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Sensitive displacement detection has emerged as a significant technological challenge in mechanical reso-
nators with nanometer-scale dimensions. A novel nanomechanical displacement detection scheme based
upon the scattering of focused evanescent fields is proposed. The sensitivity of the proposed approach is
studied using diffraction theory of evanescent waves. Diffraction theory results are compared with numeri-

cal simulations. © 2007 Optical Society of America
OCIS codes: 050.1960, 120.7280.

Nanometer-scale mechanical resonators and nano-
electromechanical systems (NEMS) are being devel-
oped for a number of sensing, computing, and signal
processing applications. These promising devices
have tiny masses, low intrinsic dissipation, and high
fundamental resonance frequencies, resulting in un-
precedented accuracy and sensitivity in the afore-
mentioned applications [1,2]. However, detection at
the nanoscale remains a challenge, hindering efforts
to achieve the full potential of NEMS.

Optical techniques are useful in displacement de-
tection because they are sensitive, broadband, and
nondestructive [3,4]. However, the displacement of
the structure under study must significantly change
the scattered optical field for a sensitive measure-
ment and dynamic scattering from a moving sub-
wavelength structure, such as a nanomechanical
resonator, is usually weak compared with the static
background signal. For sensitive detection, the inci-
dent field must be well localized so that scattered sig-
nal from the moving nanostructure is maximized.
Furthermore, total incident optical power must be re-
duced to ensure that the technique is indeed nonde-
structive. To address some of these issues, a dark-
field optical technique is proposed here and a novel
application of diffraction theory to evanescent waves
is used to carry out the analysis. Analytic diffraction
theory is compared with numerical simulation.

The geometry of the problem is illustrated in Fig.
1. The suspended nanomechanical resonator is mod-
eled as a thin black strip of infinite length with width
w; the resonator (strip) is positioned at a height A
above the interface of the dielectric substrate half-
space. An assumption of infinite length is valid for ex-
perimental nanomechanical devices [3], as they usu-
ally have a high aspect ratio with length much
greater than the diameter of a tightly focused optical
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spot. The planar dielectric boundary between the
substrate and vacuum within the arrangement al-
lows for the generation of a highly localized evanes-
cent field around the structure. An enhanced (fo-
cused) evanescent field can be generated with a
numerical aperture increasing lens (NAIL) [5], as il-
lustrated in the inset of Fig. 1.

The scattered field is calculated by means of the
Kirchhoff diffraction integral [6]. Since the incident
field is evanescent and therefore does not propagate,
Babinet’s principle may be applied with the result
that the field diffracted by the strip and propagated
to the far zone is identical to the field diffracted by a
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Fig. 1. (Color online) Cross-sectional (x—z plane) view of
the proposed detection. Here, an infinitely long strip of
width w is suspended by A and oscillates with amplitude
S6A above a substrate of refractive index n. The device is il-
luminated by the evanescent field E; in the direction of k;
formed by the total internal reflection of the incoming wave
in the direction of kg. This scheme can be realized by illu-
minating a typical doubly clamped nanomechanical resona-
tor through an index-matched NAIL attached to the back-
side of the sample, as shown in the inset.
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slit in a screen placed at the same plane up to an
overall sign. The surface of the strip parallel to the
interface is denoted by A, and the incident field is de-
noted by E;. The resultant diffraction integral for the
far-zone field E is given by the expression

1
E(r)=- —f d?r'[E;(x') X VX G(r,r') - G(r,xr")
4’77 A

X VX E;(r")]-n. (1)

Here, G is the half-space dyadic Green function that
satisfies the wave equation in the upper and lower
half-spaces separately (except at r=r’) and obeys the
boundary conditions that nXG and nXVXG are
continuous, commensurate with the condition on the
tangential components of the electric and magnetic
fields [7].

Since only the forward-scattered field is relevant
for this problem, the Green dyad is expressed for z
>z,

i , 1 o,
Gle,r') = — f @2k~ [D (k) + €%+ R(k)],
2 k

(2)

where k=(k,k,), k,=\ki-k, and D and R are the
dyadic quantities that ensure the transversality of,
respectively, (i) the plane-wave propagated directly
from r’ to r and (ii) the plane-wave propagated via
reflection from the interface. The dyads may be writ-
ten as

D (k) = (k)i (K) + gy (K) iy, (), 3)

R(k) = (K)o o(K) + 8 (K7l (), (4)

where ,,,,, are the unit vectors of the TE/TM basis
relative to k. These unit vectors may be constructed
as ,(K)=kXn/|kxXn| and d,,(K)=k Xi,/[k X1,
Here, k=0, X {1, =k/|K| so that &, @,,, i, form an or-
dered orthonormal triple with @, always parallel to
the interface. The vector k is defined to be the reflec-
tion of k through the z=0 plane, i.e., l;:(k”,—kz). The

reflected waves for i,,,,(k) can be defined in a simi-
lar fashion. The quantities r,, and r,,, are the respec-
tive Fresnel coefficients for TE and TM waves, given
by rtm:(n2kz_kz’)/(n2kz+k;)’ rte:(kz_k;)/(kz-"kz’)’
and k. =\n%ki-k’.

