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Optical knife-edge technique for nanomechanical displacement detection
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We describe an optical knife-edge technique for nanomechanical displacement detection. Here, one
carefully focuses a laser spot on a moving edge and monitors the reflected power as the edge is
displaced sideways. To demonstrate nanomechanical displacement detection using the knife-edge
technique, we have measured in-plane resonances of nanometer scale doubly clamped beams. The
obtained displacement sensitivity is in the ~1 pm/\VHz range—in close agreement with a simple
analytical model. © 2006 American Institute of Physics. [DOI: 10.1063/1.2203513]

Electromechanical devices are rapidly being miniatur-
ized, following the trend in transistor electronics. Nanometer
scale electromechanical devices—usually called nanoelectro-
mechanical systems1 (NEMS)—have recently been at the fo-
cus of appliedz_4 and fundamental®® research. In most
NEMS-based sensing%4 and metrology,6 one drives the na-
nomechanical element resonantly and detects its subsequent
displacement—as the device interacts with its environment.
Detection of nanomechanical displacements with high sensi-
tivity, therefore, is vital for reliable NEMS operation.

High frequency NEMS resonators are most commonly
realized in the form of doubly clamped beams. At room tem-
perature, displacement detection in nanomechanical doubly
clamped beam resonators has been realized efficiently using
optical interferometry.7’8 In interferometry, one exploits the
optical path length change as the center of the nanomechani-
cal beam moves in the out-of-plane direction, i.e., parallel to
the optical axis. However, interferometry becomes ineffec-
tive in the widely used beam-gate geometry, where the beam
is actuated sideways, i.e., vertical to the optical axis.”'? In
this letter, we describe an optical technique complementary
to interferometry for detecting the in-plane nanomechanical
motion of a doubly clamped beam. The technique relies upon
the change in reflected optical power from the beam as the
beam moves inside a Gaussian optical spot; it is essentially a
knife-edge technique. Knife-edges are widely used for char-
acterizing optical spots]1 and have been implemented in op-
tical beam-deflection based displacement detection.'?

The nanomechanical resonators used in this work were
doubly clamped beams fabricated on a silicon nitride
membrane.'® An electrically isolated side gate was fabricated
next to the doubly clamped beam for in-plane electrostatic
actuation. To enhance the optical reflectivity, a thin layer of
Cr, Al, or Au was thermally deposited on the structures. The
film material and the thickness had a large effect on the
measured resonance properties. A typical device is shown in
Fig. 1(a).
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The experiments were performed inside an ultrahigh
vacuum (UHV) chamber.® A He—Ne laser (=632 nm) was
focused on the nanomechanical beam by an objective lens
with a numerical aperture of 0.5 resulting in a diffraction
limited optical spot of diameter d=1.2 um (measured at full
width at half maximum). Figure 1(b) is an illustration show-
ing the beam and the optical spot. The optical spot is offset
by a distance x, from the equilibrium beam center position at
x=0; the beam center displaces to x, when excited. In the
experiments, the in-plane resonance of the beam was electro-
statically actuated and the reflected optical signal was moni-
tored. Using this technique, we measured the in-plane funda-
mental flexural resonances of six beams with resonance
frequencies in the 7 MHz < wy/27 <20 MHz range. Figure
1(c) shows a typical resonance signal at fixed ac and varied
dc actuation voltages. The inset displays the dc drive voltage
dependence of wy/27r. This particular device had (beam) di-
mensions tXw X[=125 nm X200 nm X 14 um and beam-
gate separation g=130 nm. The quality factor of the resona-
tor was Q =~ 800.

In the knife-edge technique, the quantity that determines
the displacement signal is the change in reflected optical
power P, with respect to the center position x;, of the nano-
beam [see Fig. 1(b)], R=(1/Py)/(dP,/ dx;). We shall call R
the responsivity, which is normalized with respect to the in-
cident power P,. The resonance measurements such as those
shown in Fig. 1(c) were performed at a point of maximum
available responsivity R,. This optimal operation point x,
was found by changing the optical spot position x, with re-
spect to the nanobeam and finding the point of maximum
signal. While this approach resulted in the best signal-to-
noise ratio, it did not allow the conversion of the photocur-
rent into an absolute displacement.

