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Abstract- Precision Decomposition can accurately identify a 
significant number of action potential trains within 
intramuscular electromyographlc (EMG) signals. The original 
version of this technique (PD I) often requires extensive user
interactive editing to improve upon the results from a 
Maximum A-Posteriori Probability receiver (MAPR). We have 
used the Integrated Processing and Understanding of Signals 
methodology from artificial intelligence to formulate and 
implement a new multi-receiver solution that augments MAPR 
with two other receivers to gain greater accuracy. Specifically, 
each new receiver utilizes an interleaving of signal and symbol 
processing stages to address MAPR inadequacies in resolving 
cases of acute superposition and shape instability among motor 
unit trains. Prior to any user-interactive editing, our multi
receiver system achieves a classification accuracy of 85.1%, a 
significant improvement over the 66.0% accuracy of PD I on 
the same database of challenging EMG signals. 

I. INTRODUCTION 

From an artificial intelligence perspective, EMG 
decomposition may be viewed as a challenging signal-to
symbol conversion (SSC) problem [1]. A symbol structure is 
used to represent information of interest about the source of 
the underlying signal. For example, in EMG decomposition, 
a symbol structure for any given signal has to represent 
detailed information (firing times and action potential 
shapes) about each active motor unit whose presence can be 
ascertained from the data. The classical solution to SSC 
problems is depicted in Fig. l(a) as a signal processing stage 
followed by a symbol processing stage. If there are a finite 
number of possible symbol structure instances, the SSC 
problem is said to be of the classification type. In such cases, 
the symbol processing stage can typically be formulated as a 
conventional pattern classifier [2] whose input consists of 
signal features computed via the signal processing stage. In 
the case ofEMG decomposition, there are an infinite number 
of possible classifications that could be attributed to a given 
signal because of the different possibilities for every active 
motor unit that may have contributed to it. This makes EMG 
decomposition fall squarely within the relatively more 
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sophisticated interpretation class [3] of SSC problems. The 
symbol processing stage now becomes more complicated 
because one or more infinitely large subgroups of symbol 
structure instances must first be "pruned out" from 
consideration to create a finite set of alternatives to be 
considered by a conventional pattern classifier. The pruning 
process can be quite complicated and may end up even using 
signal processing in the course of achieving its goal. The 
resultant solution (depicted in Fig. l(b)) employs interleaved 
stages of signal processing and symbol processing. Such 
Joint Signal and Symbol Processing (JSSP) solutions have 
previously been proposed and studied. Previous research 
also indicates that the most appropriate SSC domains for the 
formulation of JSSP solutions are those in which the input 
signal is generated by a superposition of temporally 
overlapping sources [4]. The complex superpositions 
encountered in EMG signals thus make EMG decomposition 
problems suitable for the exploration of JSSP solutions. 
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For the EMG Precision Decomposition problem we have 
formulated a JSSP solution that consists of three "receivers" 
as depicted in Fig. 2; they include a Maximum A-posteriori 
Probability Receiver (MAPR), an Integration Receiver 
(INTR), and a Superposition Receiver (SUPR). Each 
receiver consists of signal processing algorithms that operate 
directly on raw or filtered EMG signals and symbol 
processing algorithms that are applied to symbol structures 
containing classification results from previous rounds of 
signal processing and/or symbol processing. 

II. MAP RECEIVER (MAPR) 

The MAP receiver [5] generates MUAPT classifications 
(represented via symbols ul,u2,···etc.) that are supported 

by the underlying EMG signal. Upon detection of candidate 
MUAP data p, MAPR assigns it to one of the MUAPT 
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Fig. 2. The JSSP block diagram. 

classifications, say U j' provided the data meets certain 

classification criteria [5] involving an adaptively updated 
recognition template for the jth MUAPT. If MUAP data 15 
does not support one of the prior symbols, MAPR declares 
data 15 as support for a new MUAPT classification. Once 

the entire EMG signal has been analyzed, a "symbol 
filtering" stage rejects MUAP classifications that are 
determined to be weakly supported by the signal data. The 
symbol filtering is primarily based upon results from 
extended criteria involving an adaptively updated 
subtraction template for each motor unit. 

III. INTEGRATION RECEIVER (INTR) 

The algorithm parameters associated with MAPR have their 
values assigned in a manner that makes the probability of 
false alarms extremely small. However, in avoiding false 
alarms, MAPR often produces different MUAPT 
classifications for different MUAP subgroups of the same 
underlying MUAPT. The INTR is designed to integrate 
different classifications corresponding to the same 
underlying MUAPT. Let's define a set S of MUAPT 
classifications produced by MAPR. The goal of INTR is to 
produce another set S' of MUAPT classifications such that 
any underlying MUAPT has at most one MUAPT 
classification corresponding to it in S'. Each element in 
S' is either an element of S or it is obtained via an 
"integration" operation, say E9 , applied to a subgroup of S . 
We adopt the notation u1,2 = ul ED u2 to represent a MUAPT 

classification that includes each MUAP of classification ul 

in S as well as each MUAP of classification u2 in S but 

includes no MUAP of any of the other MUAPT 
classifications in S . More generally, assuming 
S ={ut ,u2 , .•• UN} , we can define an integration operation as 

