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We have fabricated and characterized a novel superhydrophobic system, a meshlike porous super-

hydrophobic membrane with solid area fraction �s, which can maintain intimate contact with outside air

and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydropho-

bic membranes as a function of �s reveal surprising effects. The hydrodynamic mass oscillating in phase

with the membranes stays constant for 0:9 & �s � 1, but drops precipitously for �s < 0:9. The viscous

friction shows a similar drop after a slow initial decrease proportional to �s. We attribute these effects to

the percolation of a stable Knudsen layer of air at the interface.
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To completely describe the flow of a viscous fluid past a
solid body, one must solve the Navier-Stokes equations
inside the fluid subject to boundary conditions on the
solid surface [1]. These boundary conditions cannot be
obtained from hydrodynamics, but emerge from the micro-
scopic interactions of fluid particles with the surface.
Consequently, they are not universal. It is well established,
for instance, that the commonly assumed no-slip boundary
condition can be violated [2] on both hydrophobic [3–6]
and superhydrophobic surfaces [7–10]. The consequences
of a shift in boundary condition from no slip to partial slip
are vast. Many natural organisms survive simply by virtue
of slip [11–13]. Slip flows are expected to impact technol-
ogy by enabling drag reduction in both laminar [4] and
turbulent flows [14]. This list goes on.

On a conventional superhydrophobic surface [15],
hydrophobicity combined with microscopic roughness
causes the water surface to remain suspended above the
solid tips, with mostly trapped air underneath [16,17].
Since the flow is on a composite surface made up of solid
and air, one solves the Navier-Stokes equations subject
to no slip on the solid elements and to slip at the water-
air interface [2]. Thus, in a first pass analysis, viscous
friction force on a superhydrophobic surface is found
to be proportional to the wet solid area, �s [18]. In this
Letter, we show that flow on a porous superhydrophobic
membrane deviates from the above picture. Oscillatory
hydrodynamic response [19] of the membrane suggests
that a stable Knudsen layer of gas percolates on the
membrane, changing the boundary condition. This is be-
cause the porous superhydrophobic membrane structure
enables the surrounding air to move ballistically to the
interface with little resistance—in contrast to a conven-
tional superhydrophobic surface, where trapped gas pock-
ets are diffusively connected to a gas reservoir through
macroscopic distances.

The novel system under study shown in Fig. 1 is a
tension-dominated porous silicon nitride membrane made
hydrophobic by silanization. The membrane has a (nomi-
nal) macroscopic area of a� a ¼ 600� 600 �m2 and a
nanoscale thickness of ts ¼ 200 nm. A matrix of identical
square pores with dimensions lg � lg ¼ 10� 10 �m2

is lithographically etched in the membrane. The pitch is
lg þ ls, where ls is the width of the solid strips in between

the pores, as shown in Fig. 1(b). This results in a solid area

fraction �s ¼ 1� l2g
ðlgþlsÞ2 . When a drop of water is placed

on the porous membrane, it is supported by a composite
surface of solid and gas (air); thus, wetting is not favored as
shown in Fig. 1(d).
We first characterize the intrinsic mechanical properties

of the porous membranes. In order to eliminate any fluidic
effects, we perform these measurements under vacuum.
For a tension-dominated square membrane (a� a� ts),
the frequency of the normal mode (m, n) in vacuum is

given by �mn
v

2� ¼ ½ �s�
2

�s�stsa
2 ðm2 þ n2Þ�1=2 [20]. Here, �s is the

tension, �s is the density, andm and n are two integers. The

in vacuo mode frequencies �mn
v

2� of a �s ¼ 0:34 membrane

are shown in Fig. 1(e). Here, the resonances are excited
by a piezoelectric shaker and detected using a Michelson
interferometer at a pressure of 10�2 Pa. The data confirm
that the tension-dominated membrane approximation
holds well, even for a membrane with a very small solid
fraction. Given that the modes are well separated in fre-
quency, each mode (m, n) can be modeled as a damped

harmonic oscillator with effective mass Ms ¼ �s�stsa
2

4 and

stiffness Ks ¼ �s�
2

4 ðm2 þ n2Þ. Relevant mechanical pa-

rameters for the fundamental modes of all our membranes
are displayed in Table I.
We now turn to measurements with water. The measure-

ments are performed using a fluid cell atop the membrane
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as shown in Fig. 2(a). The porous membrane does not leak
but supports intimate and continuous contact with both the
water reservoir above and the gas reservoir (ambient at-
mosphere) below. Using a heterodyne Michelson interfer-