In order to determine the (normalized) absolute R (in
units of um™'), we use the following first-pass approxima-
tion: a displacement x; of the beam center relative to the
optical spot ought to give rise to the same measured power
change as a displacement x; of the spot relative to the sta-
tionary beam, if x,=—x,. The approximation that follows is
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FIG. 1. (Color online) (a) Scanning electron micrograph of a typical doubly clamped silicon nitride beam with a side gate. (b) An illustration of the
experiment. The optical spot is focused at an offset of x, from the beam center of the NEMS resonator. The NEMS center displacement from equilibrium is
X,; in the illustration, the displacement of the beam is exaggerated. The equilibrium gap is g. The origin is at the center of the beam. (c) In-plane fundamental
flexural resonance of a X w X [=125 nm X200 nm X 14 um and g=130 nm beam for varying dc drive amplitude V.. The inset displays the change in the

resonance frequency with V..
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We note that this is valid only if (i) the power reflected from
the side gate is negligible and (ii) the beam is long so that the
curvature around the beam center during motion is small.
Thus, an approximate R, value can be determined by mea-
suring P, as a function of x, and finding JP,/ dx,.

Experimentally, we carefully scanned the optical spot
over our devices using a precision translation stage and re-
corded P,(x,). We performed these spot-scan measurements
on two representative devices with different dimensions in
order to understand the limits of the above-described ap-
proximation. The devices, henceforth D1 and D2, had iden-
tical thicknesses and lengths: =125 nm and /=14 um. D1
had w=500 nm and g=500 nm; D2 had w=200 nm and g
=130 nm. Note that g~d/2 for D1, but g <d/2 for D2. The
inset of Fig. 2(a) displays P,(x,) for DI1. Note that (i) at large
negative values of x,, no light is reflected; (ii) as the spot is
scanned over the beam, the reflected power increases; and
(iii) when the spot is over the gate (large positive x,), all the
incoming light essentially reflects back. The main figure
[Fig. 2(a)] is the normalized numerical derivative of P,(x,)
with respect to x, for D1. Similar plots for D2 are presented
in the inset and the main body of Fig. 2(b). Note the presence
of two maxima in Fig. 2(a) as opposed to the single peak in
Fig. 2(b). As discussed in detail below, the two separate
peaks indicate that the gate contribution to the reflected
power is negligible around x,,. Thus, Eq. (1) is accurate and
Ry is readily accessible in devices such as D1 where g
~d/2. The extraction of R from a single peak (D2) requires
further attention (see discussion below).

Let us now take a brief analytical look at P,(x,) and
AP,/ dx,. P,x;) can be determined by an integral of the
Gaussian intensity profile 1(x,y) = Ipe~20= =27 gyer
the reflecting portions of the device surface [see Fig. 1(b)], if
diffraction effects are neglected.11 The reflected power thus
becomes

P.(x,) = f f I(x,y)R(x,y)dxdy. (2)

The function R(x,y), in the simplest approximation, is unity
if the point is on the device or the gate and zero everywhere
else. The results obtained from Eq. (2) are presented as the
dashed lines in both Figs. 2(a) and 2(b). The spot size d used
in the calculations was determined from separate knife-edge
measurements. The data and the calculation are in good
qualitative agreement. We estimate that the discrepancy in
the magnitude of the peaks can be attributed to diffraction
effects at this scale. In a more rigorous finite element calcu-
lation (not shown), the agreement of the signal magnitude
was to within 10% of the experimental data.