With the incident evanescent field given by E;(r)
=E, e, the diffracted field given by Eq. (1) becomes

— jethor sin[(k, — k;)w/2]
(k= kix)/2

Xe T h i B ) X [y () X (e + ;)

Ejopim(r) = ok

y ~ iy

+ eZiszrte/tmﬁte/tm(l;) X (l~( +k)]'n. (5)

Here, klir and the te/tm subscript indicates either
transverse electric or transverse magnetic fields rela-
tive to the direction of observation.

To understand the limitations of the diffraction
theory, the analytical results of Eq. (5) are compared
with numerical solutions of Maxwell’s equations.
This is accomplished by solution of a domain integral
equation for the electric field [8], which is constructed
with the use of the electromagnetic Green tensor for
the vacuum/substrate system. The equations are
solved numerically by matrix inversion operations.
The strip is modeled as a silver structure of thickness
of 50 nm with complex index of refraction 0.385
+18.95 at A=1.3 um. Simulations were done on a
desktop machine, with run times less than 1 h. Sta-
bility and convergence were checked by varying the
discretization mesh and the contour deformation for
analytic integration. The numerical results are
shown as dashed curves in Fig. 2. The peak of the
pattern for the TE incident field is centered for all re-
sults. For the TM case, the left peaks in the analytic
and numeric results differ by 2.7° for both heights.
The right peaks differ by 8.6° for the A=100 nm case
and 12° for the A=200 nm case.

In simulation of scattering from wider strips
(500 nm) the numerical results and diffraction theory
differ considerably for TM-polarized incident fields.
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Fig. 2. (Color online) Normalized distribution of the inten-
sity (the squared magnitude of the electric field) as a func-
tion of angle in the plane normal to the longitudinal axis of
the strip of width w=50 nm. The plots are for different
strip heights as indicated. The incident field in vacuum is
taken to be of unit amplitude at the Si interface with wave-
length N\=1.3 um and a wave vector of (2.2k(,0,2.0ik).
The dashed curves indicate the results of numerical simu-
lation, and the solid curves the outcome of Eq. (5). In the
top panel the incident field is TE-polarized, and in the bot-
tom panel it is TM-polarized. The curves were normalized
to the peak height of the analytic result at 100 nm and
then scaled by a factor N indicated by the curve for display
purposes.



This may occur for the wider strip because the strip—
substrate system forms a resonant cavity for the TM-
polarized case but not the TE-polarized case. Mul-
tiple scattering in this cavity tends to randomize the
transverse momentum of the field, moving the peak
of the intensity to the middle of the angular range.
Use of the diffraction theory should be avoided for
such resonant structures.

Finally, a dark-field technique for monitoring nano-
mechanical resonators is analyzed. That is, by mak-
ing use of a focused evanescent field, the strip is illu-
minated such that in the absence of the strip no
signal is transmitted to the detector. The optical dis-
placement signal is presented as a function of effec-
tive device size w [4]. The fluctuation in the scattered
power is calculated as the strip vibrates in the z di-
rection with a conservative amplitude of SA=0.5 nm.
For the illuminating field, a coherent superposition of
evanescent plane waves is taken to form a focused
evanescent spot at the surface of the substrate with a
spot size (FWHM) of 250 nm at a wavelength of \
=1.3 um. Such subwavelength spots of diameter
~\N/2n, where n=3.45 for silicon, have been demon-
strated using a NAIL [5]. The angular spectrum of
the scattered wave in the far field is computed using
Eq. (5) for each plane-wave component of the illumi-
nating field, and the results are summed coherently.
A detection system in the far zone with numerical ap-
erture of NA=0.7 is assumed, and the power contrast
induced by the strip motion above the substrate, i.e.,
by varying the height to A+ A, is computed. The ob-
tained results, shown in Fig. 3, indicate an optimum
strip width w for a given spot diameter, or conversely
an optimum spot diameter for a given w. This result
may be counterintuitive, since most optical methods
used at this length scale display a monotonic im-
provement in the detected signal as the optical spot
diameter is reduced. Two factors contribute to this
behavior: (i) wide strips push the scattered field into
higher angles beyond the collection angle; (ii) diffrac-
tion is dominated by the edges of the strip and a
tightly focused field concentrates energy away from
the edges. For a crude comparison, assuming lossless
transmission between the NAIL and device sub-
strate, at an optical input power of 1 mW and A
=100 nm, the obtained dynamic signal amplitude
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Fig. 3. (Color online) Normalized dynamic signal in the
scattered field due to a focus superposition of evanescent
waves with a FWHM spot size of 250 nm centered on the
strip, at height A=100 nm, due to an oscillation of ampli-
tude SA=0.5 nm, for both TE and TM polarization of the in-
cident field.
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from diffraction of evanescent waves is comparable
with or higher than commonly used displacement de-
tection schemes in NEMS [3,9]. The promise of the
proposed dark-field technique, however, lies in the
fact that the background signal is largely eliminated.
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