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Abstract

A model for the motor-unit action-potential train is developed.
based on previously obtained empirical information. The auto and
cross-correlation functions are calculated. The autocorrelation
function is used to derive the mean rectificd valuc, the variance
and the root-mcan-squared value of a motor-unit action-potential
train. These paramcters are solved by using two approximations
for the motor-unit action-potential; a piece-wise approximation and
-a Dirac Delta function approximation. The Dirac Delta function

. approximation sulliciently simplifics the mathematics so that the
model can be extended to myoclectric signals. The cross-correlation
function contains information about the synchronization of motor-
unit action-potential trains that may bc useful as an objective
indicator of muscle fatigue. '

Introduction

Several investigations have attempted to formulate
mathematical expressions for the motor-unit action-
potential train (MUAPT) [2, 14, 10, 9, 26. 5]. Of the
above investigators, only Libkind [14] employed an
empirically derived mode! for the inter-pulse of the
MUAPT's. In a previous paper De Luca and Forrest
[11] described some properties of MUAPT's recorded
during constant force isomctric contractions. Those
propertics will be used to derive a set of equations for
some parameters of the MUAPT recorded during a
constant force isometric contraction.

The mathematical development will focus on the
derivation of the time dependent auto and cross-
correlation functions of the NlIUAPT's. The correlation
function may be used to obtain expressions for
measurable parameters such as: a) the mean rectified
value, b) the mean integratzd rectified value, ¢) the
root-mean-squared value. and d) the power density
spectrum. These parameters may not be uscful when
referring to a MUAPT; lowever, they assumc a
practical importance when they are assigned to the
myoclectric signal. The anelysis for the myoclectric
signal, based on the derivations in this paper, is
presently in progress and wi | be reported soon.

Background

In a previous paper, De Luca and Forrest [ 1] reported some
properties of the MUAPT's recorded from the middlie fibers of the
deltoid muscle during constant force isometric abduction. Two of
these propertics are listed here because they will be required for
the ensuing discussion. ’

1. The Weibull probability distribution function with time and
force dependent parameters provides an acceptably good fit for the
distribution of the inter-pulse intervals of a MUAPT.

2. The inter-pulse intervals between two adjacent motor-unit
action-potentials (MUAP's) in the same MUAPT have a tendency
to be statistically independent. but the independence of adjacent
pulses is not as strong as that between .every other puise in the sume
train,

The MUAPT's may be represented by the pulse random process
illustrated in F'g. 1. Consider the Dirac Delta impulse random
process

sin= Y-
k=1

The impulses are located at time r,. where 1 is a real continuous
random variable. IT the impulse process is passed through a system
with an impulse response fit7). a pulse random process uir) is formed.
If h(r) is the equation of a MUAP. the random process ulr)
represents MUAPT's which can be expressed as

win= Y hit—1) iy
k=1
k
where 1, = Z.\,
i=1

for k. I=1,23 --n.

‘The real continaous random variable x represents the inter-pulse

interval and n is the total number of inter-pulse intervals in a
MUAPT. The distribution of x in a MUAPT is described by the
Weibull probability distribution function
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Fig. 1. Schemat ¢ modct for the motor-unit action-potential train
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where ¢ represents the contraction time and f the constant foree of
the isometric contraction. The skewness parameter & and the scale
parumeler [ are dependent on ¢ and f: whereas, the location
parameter, 1, s independent of tand .

Correlation Functions of the Motor-Unit
Action-Potential Trains

Because the MUAPT's, w(t) and (1), may be
synthesized by convolution of hr) and hr) with the
time-dependent Dirac Delta impulse trains, the time-
dependent correlation function of the MUAPT's may
be expressed as

Rl“llj(ra' Ib) = RJ.‘ 61(141' Ib) * hi(ra) *hj('b) (3)

where R, (t,.1,) is the correlation function of the
time-dependent Dirac Delta impulse trains. To
facilitate the expansion of the latter function consider
the two Dirac Delta impulse trains in Fig. 2. The
height of each impulse is represented by ¢. The
correlation function may be calculated as an ensemble
average

1 1
Ra,a,(’m L) = Z Z Oix 5;'1 P&;o,-(‘sih 5;1§ tuty). (4)
k=01=0 -

Now, d;, and 0, can assume values of either 0 or ¢;
yielding four possible values of d;; J;:

O0xZ ¢éx0, 0x0, ¢x¢.