We now return to the problem of determining R, from
spot-scan measurements, i.e., from dP,/dx, curves of Figs.
2(a) and 2(b). In devices where g=d/2, the light reflecting
from the gate is not significant around x,= x,. Thus, Eq. (1)
remains valid. Note also that for g=d/2, the spot scan will
reveal two peaks optically resolving both the beam and the
gate. In contrast, in devices where the gate lies within the
spot (D2), spot-scan experiments overestimate R,. During
spot scans around x, =~ x,,, P,(x,) variation is not only due to
the relative position shift of the nanobeam and the spot but
also due to the change in the amount of light reflecting from
the side gate. The gate contribution, however, is irrelevant to
the displacement signal of the resonator. Thus, with decreas-
ing g, the approximation in Eq. (1) becomes less accurate.
One additional complication is that the two separated peaks
merge into a single peak when the gate is nearby [Fig. 2(b)].
This indicates that the point of maximum signal may not
correspond to the maximum JP,/ dx,. In Fig. 2(b), we present
a second calculation for D2 without the gate (solid line),
which indicates that the inaccuracy in R, due to the gate can
be as much as 30%. In short, the knife-edge technique is
rather accurate in absolute displacement detection in devices
where the gate is far away in comparison to the spot size.
Otherwise a combination of numerical and experimental
analyses, as presented here, can be used to obtain an estimate
for the absolute displacement.

Downloaded 11 May 2006 to 128.197.50.183. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



193122-3 Karabacak et al.
1.0
non
o 'y
04] E "
— Qos. y
E |= :
S :
» o
3& 007 0
~ 0.2 X (um)
Q
RN
'
.
.
’
0.0 —
-12 -8 -4 0 4
(@) X, (pm)
0.8 T
— ;‘
06{ E '
= Q05 .
e & B
L
$ o4t .
5" 0.0.= o
N H
~_ 0.2
Q
Q
0.0
'0.2 T T v  § T
12 -8 -4 0 4
(b) X (um)

FIG. 2. (Color online) Normalized optical responsivity of NEMS devices,
with dimensions of (a) w=500 nm and g=500 nm and (b) w=200 nm and
=130 nm. The inset shows the normalized reflected power Py as a function
of the spot position x,. Analytical calculation results for dP/dx, are plotted
as dashed lines. In (b), the solid line shows 9P/ dx, without the contribution
of the gate.

The R, values in our measurements were in the range
Ry~0.2 um~! in subwavelength devices. This corresponded
to a displacement sensitivity of ~1 pm/VHz at a power P,
~300 uW. In our experiments, the sensitivity was limited
by the amplifier noise. These values are comparable or better
than those obtained in our previously reported optical inter-
ferometry measurements for out-of-plane motion.® For a de-
vice that had w=200 nm, under identical incident power and
spot size values, Michelson interferometry and Fabry-Perot
interferometry resulted in R~ 0.01 um~! corresponding to
a noise floor of ~20 pm/yHz.®

To further assess the limits of the knife-edge detection
technique, we calculated R, as a function of effective device
size w and optical spot size d. In these calculations, we as-
sumed that the gate was far away. The results of this calcu-
lation are presented in Fig. 3. Here, we plotted equal respon-
sivity contours as a function of w and d. The results clearly
demonstrate that detection sensitivity will deteriorate as the
device size is reduced or as the optical spot is enlarged.

NEMS resonators on membranes with in-plane motion
can be of further value at large optical detection power. By
using light at A=1550 nm, for instance, the incident power
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FIG. 3. (Color online) Peak responsivity R contour plot as a function of
both beam width w and spot diameter d.

might be increased by an order of magnitude—possibly en-
abling shot noise limited optical detection. Once in the shot
noise limit, removing the substrate can further improve the
signal-to-noise ratio by reducing the background in the opti-
cal signal.7"9

In summary, we have described an optical knife-edge
technique for sensitive displacement detection in nanome-
chanical beams. The technique is complementary to optical
interferometry in that it allows in-plane displacement detec-
tion. The experimental results are in good agreement with a
simple analytical model.
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