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Basics of Network Analysis 
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Graph = Network 

• G(V, E): graph (network) 

 V: vertices (nodes), E: edges (links) 

1 

2 3 

4 

5 

Nodes = 1, 2, 3, 4, 5 

Links = 
  1<->2, 1<->3, 1<->5, 
  2<->3, 2<->4, 2<->5, 
  3<->4, 3<->5, 4<->5 
 
(Nodes may have states; 
links may have directions 
and weights) 
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Representation of a network 

• Adjacency matrix: 

 A matrix with rows and columns labeled by 
nodes, where element aij shows the number 
of links going from node i to node j 

 (becomes symmetric for undirected graph) 
 

• Adjacency list: 

 A list of links whose element “i->j” shows a 
link going from node i to node j 

 (also represented as “i -> {j1, j2, j3, …}”) 
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Exercise 

• Represent the following network in: 
 

– Adjacency matrix 

 

– Adjacency list 

1 

2 3 

4 

5 
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Degree of a node 

u1 u2 

• A degree of node u, deg(u), is the 
number of links connected to u 

 

 

 

 

  deg(u1) = 4  deg(u2) = 2 
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Connected graph 

• A graph in which there is a path 
between any pair of nodes 
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Number of 
connected 
components

= 2 

Connected 
component 

Connected 
component 

Connected components 
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Complete graph 

• A graph in which any pair of nodes 
are connected (often written as K1, K2, 
…) 
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Regular graph 

• A graph in which all nodes have the 
same degree (often called k-regular 
graph with degree k) 
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Bipartite graph 

• A graph whose nodes can be divided 
into two subsets so that no link 
connects nodes within the same subset  

= 
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Directed graph 

• Each link is 
directed 

• Direction repre-
sents either order 
of relationship or 
accessibility 
between nodes 

 

 E.g. genealogy 
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Weighted directed graph 

• Most general 
version of graphs 

• Both weight and 
direction is 
assigned to each 
link 
 

 E.g. traffic 
network 



Measuring Topological Properties of 
Networks (1): 

Macroscopic Properties 



Network density 

• The ratio of # of actual links and # 
of possible links 

 

– For an undirected graph: 

  d = |E| / ( |V| (|V| - 1) / 2 ) 
 

– For a directed graph: 

  d = |E| / ( |V| (|V| - 1) ) 

14 
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Characteristic path length 

• In graph theory: Maximum of 
shortest path lengths between pairs 
of nodes (a.k.a. network diameter)  

• In complex network science: Average 
shortest path lengths 

• Characterizes how large the world 
being modeled is 
– A small length implies that the network is 
well connected globally 
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Clustering coefficient 

• For each node: 
– Let n be the number of its neighbor nodes 

– Let m be the number of links among the k 
neighbors 

– Calculate c = m / (n choose 2) 

 Then C = <c>  (the average of c) 

• C indicates the average probability for 
two of one’s friends to be friends too 
– A large C implies that the network is well 
connected locally to form a cluster 
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Degree distribution 

 

 P(k) = Prob. (or #) of nodes with 
  degree k 
 

• Gives a rough profile of how the 
connectivity is distributed within the 
network 
 

 Sk P(k) = 1 (or total # of nodes) 
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Power law degree distribution 

• P(k) ~ k-g 

Scale-free network 
k 

P(k) 

log k 

log P(k) 

Linear in log-log plot 
 

-> No characteristic scale 
(Scale-free networks) 

A few well-connected nodes, 
a lot of poorly connected nodes 
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How it appears 

Random Scale-free 



Degree Distributions of Real-World 
Complex Networks 

20 

A Barabási, R Albert Science 1999;286:509-512 

Actors WWW Power grid 



Degree distribution of FB 
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• http://www.facebook.com/note.php?note_id=1
0150388519243859 

• http://arxiv.org/abs/1111.4503 

P(k) CCDF 

http://www.facebook.com/note.php?note_id=10150388519243859
http://www.facebook.com/note.php?note_id=10150388519243859
http://arxiv.org/abs/1111.4503


Measuring Topological Properties of 
Networks (2): 
Centralities 
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Centrality measures (“B,C,D,E”) 