In the case where i=j, R, ,,(t,1,) represents the
autocorrelation function

R;,5,(ts ’b)=,§2 Po‘,-é.-(éihé_il;tu’ ty) (5)
fort,=ty=1

Rs(1)= &2 Py 5(0i5,0i55 1)
=2 Py (6i1s1) 6)

and fort, #1t,
Ry 5.(tuty) = é? Py (6i1:t,) Py (i1 ty) )]

if the occurence of the Dirac Delta impulses is inde-
pendent of any previous occurences in the same train.
Clamann [8] and De Luca and Forrest [11] have
reported that for the purposc of signal analysis the
inter-pulse intervals of adjacent MUAPS mav be
considered to be statistically independent. According
to the MUAPT properties listed in the Background
Section, Eq. (7) is particularly valid if the interval
t,—t, is greatzr than an intev-pulse interval. A dia-
grammatic representation of the corrclation of two
Dirac Delta inw.pulse trains can be scen in Fig. 2.
The probatility of having an impulsc in the interval
dtis
Fy @iy =84 /)= 241, f)dt 8)

. ;'i(t'f) =

I O I ;
Lt 1,
—-4]~—
t=t, t=t,

Fig. 2. Dirac Delta function impulse trains graphically arranged to
demonstrate autacorrclation and cross-corrclation

where ~(t, /) is the firing rate of a MUAPT. The
firing rate may be obtained by taking the inverse of
the mean value of the Weibull probability distribution
function, hence,

L 1000
it ) ﬂ.-(r,f)r(l +

pulses per sec.

]
Kilt, f)

)+ % (9)

The equations for f(t. f), xi{t. /) and »; were deter-
mined in a previous paper [11]. Note that the

" constant-force variable has been introduced because

the Weibull probability distribution function de-
scribing the inter-pulse intervals was found to be
dependent on the constant-force level of the isometric
contraction.

By direct substitution, Eqgs. (6) and (7) become

Ry st )=t f) t,=

Ra."i(ta, f;,f) = :(1’/‘..{!.‘. [)k,:(lr;‘(tb.j) (IOJ

ty
Ia#: b
But for a Dirac Delta pulse as i—» and dt—0.
Edt =1, therefore,

DRy st ty) = iilty, £) 0,1+ 700,700, (1)

This is the autocorrelation [(unction
dependent Dirac Delta impulse train.

In the case where i#j, R;, (1,.1,) represents the
cross-correlation function of two impulse trains, Tn this
situation. the probubility that an impulse is simul-
taneously present at r=1, in &; and 1, =1, in J; 15 the
same as the probability that an impulse ts present at
t=t,m d; and 1 #1, in &, Furthermore, according to
Shiavi [24]. two MUAPTY recorded during u
constant-force isometric contraction have no signifi-
cant interaction, hence,

of the time

Py s(0:0.0 1.0 = Py t0;.1,) P,,I(«i”, fn)

=;.i(fu,j.\)(“/'.j(lb,‘j‘)(!{. (]2,




Employing the same argument used to derive the
autocorrelation function, the following expression of
the cross-correlation function can be obtained

R&(Jj(tm ths f) = )'i(tai f) )'j(tb’ f) .

