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A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in

Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much

attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology

require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in

microns and sub-microns—microelectromechanical systems (MEMS) and nanoelectromechanical

systems (NEMS), respectively—give rise to oscillating flows when operated in fluids. Yet flow

parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly

from those in Stokes’ solution. As a result, new and interesting physics emerges with important

consequences to device applications. In this review, we shall provide an introduction to this area of fluid

dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.
I. Introduction

In the last few decades, we have witnessed a relentless effort to

miniaturize silicon-based devices. This exciting trend, along with

advances in micro and nano-fabrication techniques, has resulted in

mechanical devices with micron and, more recently, sub-micron

linear dimensions.1–5 These so-called micro and nano-electro-

mechanical systems (M/NEMS) are slowly finding a number of

technological applications;6–13 there is also a great deal of interest in

using these devices to study fundamental physical phenomena.14–16

In this article, we shall limit ourselves mostly to simple

mechanical resonators, such as a micro-cantilever,5 or a doubly-

clamped beam17 or wire18,19 as shown in Fig. 1. The mechanical

resonator is typically driven by a coherent force around its

(fundamental) resonance frequency, where its response is

maximal. In order to measure external perturbations using the

resonator, one looks for changes in the resonator’s response. A

ubiquitous example of resonant detection is in dynamic mode
Fig. 1 Simplest commonly used M/NEMS structures. Our discussion of

fluid dynamics of M/NEMS will be based on these structures. (a) A

doubly-clamped beam resonator. (b) A cantilever.
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and linewidth of a micro-cantilever change as a result of its

interaction with a probed surface, thereby providing a ‘map’ of

the surface. Another common example is the detection of small

masses.21–25 Here, a small mass attached to a vibrating cantilever

or a doubly-clamped beam results in a frequency shift propor-

tional to the mass. Variations on this resonant detection

approach are, of course, possible.26–28

The range of linear dimensions of the devices considered here

span many orders of magnitude—from tens of nanometers29 all

the way up to hundreds of micrometers. As such, these devices

can possess kHz to GHz30 range frequencies with small active

masses. In most measurements and applications, the energy

dissipated by the resonator sets the performance limits as well as

the available bandwidth.21,31 There are several review articles,1–5

which focus upon the device properties and applications of

M/NEMS; we refer the reader to these articles for an intro-

duction and survey. We emphasize that, with such unique

properties, the possibilities for novel applications and interesting

measurements32,33 involving M/NEMS are numerous.

It is natural to consider the operation of these devices in fluids

because many of the foreseeable applications, such as bio-

chemical mass sensing, are in fluids.34–40 The fluid dynamics of

M/NEMS is therefore a technologically important problem.

Conversely, M/NEMS immersed in a fluid are opening up new

regimes in fluid dynamics:41–50 the parameters in the generated

flow—such as frequency, size, shear rate, and so on—are clearly

pushed into unexplored regimes, where classical fluid dynamics

may break down.

In this article, we present a review of the fluid dynamics of

M/NEMS. Our review is intended to be instructive and starts

with the simplest aspects of M/NEMS flow and builds to the

most recent developments. In section II, we present a theoretical

background of the problem. In section III, we describe typical

experiments involving M/NEMS in fluids and discuss

our universal formulation of nanoscale oscillating flows, high-

frequency nanofluidics. Section IV is reserved for conclusions

and outlook.
Lab Chip, 2010, 10, 3013–3025 | 3013
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II. Theoretical background

The fluid dynamics of M/NEMS resonators can be formulated by

simply treating the resonator as a solid body oscillating in a fluid.

Through the solid-fluid boundary, an oscillating flow is set up in

the fluid, which dissipates energy and results in mass loading of

the resonator. A generic treatment of ‘the resonator in fluid’ will

be given in the experimental section; in this section, we shall

formulate the framework for a flow set up by an oscillating solid

surface in a fluid.
II.i. Newtonian hydrodynamics

Basic concepts. A natural starting point for our discussion is

the Newtonian hydrodynamics. In describing flows varying on

a characteristic spatial length-scale L, Newtonian hydrody-

namics is formulated in terms of a ‘‘fluid element’’, i.e., a small

volume of fluid of linear dimension l � L containing a large

number of particles, N [ 1. Only in this case can one neglect the

large fluctuations of macroscopic parameters, which are of order

1=
ffiffiffiffiffi
N
p

. Since l � L, all variations of flow characteristics on

a scale l are negligible, and the fluid element can be treated as

a mathematical point. This leads to the continuum description of

fluid flow introduced by Euler in 1755. It is natural to express the

length-scale l in terms of a microscopic length scale l, generally

taken as the fluid mean-free path, which is linked to the fluid

density and reflects the nature of the intermolecular interactions.