resulting in uil,i2;..,i = uil E9 ui2 E9 ui3 E9 ... E9 ui where 
k k 

ij =1= ik , Vj =1= k . The INTR can now be defined as a greedy 

algorithm [6] for similarity/dissimilarity pursuit that on each 

iteration seeks to place in S' an element U = U A such
il ,i
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and to remove the elements u- ~ ~ from S . The function 
'1"2" ··,'k 

c(u) is an estimated integration "cost" that is the sum of an 

inclusion measure and an exclusion measure. The inclusion 
measure relates to the degree of inter-element dissimilarity 
within U • The exclusion measure relates to the cross-element 
similarity between the elements of U and the elements of 
S not in u . 

Each iteration of the greedy algorithm for dissimilarity / 
similarity pursuit has to carry out the cost minimization 
specified in (1). This cost-minimization problem can be 
viewed as a minimum-cost l-path trellis traversal problem 
[7]. An efficient algorithm [8] is available for carrying out 
the trellis traversal for each iteration. Since trellis traversal is 
fundamentally a search problem, we have incorporated 
heuristic search methods of IPUS to obtain even greater 
efficiencies. Many of the paths can be simply eliminated 
either by simple comparisons of template energy and/or 
template duration or via the unrealistic IPI values that may 
be generated through the integration of certain MUAPT 
instances. 

IV. THESUPERPOSITION RECEIVER (SUPR) 

The SUPR applies an "iterative correlation procedure" [9] to 
the kth candidate data 15k where one or more weak 

classifications were rejected by MAPR. This procedure is 
designed to estimate "likelihood" values for possible MUAP 
classifications. The SUPR then uses statistical utility 
maximization [10] for symbol processing to identify MUAP 
classifications it deems to be definitely supported by the kth 
candidate data 15k • Denoting the template of the ith MUAPT 

by the vector si' SUPR estimates the "likelihood" of the ith 

MUAPT to be supported by the kth candidate data Pk,i. 

If Pk,j = m~x Pk,i' and Pk,j is above a threshold, the SUPR , 
subtracts Sj from 15k and iteratively repeats this process. If 

there have been m subtractions in 15, SUPR also adjusts 

the corresponding "likelihood" values by multiplying them 
with f (m) in order to compensate for subtraction noise. 

Since multiple "likelihood" values may be calculated for 
each MUAPT, the SUPR uses the maximum value among 
them when using utility maximization to identify the MUAP 
classifications it deems to be definitely supported by the 
data, 15k • 



V. SYSTEM CONTROL VII. PERFORMANCE EVALUATION 

The JSSP decomposition accuracy is empirically found to be 
significantly influenced by variations in these parameters 
and estimates. This influence arises from complex and highly 
nonlinear interactions among algorithm and signal 
characteristics. It therefore becomes necessary to develop a 
sophisticated system control capability that can conduct a 
signal-dependent search for an appropriate JSSP operating 
point in the space of all possible parameter settings and 
estimates. In view of the combinatorial explosion associated 
with such a search, we decided to employ heuristic search 
methods [11] from the field of Artificial Intelligence (AI). In 
particular, we utilize the IPUS methods for "Integrated 
Processing and Understanding of Signals" [4]. These 
methods were specifically designed for providing the control 
regime associated with the heuristic adaptation of parameter 
settings and estimates in complex signal and symbol 
processing applications. 

VI. SYSTEM IMPLEMENTATION 

To implement the JSSP framework we have used a software 
environment known as the IPUS C++ Platform or simply 
ICP [12]. The final JSSP system has on the order of 61,000 
lines of C++ code. This does not include the 6200 lines of 
C++ code of the ICP platform used to build the JSSP 
application. The control system components take up a total 
of 34,924 lines of code while the signal and symbol 
processing algorithms for the three receivers take up 25616 
lines of code. In other words, the control component takes up 
a significant (about 60%) share of the system's code. This is 
primarily because the control component is dominated by the 
heuristic search for the values of algorithm parameters and 
signal parameter estimates. In contrast, the signal and symbol 
processing algorithms in JSSP are principle-based and thus 
can be programmed into relatively compact modules. 

The large size of the C++ code also translates into a large 
executable (1,100 Kbytes) along with a requirement for a 
large amount of memory (350 Mbytes) as the program is 
executed. However, these numbers are within the bounds of 
what is achievable with many modem laptops computers. We 
have implemented our JSSP system on a Dell Inspiron 9300 
laptop with a 2GHz Pentium M processor and with 512 
Mbytes of RAM. 

The EMG signal database we used for evaluating Precision 
Decomposition algorithms was obtained from five different 
experiments in which subjects were asked to perform various 
types of muscle contractions. Three of the experiments 
involved contractions of the Vastus Lateralis (VL) muscle, 
while the other two involved contractions of the Tibialis 
Anterior (TA) and First Dorsal Interosseous (FDI) muscles. 
The contraction durations ranged from 21 s to 60 s. In each 
case, the three-channel EMG signal from the electrode was 
sampled at 20 KHz, using an analog anti-aliasing 4th order 
Butterworth filter with a 3 dB cutoff at 9.5 KHz. 
Subsequently, a l-pole high pass filter with a 3 dB cutoff at 1 
KHz was applied to the digital EMG signal in order to keep 
individual action potential durations as short as possible 
while retaining the information that experimentally has been 
found to provide a sufficient discrimination capability. 