' It may be possible that two motor units will fire
in unison f(i.e, they are phase-locked) with
At )=/, f). In such a circumstance the cross
correlation function will be identical to the auto-
correlation function.
Now, by introducing Eq. (11) into Eq. (3), the
equation for the time dependent autocorrelation func-
tion of a MUAPT is expressed as

(13)

Ru.- u,(tm tb! f)

[y m—"] oq_..s Ot-—.ﬂ

/l(f’ f) hi(ta - ad;
At f) hilty — D) dt (14)

fdt

+

A, ) (e, — By hy(t, —

where f is a dummy variable. The lower limit of the
integration may be set to zero because the MUAPT
is only present for positive iime. The time dependent
cross-correlation function of two MUAPT’s with firing
rates A;(¢, f)*/7,(t, f) can be obtained by placing
_.Eq. (13) into Eq. (3)

Ru(uj(tm Iy f) ,l(tl f) h [ - t)dt
is}

(15)

A ) bt — D di.

O'-—-H °'—|8

Two motor units firing in unison with identical {iring
rates A(t, f)=/4¢t, f) will have a time dependent
cross-correlation function identical to Eq. (15) if the
MUAPT's have a relative displacement (7T) greater
than or equal to the time duration of h(t) or hj).
When T is less than the time duration of /i(t) or hj(r)
and A (t, f)=/4;(1, f) the time dependent cross-correla-
lation function will be

j A0 ) hitt, — 1) dt

u.u,(ta* tb’ f

T A t, [ hit,—Ddi (16)

+ J A

—1)dr.

O 8 OL—'NB o

LN R, -t T

In such a case, the MUAPT’s will be considered to
be synchronized.

161

Piccewise Linear Approximation for the Motor-Unit
Action-Potential

Up to this point, the properties of the MUAP,
h(t), have not been mentioned. Some knowledge of
h(t) is required to continue the solution of the
correlation functions. It is well known that the shape
of h{t) can assume several different forms depending
on: a) the particular muscle from which it is recorded
[22, 20, 1], b) the type of electrode that is used to
record the MUAP [6, 71, and c) the relative position
of the recording electrode and the active muscle fibers
[6,7]. In addition to the above variables the amplitude
and duration of h(t) also depend on the elapsed time of
a muscle contraction (De Luca and Forrest, 1973), the
force level of the muscle contraction [20, 12, 19] and
the depth of insertion in a particular muscle [6].

For the purpose of this study a tri-phasic MUAP
(plotted in Fig. 3) with a duration of 7.5 msec was
adopted to carry out the ensuing analysis. The
arbitrary shape and duration are representative of the
MUAP’s recorded from muscles in the arm and fore-
arm. Average time duration values ranging from
540 msec [1] to 9.15msec [6] have been recorded
from upper limb muscles. _

Previous attempts at representing h(¢t) with mathe-
matical functions can be found in the literature.
Bernshtein [3] approximated h(r) by a series of expo-
nentials, but ran into difficulties in relating his ex-
pression to empirical MUAP's. Person and Mishin
[21] idealized h(r) by a symmetrical positive and
negative triangular pulse, and with this function
proceeded to calculate some parameters of the _myo-
electric signal.

In this paper, a piecewise linear approximation of
h(t) will be used. Such an approximation preserves
the basic useful information of h{t), such as the
number of phases, the amplitude, the zero crossing
and the time duration. Consider the empirically
recorded MUAP in Fig. 3. The MUAP can be ex-
pressed as the sum of its constituent phases, a,,

W= 3 alt = 12s-1)

k=1

a7

where k=1,2,-.-,p, and p represents the total number
of phases in h(r). Each phase may be approximated
by a triangle, which in turn may be expressed by

three ramps, for example:
a () =m(t—to)wt) +(my —~m)(t — 1)) wlt — 1)
— my(t — t) wit ~ 1) (18)

where 1, £, t, are the time locations of successive zero
crossings or peak points and m, and m, represents the
slopes of the ramps. In the case of the MUAP in
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Fig. 3. An empirically recorded motor-unit action- potcnual and the
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Fig. 3, m, is a positive quantity and m, is a negative
quantity. The function w(t) is the unit step function. If
a negative phase were considered, the signs of m, and
m, would be reversed. The phases of a MUAP always
alternate in sign, therefore, it follows that

2p

h()= Y (my,,—

my (t =ty wt —1t,) (19

where mg=m, ,,, =0.