The equations of hydrodynamics are expressions of conser-

vation laws for a fluid element. The momentum conservation

equation (Newton’s second law) reads

vu

vt
þ u,Vu ¼ 1

r
V,P (1)

where r is the mass density and u is the fluid velocity vector (with

components ui and magnitude u). In order for these equations to

provide a closed dynamic model, the stress tensor Pij ¼ �pdij +

sij must be a known function of the basic hydrodynamic vari-

ables. While the spherical component p ¼ � 1

3
Pkk can be

obtained from equations of state for the thermodynamic pressure

p ¼ p(r,T) at temperature T and/or kinematic constraints

imposed by conservation of mass, there are no readily available

expressions for deviatoric stresses sij responsible for energy

dissipation. In thermodynamic equilibrium with no external

forces applied, the fluid is homogeneous, and thus all spatial

derivatives of the fluid velocity field are zero,
vui

vxj

¼ 0. In the

vicinity of thermodynamic equilibrium such velocity derivatives

are small and

sij ¼ m

�
vui

vxj

þ vuj

vxi

� 2

3

vuk

vxk

dij

�
þ mb

vuk

vxk

dij þO

�
rl2 vui

vxa

vuj

vxb

:

�
(2)

The first expansion coefficient m is the dynamic shear viscosity, mb

is the so-called bulk viscosity, which is zero under the Stokes’

hypothesis valid for simple fluids.51 The kinematic viscosity n is

related to m as m ¼ rn (r is the mass density as defined above).

Neglecting the high-order contributions to the expansion in

eqn (2) provides the Newtonian flow approximation. In the
3014 | Lab Chip, 2010, 10, 3013–3025
Newtonian flow approximation, the microscopic structure of the

fluid is represented by constant transport coefficients (e.g., shear

viscosity m). Assuming near-equilibrium and divergence-free flow

one obtains the Navier–Stokes equations for a so-called incom-

pressible Newtonian fluid:

vu

vt
þ u,Vu ¼ � 1

r
Vpþ nV2u;

V,u ¼ 0:
(3)

For a flow with a characteristic velocity u0, the Reynolds number

Re ¼ u0L

n
is the fundamental dimensionless parameter charac-

terizing the flow dynamics. For typical gases, such as air, the

relationship n z lcs holds between the viscosity, the mean-free

path and the speed of sound. Taking cs z 300 m/s and n z 16 �
10�6 m2/s, one obtains l z 10�7 m. In a typical dense fluid, such

as water, the intermolecular separation is �5 � 10�10 m. In this

case, unlike in gases, a microscopic derivation of the relationship

n z lcs does not exist, but one can still apply this relationship to

obtain l z 2 � 10�9 m (for water, n z 10�6 m2/s and cs z
1500 m/s), which corresponds to the density correlation length

instead of an intermolecular separation.

Newtonian hydrodynamics of oscillating flows. We now turn to

the problem of a solid object oscillating at (angular) frequency u

in a Newtonian fluid subject to the no-slip boundary condition.

We first analyze the simplest case known as Stokes’ second

problem to establish some important physical features of the

flow; we then make approximations and discuss the flow due to

oscillations of an object of arbitrary shape.

Consider a Newtonian fluid filling half-space y > 0 in contact

with a large (infinite) solid plate at y ¼ 0, which moves along the

x-axis with velocity up ¼ u0 cosut. The situation is illustrated in

Fig. 2a. Since the velocity components in y and z-directions are

zero and effects of the edges of the large plate can be neglected, we

only have to solve the equations for the x-component of the

velocity field ux(y,t). Due to the symmetry of the problem we have

uy ¼ uz ¼ 0, u$Vu ¼ 0, V$u ¼ 0, p ¼ constant (4)

and the velocity field satisfies the diffusion equation,

vux

vt
¼ n

v2ux

vy2
(5)

which has the solution

uxðy; tÞ ¼ u0e
�

y

d cos
�

ut� y

d

�
: (6)

Here, the penetration depth (boundary layer thickness) d emerges

as the only length scale and is given by

d ¼
ffiffiffiffiffi
2n

u

r
: (7)

Two important observations can be made for Newtonian flows:

the shear wave, which is dissipated on a length-scale equal to the

wavelength, cannot propagate and the boundary layer becomes

thinner as the frequency increases.

