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Abstract-e-X novel approach is presented for the interpretation 
and use of EMG and accelerometer data to monitor, identify, 
and categorize functional motor activities in individuals whose 
movements are unscripted, unrestrained, and take place in the 
"real world". Our proposed solution provides a novel and 
practical way of conceptualizing physical activities that 
facilitates the deployment of modern signal processing and 
interpretation techniques to carry out activity monitoring. A 
hierarchical approach is adopted that is based upon: 1) 
Blackboard and Rule-Based technology from Artificial 
Intelligence to support a process in which coarse-grained 
activity partitioning forms the context for finer-grained activity 
partitioning; 2) Neural Network technology to support initial 
activity classification; and 3) Integrated Processing and 
Understanding of Signals (IPUS) technology for revising the 
initial classifications to account for the high degrees of 
anticipated signal variability and overlap during freeform 
activity. 
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I. INTRODUCTION 

Each year approximately one million Americans are 
struck with a debilitating motor disorder or are afflicted with 
a disease which impairs their ability to move, carry out 
normal activities of daily living, or in various ways, 
degrades their quality of life [1]. The national cost for 
treating such patients has been estimated at $82 hillion. It is 
therefore remarkable that the tools available to the 
researcher and clinician to monitor functional capability in 
these patients are either qualitative (e.g. questionnaires and 
patient diaries) or are impractical for the home or clinic (e.g. 
motion analysis systems and force platforms). The 
objectivity and comprehensiveness of a patient's 
performance record could be improved with a system that 
automatically identifies and assesses the activities carried 
out by the individual throughout the day, particularly in 
remote locations such as the home. Only a few reports in the 
literature describe the use of portable activity monitors for 
measuring functional activities [2, 3, 4]. For the most part, 
these systems do not produce a monitoring capability 
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beyond distinguishing between different postures or various 
forms of ambulation. 

In contrast to previous work, we envisage an activity 
monitoring system that is able to identify the functional 
activities when they are performed in a "real-world" 
environment (that is, when they are unscripted, freeform, 
and unrestrained). Under such conditions, activity 
monitoring is confounded by the presence of extraneous 
activities, noise, inherent variability of the person's 
environment, or fluctuations in their physical state (e.g. from 
neuromuscular or other disorders). We have decided to 
address the totality of these confounding factors by adopting 
a knowledge-based framework for integrating signal 
processing, pattern recognition, and artificial intelligence 
techniques. These algorithms can then be placed in a 
portable data-logger to make up a device we call a Personal 
Status Monitor (PSM). Such a device could provide an 
effective basis for home or long-term care planning, or as a 
means of evaluating the effectiveness of therapeutic 
interventions. The system monitors functional activities 
using data from small "hybrid" sensors placed on the body 
that detect both Electromyographic (EMG) and 
Accelerometer (ACC) signals. EMG signals represent the 
electrical activity that emanates from contracting muscles 
and is proportional to the force being generated by the 
muscle. ACC signals represent the displacement of the body 
segment to which the sensors are attached. The use of hybrid 
sensors is new to the problem of monitoring functional 
activities. 

II. HIERARCHICAL ACTIVITY PARTITIONING 

The central technical challenge addressed by our 
approach is the development of a system that can process 
EMG and ACC signals (see Fig.l) from body-worn sensors 
in order to monitor (to within a specifted degree of 
resolution) the freeform functional activities of individuals. 
The end product of such monitoring is a partitioning of the 
sensor signals into intervals corresponding to distinct 
functional activity states. The question natural1y arises as to 
what resolution to adopt in defining the activity states. 
Rather than arbitrarily selecting a particular scale, we 
consider the more general problem of performing the 
activity partitioning at multiple hierarchically related scales. 
This concept, which is a novel way of looking at physical 
activity, is illustrated in Fig. 2, where the top-level nodes 
represent four mutually exclusive "Principal Activities" ­
Sit, Stand, Walk and Lie - and lower level nodes represent 
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Fig. 1. Sample of EMG and ACC data acquired continuously from an unimpaired subject while performing a sequence of freeform standing activities, such 
as quiet standing, lifting a box overhead, and lifting a box from floor to waist (left); and sitting activities such as quiet sitting, sitting and typing on a 
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keyboard, and sitting flipping pages in a book (right). 