The frequency spectrum of the piecewise linear
approximation of /i(t) can be obtained by taking the
Fourier transform of Eq. (19). The magnitude of the
frequency spectrum can be expressed as

2p ) 2
[H()I? = fi‘«.{[ Z (my — 4 l)cos(frk)}
k=0

2p 2 (20)
Z (my = g4 )sin( f 1) }
k=0

The above equ.ation has a second order pole at f=0.
The value of the {requency spectrum at f=0 can be
determined bv applying L'Hépital's rule. It can be
shown that

(5]

P, 2
iy, —my)| . 21)
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Fig. 4. Frequency spectrum of the motor-unit action-potential in
Fig. 3; + + + 4 continuous pulse, piecewise linearly
approximated pulse

As in Eq. (19). Egs. (20) and (21) also have the
restriction that
Mo=ny,,;=0.

A detailed discussion of the above derivation is
presented by De Luca [10].

It is possible to obtain a further indication of the
utility of the piecewise linear approximation by
comparing the frequency spectrum of the MUAP in
Fig. 3 with that of the piecewisc approximation
described by Egs. (20) and (21). The comparison of the
two spectra presented in Fig. 4 shows that for the
particular  MUAP considered the approximated
MUAP has a lower amplitude spectrum that is slightly

. shifted towards the low frequency end. The difference

is not critical considering the great simplification in
the representation of the MUAP.

Conce'pt of a Generalized Firing Rate

Now that a mathematical representation has been
made for li{r). an expression for the MUAPT firing
rate is required to solve the correlation functions. If a
MUAPT can berecorded such thatitis distinguishable.
then the individual firing rate 2,(¢, f) can be measured
and expressed mathematically.

In myoclectric signals composed of several
MUAPT's, the component MUAPT's are not continu-
ously distinguishable lhroug,houl the signal. Hunu



their individual firing rates are unattainable. However,
it is still possible to obtain a meaningful solution to
Egs. (14), (15) and (16} by replacing the individual
firing rates with the generalized firing rate, i(z, ¢).
The generalized firing rate is defined as the firing rate
of a typical MUAPT and has the form of Eq. (9);

1000

Hr ) =
Az, @) r(l +

pulses per sec

) + 2 (22)

K(1, ¢)
with
K(t,9)=1.16-0.191+0.18¢
for 0<t<l
Blt. @)= expl4.60 +0.671 — 1.16¢) msec
2 = 3.89 msec

O<op<l

2

where 1 represents the normalized contraction-time
and ¢ the constant force normalized with respect to the
force of maximum voluntary contraction [11]. The
values of x(1.¢) and pBlz,¢) were obtained from
MUAPT’s recorded from four subjects performing
constant force isometric contractions of various levels.
It was necessary to normalize the contraction time
and constant force level to obtain the relationships.

In its present form. Ec. {22) is not suitable for
solving the integral formulas of the auto and cross-
correlation functions. The function can be expressed
as a polvnomial by taking a Taylor expansion with
respect to 7 and performing a polynomial least-
squared regression on the coefficients as a function of
¢. The simplified expression is

3

A @)= 3 gt (23)
1=0
where
no= 1.028258 x 107% 4+ 1024522 x 10~ ¢

+ 1010051 x 1072 ¢
= —7022323x 1073 = 7141921 x 107 3¢
— 4639232 x 107 3¢
T2170036 x 1072 4 1996963 x 1077 ¢
+ 1139468 x 1073 ¢ — 5330590 x 10™*¢3
Ny = —4006277 x 107*--2.650333x 107 *¢
— 1027011 x 107*¢-2 4 2.780395 x 1072 ¢>.

i

The polynomial is truncated at the third order with a
residual error of less than 0 73% in the worst possible
case. This is an acceptable error well within the
experimentitl bounds.
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Solution of Parameters

Equation {14) represents the autocorrelation func-
tion of a particular MUAPT for all values of ¢, and ,.
Consider the case where 1, =t,. then the expression
reduces to

7

Rt f)=| {20t Nt = D di +
(4]

+ [ 2t Y} =D df
0 (24)

=[E{u1))]* +aii f)

= (mean)’ + variance

= (rms)*.