All signals in the database had previously been analyzed 
via PD I and had undergone user-interactive editing in 
accordance with the Mambrito & De Luca procedure [13]. 
When PD I was applied to the database, the number of motor 
units whose action potentials were decomposable ranged 
from 5 to 11 per experiment. The resulting decompositions 
were used as the standard against which the accuracy of 
JSSP decompositions was compared. 

Suppose that a "benchmark" of firing times of any given 
MUAPT within an EMG signal is known a-priori. In our 
case, this benchmark is assumed to come via user-interactive 
editing of PD I results by an experienced human operator 
following the Mambrito and De Luca procedure [13]. When 
a decomposition algorithm produces its estimates for the 
firing times of that MUAPT, two types of errors can occur: 
false negatives and false positives. A false negative occurs 
when the algorithm fails to find a particular firing of the 
MUAPT. A false positive occurs when the algorithm 
declares a firing to have occurred where no firing of that 
MUAPT actually took place. Assuming that each type of 
error carries equal weight, it is reasonable to define the 
accuracy A(i) of the algorithm on the ith MUAPT as: 

A(i) = N F/R(i) -NFN(i) - N FP (i) x 100%
 
N FIR(i)
 

TABLE 1
 
Jssr ACCURACY IMPROVEMENT OVER PD I
 

Expt. 
# 

Muscle 
Contraction 

Time 
# MUs 
viaPO I 

Force 

ftt~r" 
II. lilt 

","~'T , 

% 

MVC 
PO I 
Ace. 

JSSP 
Ace. 

Improvement 
Factor 

1 
First Dorsal 
Interosseous 

23 s 5 25% 56.4% 74.1% 1.31 

2 
Tibialis 
Anterior 

21 s 6 ~ 45% 64.5% 89.9% 1.39 

3 
Vastus 

Lateralis 
30 s 8 ~ 50% 75.1% 96.6% 1.29 

4 
Vastus 

Lateralis 
32 s 10 ~ 500/0 74.3% 87.4% 1.18 

5 
Vastus 

Lateralis 
60 s 11 f\ \ 

50% 59.7% 77.5% 1.30 

Average ~ 66.0% 85.1% 1.29 



TABLE II 
CONTRIBUTIONSTO ACCURACY BY EACH RECEIVER 

Expt. 

# 

MAPR 

Accuracy 

INTR 

Accuracy 

SUPR 

Accuracy 

1 45.6% 52.9% 74.1% 
2 61.7% 69.5% 89.9% 

3 75.3% 75.9% 96.6% 
4 74.10/0 75.2% 87.4% 
5 60.10/0 71.50/0 77.50/0 

Avg. 63.4% 69.0% 85.1% 

where N FIR (i), N FN (i), and N FP (i) are the number of 

firings, false negatives and false positives for the ith 
MUAPT. 

On our database of challenging EMG signals, the JSSP 
algorithms yielded an improvement by a factor of 1.3 over 
the decomposition accuracy of PD I algorithms. In Table I, 
we present a comparison of decomposition accuracies 
achieved by the two systems on different signals within our 
database. The average decomposition accuracy of JSSP 
algorithms is 85.1% over the entire database in comparison 
to 66.0% for PD I algorithms. The improvement factor for 
different signals ranges from 1.18 to 1.39 with an average of 
1.3. The improvement factor of 1.18 was on a signal 
(experiment 4) in which the dynamic range of decomposed 
MUAP amplitudes was 19.6 dB in comparison to dynamic 
ranges of 8.0 dB (experiment 2), 11.0 dB (experiment 1), 
12.5 db (experiment 3), and 18.4 dB (experiment 5) with 
respective improvement factors of 1.39, 1.31, 1.29, and 1.30. 
Given that the improvement factor is fairly stable, it appears 
that the final JSSP accuracy is mostly dependent on the 
initial MAPR accuracy of PD 1. In any given experiment, the 
initial MAPR accuracy is influenced by a multitude of 
factors; these include but are not limited to factors such as 
the force profile of the muscle contraction, the stability of 
electrode position throughout the contraction, and the 
number of MUAP trains that give rise to strong signals at 
that particular electrode position. 

Table II shows the accuracy values attained after the final 
application (by the JSSP control system) of each of the three 
JSSP receivers. The MAPR in JSSP is on the average found 
to produce an accuracy of 63.4% on this database. This is 
lower than the accuracy achieved via PD I (that has its own 
version of MAPR) because the MAPR in JSSP includes 
symbol processing for rejecting weak classifications. 

Subsequent receivers replace those weak classifications by 
more accurate classifications. First, the INTR takes the 
accuracy to 69.0%. Secondly, SUPR further boosts the 
accuracy to 85.1%. 
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