that the 
output is also a Gaussian random process. The unbiased con­
sistent estimator of the signal variance may be synthesized by 
a squaring circuit cascaded with a linear integral averager. Un­
der these conditions the output of the averager provides an 
unbiased estimate of the variance of the filtered signal. Fur­
thermore, if the integral of the squared correlation function of 
the input is finite, then the estimate is also consistent. These 
operations form the left and right pathways in. the technique 
for the estimation of the median frequency shown in Fig. 7. 

The mean value of the difference operation is the difference 
of the variances of the outputs of the low-pass and high-pass 
filters. The variance of the difference is dependent on the 
correlation of the output of the averages, and may be ex­
pressed as 

var (~) = E{ [~- E(~)P} 

= var o~ + var 01 - 2 [E(ol o~) - a1 a~] (14) 

where ~ is the difference, a 2 is the variance, 02 is the estimate 
of the variance, and the subscripts I, h denote low-pass and 
high-pass signals. When the outputs of the filters are uncorre­
lated (linearly independent), (14) reduces to 

var (~) =var (ol) +var (oh). (IS) 

This relationship is valid for ideal high-pass and low-pass filters 
with frequency responses 

Hh (!) =1 1/1>fc 
=0 III <i:
 

H,(!) = 1 III <fc
 
=0 1/1>fc (16) 

because they occupy disjoint regions of frequency [31]. The 
term fc denotes the cutoff frequency of the filters, 

When the cutoff frequency of the filters is set at the median 
frequency, then the average of the difference is zero. In prac­
tice, the cutoff frequency is not set, but is varied by the inte­
gral of the difference, thus forming a feedback system. If this 
system is stable, the cutoff frequency is driven to the median 
frequency. Once settled about the median frequency, the aver­
age value of the difference is zero and the mean of the output 
of the integrator corresponds to the median frequency. Al­
though the cutoff frequency would tend to drift away from 
the median frequency because of the integration of a random 
process, the feedback nature of the system corrects any errors. 
As a result, the variance of the output of the integrator is fi­
nite. The rate at which the system responds must be slower 
than the lowest frequency in the signal. Otherwise, the dy­
namics of the feedback system will have a significant effect on 
the two filtered signals. 

The dynamic performance of the technique is dependent on 
the statistical properties of the input signal. The above analy­
sis has assumed that the input signal is stationary. In actuality, 
the statistical properties of the ME signal are nonstationary 
during a sustained contraction. One of the main advantages of 
the technique is that it allows continuous on-line monitoring 
of the nonstationarity of the signal by observing changes in the 
estimate of the median frequency. The nonstationarity creates 
a tradeoff between resolution and accuracy. 

An analog implementation of the technique, known as the 
Muscle Fatigue Monitor (MFM) has been realized [32], [33]. 
In that implementation an analysis of the mean values of the 
variables is used to describe the system response. The analysis' 
is then used to optimize the response of the system to a step 
change in the median frequency. 

DISCUSSION 

All the frequency parameters discussed in this article have 
been used by several investigators to measure the compression 
of the ME signal spectrum during sustained muscle contrac­
tions. The mean frequency has been used by Hagberg [34], 
Herberts et al. [29], Broman and Kadafors [3S] , Ortengren et 
aI. [36], Lynne-Davies [37] and others; the median frequency 
has been used by Stulen and De Luca [II], [32], Sabbahi et al. 
[38], and Petrofsky and Lind [39]. The ratio parameter has 
been used by Bellemare and Grassino [40], Gross et al. [41], 
[42], Kadefors et al. [14], Muller et al. [43], and Schweitzer 
et al. [44]. 

There is one additional parameter, the mode (peak) frequency 
of the spectrum, which deserves mention. The estimate of this 
parameter was not considered in the analysis because even for 
relatively poor signal-to-noise ratio (SNR), it is always theo­
retically possible to 01 tain a perfect estimate. Therefore, 
superficially it would appear to be the most appropriate char­
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acteristic frequency. However, this is not the case because the 
ME signal is a stochastic signal which does not have a smooth 
and sharply defined region near the peak value of its spectrum. 
Furthermore, the variance of the spectrum would strongly in­
fluence the estimation accuracy of the mode. This point has 
been con finned empirically by Schweitzer et al. [44]. They 
found that the coefficient of variation for the estimate of the 
mode was five times greater than that of the mean frequency 
for ME signals obtained from the human diaphragm. 

The theoretical analysis indicates that the estimates of both 
the mean and median frequencies are affected negligibly by 
noise when the SNR is greater than 100. In a more modest 
range of SNR, the error is far less in the median frequency 
than in the mean frequency. Even when the SNR is about 2, 
the error in the median frequency is less than 20 percent. 
These results were obtained using an optimal filter to minimize 
the effects of the noise. The fllter directly depended on the 
'spectrum of the signal. Hence, if the fllter were optimal at 
the start of a sustained contraction, then as the spectral corn­
pression progresses, the errors in the characteristic frequencies 
would grow. The error increases much more in the mean fre­
quency than in the median frequency. This problem could be 
counteracted by designing the filter so that the bandwidth is 
adjusted by the estimate of the characteristic frequency, 
thereby keeping the filter near optimal as the spectrum com­
presses. In fact, a device developed by Broman and Kadefors 
[35] does use multiple low-pass filters to minimize the effects 
of noise as it estimates the value of the mean frequency. How­
ever, because the median frequency is less sensitive to noise, 
only a single constant low-pass filter is necessary to obtain a 
similar improvement. 