ometer (with displacement sensitivity of 100 fm=
ffiffiffiffiffiffi

Hz
p

around 10 kHz with 85 �W incident on the photodetector),

we have measured the thermal-noise spectra of all the
membranes in their fundamental modes. Figure 2(b) shows
the noise spectra measured at the center of three mem-
branes with different �s. In order to confirm that we are
working with the fundamental mode [ðm; nÞ ¼ ð1; 1Þ], we
have scanned the optical spot along the x and y directions
and obtained mode shapes, such as the one shown in the
inset of Fig. 2(b). Since we exclusively study the hydro-
dynamic response of the fundamental mode here, we
henceforth drop the superscript 11. The top data trace in
Fig. 2(c) shows all the fundamental resonance frequencies

in vacuum, �v

2� , obtained by driving the membranes line-

arly. Thermal spectra with water atop the membranes have

provided the resonance frequencies �w

2� and linewidths �w

2�

(bottom trace) [21].
We first provide a general discussion of the fluid dynam-

ics encountered in our system. We consider the out-of-
plane (broadside) oscillations of a rigid square (a� a)
plate immersed in a viscous fluid. We take the plate veloc-
ity as the real part of the complex exponential, us ¼
<fUse

i!tẑg, with amplitude Us. Adopting the no-slip
boundary condition, we find the magnitude of the fluidic
force Ffẑ on the plate in the high-frequency limit as [22]

Ff � <
�

A
�fa

2

�
use

i� þMf

dus
dt

�

; (1)

with� � �
4 and A� 20. The viscous boundary layer thick-

ness, � ¼
ffiffiffiffiffiffiffi

2�f

�f!

r

, depends on the dynamic viscosity �f and

density �f of the fluid.Mf is the so-called added or hydro-

dynamic mass, well known from the potential flow theory
around an accelerating solid body. Consequences of Eq. (1)
are as follows. Viscous energy dissipation is due to tangen-
tial flow on the plate, expressed by the first term on the
right-hand side. Being proportional to �f, the dissipation

provides a widely used probe of the fluid-solid interaction.
The second term on the right-hand side does not contribute

to dissipation since us
dus
dt integrated over a cycle is zero.

However, this term provides an independent probe of the
fluid properties (near the solid) through �f. To emphasize

this, we writeMf ¼ �fVf, where Vf stands for the volume

of fluid displaced by plate motion and depends only upon
geometry. Indeed, it will be shown below that, in our
system, the changes in the nature of the fluid near the solid
boundary result in changes in both Mf and dissipation.

Returning to the membrane oscillations, we make a one-
dimensional harmonic oscillator approximation for the
fundamental mode. We analyze all our experimental data
(of Fig. 2 and Table I) using this approximation, obtaining
the results shown in Fig. 3. In this approximation,
the membrane has position zs, velocity us ¼ _zsẑ, mass
Ms and stiffness Ks. We assume that us is nearly sinu-
soidal because all membrane resonances in water have
quality factors Qw * 20 and the thermal drive has a white

TABLE I. Mechanical properties for the fundamental mode of
the porous membranes.

�s �11
v =2� (kHz) Ks (N=m) Ms (10

�12 kg)

1 235 134 61.2

0.96 233 126 58.7

0.88 223 104.7 53.8

0.82 208 67.6 50.2

0.78 142 38.1 47.7

0.65 159 39.2 39.8

0.48 106 12.9 29.4

0.34 134 14.2 21.1
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FIG. 1 (color online). (a) Top view of a porous membrane chip
(a� a ¼ 600� 600 �m2). (b),(c) Optical micrographs of
�s ¼ 0:78 and 0.34 membranes, respectively. (d) A drop of
water placed on a larger membrane (a� a ¼ 2� 2 mm2 and
�s ¼ 0:48) showing the superhydrophobicity of the surface.
(e) Vacuum mechanical resonances of a 600� 600 �m2 porous
membrane with�s ¼ 0:34. Nearly degenerate modes (m, n) and
(n, m) are observed when m � n. Single standard deviations in
the data are smaller than the symbols.
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spectrum: us � <fUse
i�wtg. Given that the dissipation

from water dominates the overall dissipation [21], we write
Ms _us � Fe þ Fw, where Fe ¼ �Kszs is the elastic spring
force and Fw ¼ Ff in Eq. (1) with the appropriate parame-

ters. Based on these considerations, we write a complex
linear response function for the system as [23] Gð!Þ �
½Ks � ðMs þMwÞ!2 þ i�!��1. The effect of the fluid is
embedded in two measurable parameters: the added water
mass Mw and the friction coefficient � [24].