The above equation involves convolutions of a MUAP
with its firing rate. By using the piecewise linear
approximation for /i(r) it is only necessary to know
the time and amplitude values of the peaks and zero
crossings of h(t). If the actual.firing rate of the
MUAPT is not known. a meaningful solution to
Eq. (24) can be obtained by using the approximation
for the generalized firing rate of Eq. (23).

The solution of the convolutions in Eq. (24) will
be greatly simplified if the linearly approximated
h{t) is differentiated twice. thus reducing to a sequence
of Dirac Del:a pulses. The convolution of #(r. f'} with
the Dirac pulses is reduced to a multiplication
Z{t, f) with the Dirac Delta pulse. The result is then
integrated twice to complete the original convolution.
The details are presented in the Appendix.

Some parameters of the MUAPT that have
practical application to the signal processing problem
of myoelectric signals are the mean rectified value. the
variance and the root-niean-squared (rms) value. These
parameters can all be obtained from Eq. (24). Their
solution appears in Eq. (A7) in the Appendix. The
foltowing expressions are general and. therefore. will
be written as functions of normalized contraction-
time (t) and force (¢).

1. Mean Rectified Value
The MUAP is rectified by inverting the sign of
the slopes in the negative phase. This procedure must
be performed when the values of the slopes are placed
in the caleulations, The resulting expression is

{ ! ¥ 3 ,,l{(/)) j+ 2
E (lll,-[t”,- >~ k;) ,;)('”k+ Rt N {Wﬂ‘”_ﬁ(f - T7)
2%

where nig=m,,, =0 and the individual terms are
™~
zero for 1< 1,
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Fig. 5. The normalized mean rectified value of the motor-unit
action-potential train as a function of the normalized contraction-
time

2. Variance

The expression involves a convolution of Z(t,¢)
and h*(1); a somewhat more involved manipulation
than that of the mean rectified value. The resulting
expression is

~
Al

3
Y. 2mis—2m})

=0
n,(¢)
NI+ d+3)

VAR {y;(1)}

k

1
[

( _ ))+3

P 3 ’
Z 2’"%&-1“2&—2“’“-1) (26)

£24)]

. n(¢) _ 142
TT) i+ © T

where mgy=m,,,, =0, the values of the first term are
zero for 1 < v, and the values of the second term are
zero for 1< 15, _,.

+ 2’"2&("2&-1 -

2. Root-Mean-Squared-Value

The expression for the rms value can be obtained
by arranging Egs. (25) and (26} so that

RM:3 =[MEAN? + VARIANCE]}!. 27)

The preceding equations are easily implemented
on a digital computer. The data of the approximated
MUAP of Fig.. 3 and that of the generalized liring rate
was placed in Egs. (25), (26), and (27). The calculated
values were normalized with respect to the value of
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Fig. 6. The normalized variance of the motor-unit action-potential
train as a function of the normalized contraction-time
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Fig. 7. The normalized root-mean-squared value of the motor-unit
action-potential trains as a function of the
contraction-time

normalized

=0. which in the case of the mean rectified value is
20) | [h(x)dt
(4]
and for the variance i1s
g
7(0) | n*(r)dr.
0

It is assumed that these expressions, ic.. the area of
the MUAP, remain constant throughou a’contraction.



The normalized results are plotted in Figs. 5, 6. and
7. In these plots the time duration of the sustained
contraction was considered to be 45sec and the
normalized force level was 0.85. The duration of the
MUAP was normalized accordingly. Similar calcu-
lations were made for a weaker contraction with a
time duration of 132 sec and normalized force level of
0.25. The largest difference betwéeen the values of the
normalized parameters for the two contractions was
calculated for the mean rectified value. The dis-
crepancy was measured to be 0.3212%; an insignif-
icant value considering the much larger experimental
errors associated with MUAPT signal recordings and
the limited accuracy of the approximated generalized
[iring rate. Hence, the curves in Figs. 5, 6, and 7 are
valid for weak and strong contractions.