• Degree centrality 
– How many connections the node has 

• Betweenness centrality 
– How many shortest paths go through the 
node 

• Closeness centrality 
– How close the node is to other nodes 

• Eigenvector centrality 
 



Degree centrality 

• Simply, # of links attached to a node 
 

  CD(v) = deg(v) 
 

 or sometimes defined as 
 

  CD(v) = deg(v) / (N-1) 

 
24 



Betweenness centrality 

• Prob. for a node to be on shortest 
paths between two other nodes 

 

  CB(v) = Σs≠v,t≠v 
 
• s: start node, e: end node 

• #sp(s,e,v): # of shortest paths from s to e 
that go though node v 

• #sp(s,e): total # of shortest paths from s to e 

• Easily generalizable to “group betweenness” 25 

#sp(s,e,v) 

#sp(s,e) 



Closeness centrality 

• Inverse of an average distance from a 
node to all the other nodes 

 

  CC(v) = 
 

 

• d(v,w): length of the shortest path from v to w 

• Its inverse is called “farness” 

• Sometimes “Σ” is moved out of the fraction (it works for 
networks that are not strongly connected) 

• NetworkX calculates closeness within each connected 
component 
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n-1 

Σw≠v d(v,w) 



Eigenvector centrality 

• Eigenvector of the largest eigenvalue 
of the adjacency matrix of a network 

 

  CE(v) = (v-th element of x) 

  Ax = lx 
 

•  l: dominant eigenvalue 

• x is often normalized (|x| = 1) 
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Exercise 

• Who is most central by degree, 
betweenness, closeness, eigenvector? 
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Which centrality to use? 

• To find the most popular person 

• To find the most efficient person to 
collect information from the entire 
organization 

• To find the most powerful person to 
control information flow within an 
organization 

• To find the most important person (?) 
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Measuring Topological Properties of 
Networks (3): 

Mesoscopic Properties 



Degree correlation (assortativity) 

• Pearson’s correlation coefficient of 
node degrees across links 

 

  r =  

 
• X: degree of start node (in / out) 

• Y: degree of end node (in / out) 
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Cov(X, Y) 

σX σY 



Assortative/disassortative networks 

32 (from Newman, M. E. J., Phys. Rev. Lett. 89: 208701, 2002) 

Social 
networks are 
assortative 

Engineered / 
biological 
networks are 
disassortative 



K-cores 

• A connected component of a network 
obtained by repeatedly deleting all 
the nodes whose degree is less than k 
until no more such nodes exist 
– Helps identify where the core cluster is 

– All nodes of a k-core have at least 
degree k 

– The largest value of k for which a k-
core exists is called “degeneracy” of the 
network 
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Exercise 

• Find the k-core (with the largest k) 
of the following network 
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Coreness (core number) 

• A node’s coreness (core number) is c 
if it belongs to a c-core but not 
(c+1)-core 

 

• Indicates how strongly the node is 
connected to the network 

• Classifies nodes into several layers 
– Useful for visualization 
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Community 

• A subgraph of a network within which 
nodes are connected to each other 
more densely than to the outside 
– Still defined vaguely…  

– Various detection 
algorithms proposed 
• K-clique percolation 

• Hierarchical clustering 

• Girvan-Newman algorithm 

• Modularity maximization 
(e.g., Louvain method) 36 (diagram from Wikipedia) 



Modularity 

• A quantity that characterizes how 
good a given community structure is in 
dividing the network 

 

  Q = 
 

 

• |Ein|: # of links connecting nodes that belong 
 to the same community 

• |Ein-R|: Estimated |Ein| if links were random   
37 

|Ein|-|Ein-R| 

|E| 



Community detection based on 
modularity 

• The Louvain method 
– Heuristic algorithm to construct 
communities that optimize modularity  
• Blondel et al. J. Stat. Mech. 2008 (10): 
P10008 

• Python implementation by Thomas 
Aynaud available at: 
– https://bitbucket.org/taynaud/python-
louvain/ 
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https://bitbucket.org/taynaud/python-louvain/
https://bitbucket.org/taynaud/python-louvain/
https://bitbucket.org/taynaud/python-louvain/