finer resolution activity classifications. Here we have 
adopted the perspective that all physical activity of an 
individual may be broadly classified at any time as being in 
one of several Principal Activity states or in a transition 
between these states. These "Transitional Activity" states, 
such as Sit-to-Stand, are represented in Fig. 2 by the smaller 
dark-shaded nodes with dashed arrows indicating the 
"input" state at the beginning of the transition and the 
"output" state at the end of the transition. Finer resolution 
activity classifications are represented in the figure as "Co­
activities", when a specified functional activity takes place 
during one of the Principal Activities (e.g.; sitting and 
typing on a keyboard; walking and carrying an object; etc.). 
To help obtain an operational definition for the various 
activity states we propose the use of a visual inspection 
protocol in which (say) 20 volunteers are asked to perform 
the activity partitioning by viewing videotapes of the 
freeform activity. Thus, for example, an activity interval 
may be classified as "Walk 100%," denoting the fact that 
there is unanimous agreement between the volunteers that 
the Walk activity is taking place. In the absence of 
unanimity we may obtain classifications such as "Stand 
85%, Stand-to-Walk 15%," representing the fact that 17 of 
the volunteers classified the interval as Stand while the 
remaining 3 classified it as Stand-to-Walk. Ideally, for each 
interval classified through the visual inspection protocol we 
would like to design sensor-based classification algorithms 
whose results are in complete agreement with the activity 
classification picked by the largest percentage of volunteers. 
The classification challenge in carrying out the partitioning 
suggested by the top level in Fig. 2 may thus be posed as 
follows: 
Broad Classification Challenge: Develop algorithms for the 
time-dependent classification of EMG and ACC sensor 
signals from freeform activity into Principal Activities and 
Transitional Activities with the objective of emulating the 
performance obtained through visual inspection offreeform 
activity. 

Moving down the partitioning hierarchy in Fig. 2, each 
principal activity may be further partitioned in accordance 
with whether or not a co-activity is taking place. The 
presence of co-activity is represented in Fig. 2 by the "Co­
activity" state and its absence by the "Uni-activity" state, 
Regardless of the precise nature of the co-activity, at this 
level we would like to be able to detect it whenever it takes 
place. Thus, the detection challenge in carrying out second­
level partitioning in accordance with Fig. 2 may be posed as 
follows: 
Co-Activity Detection Challenge: Develop algorithms for 
detecting co-activity in principal activity segments of the 
sensor signal with the objective of emulating the 
performance obtained through visual inspection offreeform 
activity. 

While the Broad Classification and Co-Activity 
Detection challenges are formidable, our previous work on 
the sensor-based classification of scripted functional 
activities indicates that the judicious use of signal processing 
and neural network technology has significant potential of 
successfully accomplishing these challenges for freeform 
activity. The more speculative aspect of our research arises 
as we proceed to the third level in Fig. 2 where we seek to 
classify the co-activity as belonging to one of a finite 
number of pre-determined categories of interest. For this 
purpose we have chosen a few categories that are 
representative of the types of activities one might want to 
monitor to evaluate functional independence, For example, 
in Fig. 2 we have indicated that in the context of Sit we will 
seek to determine whether the co-activity can be categorized 
as that of reading a book or magazine ("flipping pages"), 
feeding oneself, operating a computer keyboard, or "other" 
to denote that it is none of the other three activities. 
Similarly, in the context of Stand we will seek to determine 
whether the co-activity can be categorized as that of opening 
a door, lifting an object from the floor, lowering an object 
from overhead, or "other". In this classification context, 
principal activity signals may be viewed as masking noise 
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HIERARCHICAL ACTIVITY PARTITIONING
 

Fig 2. The hierarchical activity classification. The larger circles indicate the 4 Primary Activities. Each can be further partitioned into coactive or uni-active 
activities. The coactive activities are further resolved into specific functional activities. 

for co-activity signals. The co-activity classification 
challenge may thus be summed up as: 
Co-Activity Classification Challenge: Develop algorithms 
for co-activity classification in the context of masking by a 
pre-classified principal activity with the objective of 
emulating the performance obtained through visual 
inspection offreeform activity. 

We advocate a knowledge-based approach to the 
development of these algorithms. In particular, the IPUS 
technology addresses many of the issues that arise from the 
presence of complex signal masking phenomena. Such an 
approach would also be needed if we were to seek finer 
resolution of partitioning beyond the third level in Fig. 2. An 
example of a finer resolution activity would be in 
determining whether stroke patients walked with or without 
the assistance of a cane, or the degree to which they used 
their hemi paretic limb when feeding themselves. 