Dirac Delta Function Approximation of the
Motor-Unit Action-Potential

€

It would be convenient from a mathematical point
of view to replace the function fhi(r) by Dirac Delta
impulses, 4(z). The convolutions of Eq. (24) become
trivial because one of the most important properties
of the Dirac Delta function is

zl;i.(f, flée—ndi=iu, f). (28)
Hence, the autocorrelation function of the MUAPT
could be obtained directly from Eq. (11).

There are two direct ways of pursuing the impulse
approximation. Each phase of the MUAP can be
expressed by an impulse whose amplitude is equal to
the area of the phase and is located at the peak of
each phase. The other possibility is to represent the
complete MUAP by one impulse whose amplitude is
equal to the total area of the MUAP and is located
in the middle of the MUAP. It follows from Eqs. (23)

and (28) that the simplificd expressions for the second
case can bc written as

E {Judn)} = lhi(x)] 2(7, $) (29)
VAR (1(1)) = h¥(1) 241, ) (10)
RMS i)y = {[hd0) A )] + hin) 2 o
where
it = | h(ndr
0
o = [ ho)ld (32)
0
hin = | hi(nde.
0
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"The deviation between the values of the paramecters

calculated by the piccewise lincar approximation and
the Dirac Delta impulse approximation is 0.0086% in
the worst case. This crror is considerably smaller than
the experimental error.

Discussion

The model developed in this paper supplies precise
expressions for parameters of the motor-unit action-
potential train (M UAPT) as a function of contraction
time at a constant muscle-force during isometric
contractions. The resulting equations depend on the
firing rate and the area of the¢ motor-unit action-
potential (MUAP). The latter requirement is gratifying
because it climinates intimate knowledge and
description of the MUAP shape, which varies con-
siderably between recorded MUAPT's.

The solutions to the mean rectified value. the
variance and the rms value that are plotted in Figs. 5,
6. and 7 were obtained by assuming that the area of a
MUAP remains .constant throughout a sustained
contraction. Reports’ ‘of both increase and decrease of

the amplitude: of the MUAP can be found in the

literature. Knowlton er «l. [13] and Stalberg [25]
reported an increase in the amplitude with increasing
contraction time On the other hand. several investi- -
gators.[17, 23, 4, 15, 18, 11] have reported that the
amplitude decreases with increasing contraction time.
De Luca and Forrest [11] also stated that the time
duration of the MUAP has a tendency to decrease
with contraction time. Lindstrom er al. [ 16] postulated
that variations in the shape of a MUAP could be
attributed to a decreasing conduction velocity of the
muscle fibers during a sustained contraction. If,
indeed. the amplitude decreases and the time duration
increases, then the area of (1) may not vary
substantially (i at all) with contraction time.’

The normalized values of the mean rectilied value
and the variance plotted in Figs. 3 and 6 appecar to
be identical. This result is not obvious when comparing
the equations that generated the curves. ie., Egs. (25)
and (26). The similarity can be explained by referring
10 Egs. (29) and (30). in which hite) has been replaced by
the Dirac Deita function. é(7). In the previous section,
this replacement was shown to be valid.

In general. the cross-correlation function of the
MUAPT's does not contain the variance term that is
present in the autocorrelation function. However. if the
MUAPT's are synchronized (i.e.. have similar firing
rate and fire in unison) the cross-correlation function
[Eq.(16})] cor tains a co-variance term. The co-variance
term increascs the amphitude of the cross-corrdlation
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function. This calculable change in the cross-
correlation function may provide a precise and ob-
jective measurement of syanchronization. This is a
particularly interesting outcome because synchro-
nization is considercd to be a phenomenon associated
with muscle fatigue. The prospect of yielding an
objective measure of a phenomenon associated with
muscle fatigue enhances the usefulness of the MUAPT
model.