The added water mass Mw can be determined from the
frequency shift of the membrane mode when it is loaded
with water. The stiffness Ks of the mode does not

change appreciably from vacuum to water. Thus,
Ms�v

2 ¼ ðMs þMwÞ�w
2, which simplifies to Ms�v

2 �
Mw�w

2 since Ms � Mw [25]. Figure 3(a) shows Mw as a
function of �s, calculated using Ms values in Table I and
frequency values in Fig. 2(c). Note the two separate regions
in Fig. 3(a) with a transition around �s � 0:9. In order to
estimate Mw from first principles, we emphasize that our
resonator is not immersed in water [see Fig. 2(a)]—unlike
in a typical set up. There is a water layer of thickness
tw ¼ 2:4 mm and density �w atop the membrane, but the
backside is exposed to atmosphere. The dominant hydro-
dynamic mass contribution comes from the entire water
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FIG. 2 (color online). (a) Schematic of the measurement cell in cross-sectional and isometric views. The cell is filled with water and
is placed on top of the membrane chip. A heterodyne Michelson interferometer probes the motion from below. (b) Thermal noise
spectra of the fundamental mode of three different membranes with water atop. From top to bottom, �s ¼ 0:48, 0.6, and 1. The
frequency axis is normalized with the respective resonance frequencies in water. The inset shows the shape of the fundamental mode
for the�s ¼ 0:6membrane. (c) Fundamental-mode resonance frequencies in vacuum and with water atop, and linewidths �w=2� with
water atop. Error bars represent the associated single standard deviations and are only shown when larger than the symbols.
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FIG. 3 (color online). (a) Measured Mw as a function of �s. The dashed line segment is the hydrodynamic mass of the entire water
layer. (b) Average friction force and (c) the normalized friction coefficient. The plate prediction is calculated from Eq. (1) using
experimental velocities and frequencies where needed. The normalized friction coefficient for the plate model is � �s. Error bars
represent the associated single standard deviations and are only shown when larger than the symbols.
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layer moving in phase with the membrane in the z direction

[26]. This provides Mw � �wtwa
2

4 � 2� 10�7 kg [dashed

line segment in Fig. 3(a)]. This estimate is in agreement
with the data of Fig. 3(a), but only in the region 0:9 &
�s � 1. Further support for our estimate comes when tw is
reduced to approximately 1.2 mm, which results in a factor
of 1=2 reduction in Mw. Experimentally, the measured
frequency increases by a factor of 1.2, which is close to

the factor
ffiffiffi

2
p

expected. For�s & 0:9, there is a significant
deviation from this simple model: the measuredMw shows
a rather fast decrease, eventually by a factor of 23.

The upper, slowly increasing trace in Fig. 3(b) is the

cycle-averaged viscous force on the membrane, A�wa
2�sUs

2�2�
,

predicted using the plate model of Eq. (1) and accounting
for the membrane mode shape. Here, �w is the dynamic

viscosity of water, A
2�2 � 1, Us

2 � 2�2�w
2hzs2i, hzs2i1=2

being the thermal amplitude of the membrane found from
the integral of the measured displacement noise spectral
density. It is important to note that, as�s becomes smaller,
Us increases. This is because the stiffness Ks decreases
(see Table I), the average thermal drive force remains
constant, and �w changes very slowly. In the calculated
plate model, the decrease in the wet area, a2�s, appears to
be offset by this increase in Us, thus resulting in a net
increase in the drag force as�s decreases. The experimen-
tal cycle-averaged friction force is obtained from the one-
dimensional damped harmonic oscillator model as �Us �
Mw�wUs. This force plotted as the lower trace in Fig. 3(b)
shows a surprising deviation from the plate model. As in
added mass, the plate prediction agrees with the experi-
ments when �s � 1. However, for �s & 0:9, the drag
force decreases rapidly, attaining a value an order of mag-
nitude smaller than the plate prediction at �s ¼ 0:34.

The drag reduction on the porous membranes can be
better assessed, if one considers the drag force per unit
velocity: this is the friction coefficient�. Figure 3(c) shows
the predicted and experimentally obtained normalized fric-

tion coefficients, �ð�sÞ
�ð1Þ . The predicted value is proportional

to �s since the system behaves as a plate, but with a
reduced solid area. The experimental values are given by
� � Mw�w. The data show that drag force for a given
velocity can be reduced by a factor of 18, if one goes
from a complete membrane (�s ¼ 1) to �s ¼ 0:34, i.e.,
�ð0:34Þ � �ð1Þ=18.