The ratio parameter as proposed by De Luca and Beren­
berg [45] has been shown to be sensitive to the shape of the 
ME signal frequency spectrum. This is a hindrance because in 
some muscles the frequency components of the ME signal may 
vary during varying-force contractions due to the recruitment 
of motor units that have significantly different action potential 
shapes. Furthermore, this parameter is dependent on the ini­
tial value of the characteristic frequency chosen to divide the 
spectrum. In practice, the true initial value of the characteris­
tic frequency is not known and must be estimated. As a result, 
the observed ratio parameter is itself only an estimate of the 
true ratio value. For the case where the median frequency 
was used as the partitioning frequency, a statistical analysis has 
shown that the ratio parameter estimate is biased and has a 
covariance approximately 30 percent greater than the covari­
ance of the estimate of the median frequency. 

As may be seen in Fig. 6, the ratio parameter is the most sen­
sitive to changes in the conduction velocity of the muscle fi­
bers, but the relationship is nonlinear; whereas, the mean and 
median frequencies have an equal sensitivity to the conduction 
velocity. Although it is less than that of the ratio parameter, 
the sensitivity is linear. 

In an empirical evaluation of the ratio parameter, the mode 
frequency, and the mean frequency, Schweitzer et al. [44] also 
concluded that the mean frequency was the most stable and 
reliable. From the theoretical basis discussed in this paper, the 
median frequency is in general a more superior estimator than 

the mean frequency for monitoring the changes in the con­
duction velocity of muscle fibers during a contraction. There­
fore, the median frequency is the preferred parameter. How­
ever, it should be noted that the accuracy of the estimates of 
the considered parameters calculated from empirical data will 
also depend on the specifics of the actual techniques used to 
obtain the estimates. Hence, it is conceivable that in practice 
the mean frequency may provide an acceptable estimate of the 
conduction velocity. . 

ApPENDIX 

A signal is often low-pass filtered to reduce the contamina­
tion from ambient noise. In practice, the cutoff frequency of 
the filter is chosen to be sufficiently high to pass the majority 
of the desired signal and sufficiently low to remove most of 
the higher frequency noise components. However, both the 
cutoff frequency and the gain of the filter may be determined 
optimally by minimizing the squared error between the output 
of the filter and the desired signal. This is the same principle 
as in Kalman filtering. 

For the analysis, the propagation of the covariance of a ran­
dom input through a linear system must be determined, Con­
sider a linear system of first-order differential equations 

X=Ax + By. (AI) 

The state of the system is defined by the column vector x, and 
is driven by the column vector of inputs y. When y is corn­
posed of random inputs, the state of the system x is also ran­
dom and the covariance Kxx(t, r) of the state is defined by 

Kxx(t, r) =E ([x(t) - E [x(t)]] . [x(r) - E [x(r)]] T}. 

(A2) 

For convenience, when r = t, the covariance matrix will be 
denoted by 

(A3) 

By the application of the theories of linear systems and proba­
bility, it can be shown that 

(M) 

where 

Q(t)· s« - r) =E[y(t)· yT(r)]. (AS) 

For the total solution of the above equation, the initial condi­
tion for Px(t) must be known. In steady state, (A4) reduces to 

AP~ +P;AT +BQB T = 0 (A6) 

where the superscript s indicates steady state. 
With the above results as background, the determination of an 

optimal filter can now be approached. The overall problem is 
depicted in Fig. 2. The myoelectric signal m may be modeled­
as the output of a linear shaping filter whose input is Gaussian 
white noise. The transfer function of the filter is assumed to 
be 

(A7) 
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where s is the Laplace operator and M(s) and W(s) are the 
Laplace transforms of the signal and white noise, respectively. 
The white noise is assumed to have a spectral amplitude of 1.0 
and the gain of the filter k is chosen so that the power of the 
resulting signal is arbitrarily set at 1.0. White noise u with 
spectral height q is added to this desired signal. The combined 
signal is then passed through a single pole low-pass filter to re­
move the noise. The gain of the filter is denoted by g and the 
cutoff frequency is denoted by fo. The output of the second 
fIlterm is considered to be an estimate of the myoelectric sig­
nal m. The gain and cutoff frequency of the filter are to be 
chosen to minimize the average squared error between m and 
m. This system may be expressed in the form of (AI) as a set 
of four first-order linear differential equations forced by two 
random uncorrelated inputs w and u: 

1 o 
o 1 

-(1 +2p)Z2 -(2 +p)Z 

o o iJ 

Z = 2rrfh. (A8) 

With this formulation, the error may be expressed as 

I]T [ 1]"2_0 $ 0_ 
(A9)E[(m-m)]- _~ [Pxl _~ -PH -2P,,+P..

[ 

where Pi; is the element in the ith row and the jth column of 
P;. In order to determine these elements, the covariance ma­
trix of the inputs Q is also needed. 

(A10) Q=[~ ~l 
The matrices A, B, and Q are substituted into (A6) to deter­
mine the elements of P;. The steady-state error is then deter­
mined by (A9). For a given spectrum and noise level, the error 
is a function of the gain and cutoff frequency of the filter. 
Thus, the optimal gain and cutoff frequency are those values 
which minimize the average squared error. An optimization 
routine was used to find the optimal gains and cutoff frequen­
cies for several levels of spectral noise for the results presented 
in the text. 
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