The MUAPT model also provides the groundwork
for mathematical analyses of the myoelectric signal
formed by the superposition of several MUAPT's. in
the myoelectric signal, the individual MUAPT's are
generally not separable or distinguishable. Therefore,
the individual firing rates of the MUAPT's cannot
usually be measured. In this application, the concept
of the generalized firing rare will be useful. The
feasibility of accurately representing the MUAP by a
Dirac Delta impulse will greatly facilitate the mathe-
matical derivations.

It is expected that time dependent parameters of
the myoelectric signals such as: a) the mean rectified
value, b) the mean integrated rectified value, c) the
rms value, and d) the power density spectrum will be
described by equations. These parameters of the myo-
‘electric signal have basic practical applications in
clinical diagnostics and myoelectric prostheses design.
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Appendix

By using the piecewise approximation of hi¢). the convolutions
in Eq. (24) can be performed according to the following method

Ryt fy=[r0. f1e bt ] + 2. [y« b
L L S (A1)
=| by {2 Sydede| + Bi@™ § 1 2 N dedede

0 0

where i = the second derivative of I
and W0y = the third derivative of i)

The piccewise appreximation of it consists of 2 series of ramp
functions, hence Mot aad B ()" become a series of Dirae Delta
functions. The comvolttion of 2w ) with hin)” reduces 1o a
multiplication. The second derivative, hr)”. can be obtained by
two successive differentitions of Eq. (19

2r
hiy*= 'y O,y —mddt — 1)
L-0

(A2)

where mg =m,,, | =0a1d p=1he number of phases in a MUAP.

The third derivative of 771 is not as straightforward 1o
caleudate, because it contains more complicated discontinuitics, The
problem is simplified by rearrunging Ly, (191 as {ollows
r

By = 3ty 0=ty ) [ =ty x) =Wl =1y )]
k=1

+ gt = 1) [wle =ty - ) = wilt = 1,,0]) (A3)

where wir) is the unit stiep function. This function can now be
squared

r
BP= Y tmico 0= tag P Il =ty )= wit =15, 1]
k=1
3 (= P8 =~ Lag )~ wit ~ 150]) . 1A4)
Two consecutive differentiations of this equation vield
bl :r - ~ N .
B = Y 2mi, = 2miiwir =)
k=u
¢ AS)
i A3
+ Y [-'":L—l“:L-:—":L-l) (

+ 23 gy ~ ] O =1y )

The second part of the equation is reduced to a Dirac Delta
function expression. but the first part requires one additional
differentiation. The approximated solution to the autocorrelation
function can be obtained by collecting Eqs. (A2) and (A5 and
multiplying them with the appropriate integrals of Z(z. 1. It follows
that the autocorrelation function of a three phase MUAPT muy
be cxpressed as: .

[

r ' :

I B
EY i~ m 10— dide
Ls0 [N .

Rt f1=

i
2oy = 21 2 = o dedidt
o i

!
113

»
n

(A6)

A}

+ S R2mi =ty
K=

t
+2m3 U oy = L V0 - dede
fu

By substituting the generalized tiring rate approximation of Eq. (23)
in the above equation. the following solution can be obtained:

. i 4 i) i- O
Rou /12 Y Yo —ny RS A
ksui-o =-hu+2
EL . o
+ ¥ N oud = 2mh ! NECERN A
o - i - 2l - 3
(A7)
p 3
+ 8 N {mi gm0
L=1d-u
N nlon N
+2miry o, —Tad] ' (r=ry )7

U+hd+2

where my=m,, ., =0 and values of the first and second terms are
zero for 1< 12 the third term is serolort <1, .

Liguation (A7) is a solution to the autocorrelation [unction in
Eq. (4). Henee the squared term s o solutionfar ghe mean value
and tne other two terms for the vanance.
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