Given that the membranes do not leak and Mw is con-
stant for 0:9 & �s � 1, we conclude that the presence of
the air reservoir does not affect the flow in this interval. The
agreement between the predicted and measured friction
forces in the same interval provides more support for this
conclusion. The significant deviation in the measured re-
sponse from the plate model for�s & 0:9 suggests that the
flow changes around �s � 0:9. The new feature of our
system is its openness to air at atmospheric pressure. The
membrane thickness, ts ¼ 200 nm, is close to the mean

free path of air, 	g � 60 nm. This enables the surrounding

air to move through the membrane pores with little resist-
ance. The dramatic decrease in Mw for �s < 0:9 can be
attributed to a percolation transition: air bubbles localized
within the well-defined pores begin to coalesce as �s

is decreased, eventually resulting in a complete gas layer,
which separates the solid strips from the water surface.
This gas layer is expected to exist in the Knudsen regime,
with its thickness 
 smaller than its mean free path,

 & 	g.

Assuming a complete Knudsen layer at the interface,
we can assess the friction reduction on a porous membrane
with small �s. A one-dimensional model will suffice. We
consider a large porous plate oscillating in its plane with
velocity, <fUse

i�wtx̂g, under water with a Knudsen air
layer in between the plate and the water. The velocity

field inside the water is <fUwe
�ðz=�Þþið�wt�ðz=�ÞÞÞx̂g and

Uw � Us. Since the stress is a continuous function of

coordinate at the interface (z � 0), �wUw

� � �gUs�suth
6 .

Here, Us�s and uth are, respectively, the average hydro-
dynamic velocity and the thermal velocity of air mole-
cules; �g is the density of air. The 1=6 factor accounts

for the fraction of molecules traveling in the þz direction.

Using the parameters available, we derive Us

Uw
� 3

�s
.

The slip length [2], 	� �w

�guth�s
, emerges as 6 �m at

�s ¼ 0:34.
Our results might be relevant to applications. Unlike air

bubbles on a hydrophobic surface [27], the air layer in our
system is stable against diffusion into the water because of
the resistance-free influx from the air reservoir. Assuming
that porous pipes of macroscopic dimensions can be man-
ufactured, significant drag reduction could be achieved.
Several puzzling phenomena in biofluid dynamics, includ-
ing transport through and over biomembranes, and propul-
sion over the water surface, may be related to the physics
observed here [12,13].
The authors thank L. Chen and G. Holland for technical

assistance, and J. A. Liddle and V. Aksyuk for fruitful
discussions. Support from the US NSF (through Grants
No. ECCS-0643178, No. CBET-0755927, and No. CMMI-
0970071) is acknowledged.

*ekinci@bu.edu
[1] L. D. Landau and E.M. Lifshitz, Fluid Mechanics

(Butterworth-Heinemann, Oxford, 1987), 2nd ed..
[2] E. Lauga, M. Brenner, and H.A. Stone, Handbook of

Experimental Fluid Mechanics, edited by C. Tropea,
A. L. Yarin, and J. F. Foss (Springer-Verlag, Berlin, 2007).

[3] O. I. Vinogradova, Langmuir 11, 2213 (1995).
[4] C. I. Bouzigues et al., Phil. Trans. R. Soc. A 366, 1455

(2008).
[5] J.W.G. Tyrrell and P. Attard, Phys. Rev. Lett. 87, 176104

(2001).

PRL 107, 174501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

174501-4

http://dx.doi.org/10.1021/la00006a059
http://dx.doi.org/10.1098/rsta.2007.2168
http://dx.doi.org/10.1098/rsta.2007.2168
http://dx.doi.org/10.1103/PhysRevLett.87.176104
http://dx.doi.org/10.1103/PhysRevLett.87.176104


[6] X. H. Zhang, A. Khan, and W.A. Ducker, Phys. Rev. Lett.
98, 136101 (2007).

[7] P. Joseph et al., Phys. Rev. Lett. 97, 156104 (2006).
[8] C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001

(2006).
[9] C. Cottin-Bizonne et al., Nature Mater. 2, 237 (2003).
[10] A.M. J. Davis and E. Lauga, Phys. Fluids 21, 113101

(2009).
[11] C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997).
[12] J.W.M. Bush, D. L. Hu, and M. Prakash, Advances in

Insect Physiology 34, 117 (2007).
[13] X. Gao and L. Jiang, Nature (London) 432, 36 (2004).
[14] R. J. Daniello, N. E. Waterhouse, and J. P. Rothstein, Phys.

Fluids 21, 085103 (2009).
[15] P. G. de Gennes, F. Brochard-Wyart, and D. Quere,

Capillarity and Wetting Phenomena: Drops, Bubbles,
Pearls (Waves Springer, New-York, 2004).

[16] M. Miwa et al., Langmuir 16, 5754 (2000).
[17] J. Bico, C. Tordeux, and D. Quéré, Europhys. Lett. 55, 214
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