III. TECHNICAL INFRASTRUCTURE DEVELOPMENT 

Our approach to addressing the challenges associated 
with hierarchical partitioning of freeforrn activity is 
illustrated in Fig. 3. A sequence of three pairs of processing 
stages is applied to the input sensor signals. Each pair of 
stages involves the application of Time-Dependent Neural 
Network (TDNN) technology followed by knowledge-based 
revision of the TDNN output using IPUS technology. While 
the first pair of stages is aimed at addressing the broad 
classification challenge, the second and third stage pairs are 
aimed at addressing the co-activity detection and co-activity 
classification challenges, respectively. The integration of 
these signal processing and AI technologies into an overall 
system would be accomplished by utilizing Blackboard and 
Rule-Based technology. 

A. Blackboard and Rule-Based Technology 

Our approach uses a variation of the Blackboard 
architectural model [5] to integrate diverse AI techniques 
into a single system. Blackboard architectures cast the 
process of generating the output associated with a given 
input signal as a series of transformations between multiple 
data representation levels on a global, hierarchical 
blackboard data structure. 

The Blackboard infrastructure will playa dual role in 
our project. Firstly, it will serve as a development platform 
for the various algorithms (TDNN, IPUS, etc.) for 
hierarchical activity partitioning. Secondly, it will serve as 
the backbone of the final system with all the algorithms 
integrated within it. In developing the Blackboard 
infrastructure for our project we will make use of a C++ 
software environment [6] for implementing Blackboard 
mechanisms. The environment contains generic Blackboard 
mechanisms (the Blackboard database, the Planner, and 
templates for Control Plans) and the tools needed to tailor 
these mechanisms for specific applications. 

B. Neural Network Technology 

Some activity categories, such as walk, sit-to-stand, and 
stand-to-sit have a significant non-stationary temporal 
dimension to their defining characteristics. That is, each 
category involves its own dynamic evolution of the various 
short-term features of the EMG and ACC signals. It stands 
to reason, therefore, that classification performance may 
potentially be improved by using pattern recognition 
approaches that explicitly incorporate the temporal 
dimension inside the classification process. Time-Dependent 
Neural Networks, also known as FIR Neural Networks, can 
be designed to provide this very capability. For example, 
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Fig. 3. Diagram illustrating our approach to partitioning of 
freeform activities using Time-Dependent Neural Networks (TDNN) 
technology followed by knowledge-based revision using IPUS technology. 

Haselsteiner and Pfurtscheller [7] and Englehart et. al. [8] 
have demonstrated the advantages of TDNN classification 
for EEG and EMG tasks, respectively. A TDNN is obtained 
by replacing each static weight of a standard (static) NN by 
an FIR filter. This allows the TDNN to linearly combine 
each current input of a neuron with past values of that input 
for previous frames. The TDNN input dimensionality is thus 
the same as that of the static NN for a single input frame. 

c. (IPUS) Integrated Processing and Understanding of 
Signals 

IPUS technology [9,10] may be used to implement the 
process of revising the initial TDNN detection and 
classification results, particularly in the presence of co­
activity. When a co-activity is being performed, we 
anticipate that the TDNN process would not assign a high 
likelihood to any particular category; the overlapping 
imprints of the simultaneous activities will tend to distort 
each other's features. In such cases, IPUS-based 
mechanisms [10] may be used to propose and test 
hypotheses about different combinations of simultaneous 
activities as we have done successfully in the case of an 
intramuscular EMG system application [11] and a musical 
decomposition system [12]. This approach is based on the 
following observations about our application: 
(I)	 Even though the activities are overlapped, each activity 

would dominate a few of the time steps and the TDNN 
process would thereby successfully classify at those 
particular time steps (i.e. with a high associated 
likelihood of being correct). These successful 
classifications could then be used to hypothesize the 
presence of overlapping signal contributions for regions 
that have classifications with greater uncertainty during 
the initial processing. 

(2) Using	 an iterative decomposition technique for 
separating signal features that was successfully 
deployed in the Intramuscular EMG system for an 
analogous task, we would determine whether or not the 
hypothesized overlaps are consistent with the sensor 
data for the other time steps. 

In terms of software implementation, a key feature of the 
IPUS-related blackboard architecture [10] is that it provides 
a generic mechanism (the IPUS Loop) for supporting 
iterative hypothesize-and-test strategies such as the one 
described above. In particular, the C++ software 
environment [6] for implementing Blackboard systems 
facilitates implementation of the IPUS Loop. 
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