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Graph = Network

+ 6(V, E): graph (network)
V: vertices (nodes), E: edges (links)
Nodes =1, 2, 3, 4, 5

Links =
1<-52, 1<->3, 1<->5,
2¢<->3, 2<->4, 2<->55,
3<->4, 3<->5, 4<->5

(Nodes may have states:
links may have directions
and weights)




Representation of a network

+ Adjacency matrix:
A matrix with rows and columns labeled by

nodes, where element a;; shows the number
of links going from node i to node |

(becomes symmetric for undirected graph)

+ Adjacency list:
A list of links whose element “i->j" shows a
link going from node i to node j

(also represented as "“i -> {j;, j2. j3. -}



Exercise

* Represent the following network in:
- Adjacency matrix

- Adjacency list




Degree of a node

* A degree of node u, deg(u), is the
number of links connected to u

N

deg(u,) = 4 deg(u,) = 2
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Connected graph

* A graph in which there is a path
between any pair of nodes
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Connected components
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Complete graph

* A graph in which any pair of nodes
are connected (often written as K;, K,,
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Regular graph

* A graph in which all nodes have the
same degree (often called k-regular
graph with degree k)
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Bipartite graph

+ A graph whose nodes can be divided
info two subsets so that no link
connects nodes within the same subset
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Directed graph

- Each link is

directed

* Direction repre-

sents either order
of relationship or
accessibility
between nodes

E.g. genealogy
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Weighted directed graph

* Most general
version of graphs

* Both weight and
direction is

assigned to each
link

E.q. traffic
network
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Measuring Topological Properties of
Networks (1):
Macroscopic Properties



Network density

- The ratio of # of actual links and #
of possible links

- For an undirected graph:

d=[€El/7(CIvI(vl-1)/2)

- For a directed graph:
d=|El/7(CIVI(VI-1))
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Characteristic path length

» In graph theory: Maximum of
shortest path lengths between pairs
of nodes (a.k.a. network diameter)

* In complex network science: Average
shortest path lengths

* Characterizes how large the world
being modeled is

- A small length implies that the network is

well connected globally 15



Clustering coefficient

* For each node:
- Let n be the number of its neighbor nodes

- Let m be the number of links among the k
neighbors

- Calculate ¢ = m / (n choose 2)
Then C = <c> (the average of c)

» C indicates the average probability for
two of one's friends to be friends too

- A large C implies that the network is well
connected locally to form a cluster 16



Degree distribution

P(k) = Prob. (or #) of nodes with
degree k

+ Gives a rough profile of how the
connectivity is distributed within the
network

%, P(k) = 1 (or total # of nodes)
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Power law degree distribution

) A few well-connected nodes,
P(k) ~ k- a lot of poorly connected nodes

P(K) log AP(k)

-\

Linear in log-log plot

> log k

- k

-> No characteristic scale
Scale-free network

(Scale-free networks)
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How it appears
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Degree Distributions of Real-World
Complex Networks
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Degree distribution of FB

P(k) CCDF
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* http://www.facebook.com/note.php?note id=1
0150388519243859

* http://arxiv.org/abs/1111.4503 21
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Measuring Topological Properties of
Networks (2):
Centralities



Centrality measures ("B,C,D,E")

* Degree centrality
- How many connections the node has

+ Betweenness centrality

- How many shortest paths go through the
node

+ Closeness centrality
- How close the node is to other nodes

- Eigenvector centrality

23



Degree centrality

+ Simply, # of links attached to a node

Cp(v) = deg(v)

or sometimes defined as
Co(v) = deg(v) / (N-1)
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Betweenness centrality

* Prob. for a node to be on shortest
paths between two other nodes

#sp(s,e,v)
s#v,Tzv #SP(S ' e)

+ s: start node, e: end node

- #sp(s,e,v): # of shortest paths from s to e
that go though node v

+ #sp(s,e): total # of shortest paths from s to e
* Easily generalizable to “"group betweenness” 25

Ce(v) = Z



Closeness centrality

» Inverse of an average distance from a
node to all the other nodes

Cc(v) = n-1

Zw:tV d(vl w)

» d(v,w): length of the shortest path from v to w
- Its inverse is called "farness”

- Sometimes "X" is moved out of the fraction (it works for
networks that are not strongly connected)

- NetworkX calculates closeness within each connected
component
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Eigenvector centrality

- Eigenvector of the largest eigenvalue
of the adjacency matrix of a network

Ce(v) = (v-th element of x)
AX = AX

»+ A: dominant eigenvalue
- X is often normalized (|x| = 1)
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Exercise

* Who is most central by degree,
betweenness, closeness, eigenvector?

Heather lke Jane
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Which centrality to use?

* To find the most popular person

* To find the most efficient person to
collect information from the entire
organization

* To find the most powerful person to
control information flow within an
organization

* To find the most important person (?)
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Measuring Topological Properties of
Networks (3):
Mesoscopic Properties



Degree correlation (assortativity)

- Pearson’'s correlation coefficient of
node degrees across links

Cov(X, Y)
Oy Oy

r =

+ X: degree of start node (in / out)
* Y: degree of end node (in / out)
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Assortative/disassortative networks

Network n r
Physics coauthorship (a) 52909 0363 | .
Biology coauthorship (a) 1520251 0.127 Social
Mathematics coauthorship (b) 253 339 0.120 - networks are
Film actor collaborations (c¢) 449913 0.208 assortative
Company directors (d) 71673 0.276
Internet (e) 10697 —0.189 ]
World-Wide Web (f) 269 504 —0.065 Engineered /
Protein interactions (g) 2115 —0.156 biological
Neural network (h) 307 —0.163 networks are
Marine food web (1) 134 —0.247 di .

] ive

Freshwater food web () 02 —0.276 sassortat
Random graph (u) 0
Callaway et al. (V) /(1 + 296)
Barabasi and Albert (w) 0

(from Newman, M. E. J., Phys. Rev. Lett. 89: 208701, 2002) 32



K-cores

* A connected component of a network
obtained by repeatedly deleting all
the nodes whose degree is less than k
until no more such nodes exist
- Helps identify where the core cluster is
- All nodes of a k-core have at least

degree k

- The largest value of k for which a k-
core exists is called "degeneracy” of the

network .



Exercise

* Find the k-core (with the largest k)
of the following network
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Coreness (core number)

- A node’'s coreness (core number) is ¢
if it belongs to a c-core but not
(c+1)-core

* Indicates how strongly the node is
connected to the network

» Classifies nodes into several layers
- Useful for visualization
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Community

* A subgraph of a network within which
nodes are connected to each other
more densely than to the outside

- Still defined vaguely...

- Various detection
algorithms proposed
» K-clique percolation
* Hierarchical clustering
* Girvan-Newman algorithm

* Modularity maximization
(e . g ., Louvain methd) (diagram from Wikipedia) 36



Modularity

* A quantity that characterizes how
good a given community structure is in
dividing the network

IEinl B IEin-Rl
|E|

- |E;,|: # of links connecting nodes that belong
to the same community

- |E,,.r|: Estimated |E, | if links were random

Q:
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Community detection based on
modularity

- The Louvain method

- Heuristic algorithm to construct
communities that optimize modularity

* Blondel et al. J. Stat. Mech. 2008 (10):
P10008

* Python implementation by Thomas
Aynaud available at:

- https://bitbucket.org/taynaud/python-
louvain/

38


https://bitbucket.org/taynaud/python-louvain/
https://bitbucket.org/taynaud/python-louvain/
https://bitbucket.org/taynaud/python-louvain/