The energy dissipation and the fluid mass loading are the most

relevant quantities for the M/NEMS experimentalist and the

device expert. The force exerted on the plate by the fluid is simply
This journal is ª The Royal Society of Chemistry 2010
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Fig. 2 Illustration of flow geometries and dynamical parameters. (a) Unsteady flow generated by an infinite plate oscillating at (angular) frequency u

with peak velocity u0 in the Newtonian limit. The penetration depth (boundary layer thickness) is d. (b) A body with curved surfaces oscillating at high

frequency in a Newtonian fluid. Inside the boundary layer, the flow is nearly tangential to the body surface. (c)The oscillating plate problem in the non-

Newtonian limit. A wavelength d+ and a penetration depth d� emerge instead of the viscous boundary layer thickness d.
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Fx ¼ Sm
vux

vy

����
y¼0

where S is the surface area of the large plate. The

average energy dissipated per unit time (in units of W) is found as

Ec ¼
Su0

2

2

ffiffiffiffiffiffiffiffiffiffiffi
1

2
rmu

r
by averaging the dissipation rate Fxup over the

oscillation cycle. Note that, due to the symmetries mentioned

above, the only dissipation comes from the so-called skin friction

or Stokes friction. In general, there may also be a contribution to

the dissipation from the normal stresses on the oscillating body.

However, this force does not play a dominant role at high

frequencies, as we show below. There is also mass loading on the

plate due to the in-phase motion of the fluid. This results in

a downwards shift of the resonance frequency of a M/NEMS

resonator as discussed in section III.i.

Returning to eqn (3), we observe that it may be possible to

linearize this equation when |vu/vt| [ |u$Vu| by neglecting the

convection term. This relation between the derivatives corres-

ponds to the condition uu0 [ u2
0/L, where, as above, u0 is the

velocity amplitude and L is a representative linear dimension

over which u0 changes, often of the order of the linear dimensions

of the oscillating body. Furthermore, in terms of the oscillation

amplitude a, this condition translates into a� L given that u0 ¼
ua. For high-frequency and small-amplitude oscillations of

a M/NEMS resonator, this condition is typically satisfied and the

linearized Navier–Stokes equation represents a valid approxi-

mation.

In the low Re limit, where the generated flow is laminar, and

both turbulence and vortex shedding can be neglected, the line-

arized Navier–Stokes equations suggest that all oscillating flows

behave in a somewhat similar way independent of geometric

details. It can be shown that the fluid force acting on an arbi-

trarily-shaped body oscillating with velocity u ¼ u0 cosut can be

represented as a sum of two contributions,52

F ¼ �b1u� b2

du

dt
(8)

where the constant coefficients b1 and b2 contain all the relevant

information about geometry, viscosity, and so on. Let us first

find the energy dissipated by the oscillating object in terms of the

prescribed solution in eqn (8). Similar to the oscillating plate

above, the average energy dissipated per unit time can be found

as b1u2
0/2, which depends only upon b1; the second term with the

coefficient b2, which is responsible for the added mass, does not

contribute to the energy dissipation. To illustrate, let us consider
This journal is ª The Royal Society of Chemistry 2010
a sphere of radius R (the result for a cylinder oscillating

perpendicular to its axis is almost identical). The force can be

found as

F ¼ 6pmR

�
1þ R

d

�
uþ 3pR2

ffiffiffiffiffiffiffiffi
2mr

u

r �
1þ 2R

9d

�
du

dt
(9)

where the boundary layer thickness is d ¼
ffiffiffiffiffiffiffiffi
n=u

p
. At low

frequency, the solution becomes identical to Stokes’ solution of

a sphere moving in a viscous fluid. As the frequency is increased,

the dissipation is completely dominated by the R/d term; the

energy dissipated per unit time converges to 6pR2u0
2 ffiffiffiffiffiffiffiffiffi

rmu
p

.

Note that the solution in eqn (9) includes the skin friction (due to

viscosity) as well as the normal stress contributions. Since the

flow outside the boundary layer remains inviscid, the contri-

bution to the dissipation from the normal stress (pressure) on the

body surface is zero to first order. As the frequency is increased

and R/d [ 1, this approximation becomes more and more

accurate. Physically, for d� R, the fluid element adjacent to the

solid does not feel the curvature of the solid. Hence, the oscil-

lating body with a radius of curvature R looks increasingly

similar to a plate, where normal stresses provide negligible

contribution to the dissipation. This important physical concept

is illustrated in Fig. 2b. We note that some authors53 prefer to use

a frequency dependent Reynolds number, Reu ¼
uL2

n
z

L2

d2
, in

order to compare d to L (L � R for the sphere).

In high-frequency oscillations in a Newtonian fluid, therefore,

where the conditions a � L and d � L are met, the following

conclusions can be drawn: The flow remains inviscid outside

a small boundary layer, with typically negligible drag force from

normal stresses. Inside the boundary layer, the flow is nearly

tangential to the body surface, and the energy dissipation is

dominated by the skin friction on the solid body. In other words,

the problem becomes similar to the simple oscillating plate.

The description in eqn (9) and its consequences are valid even

for more complex geometries. Fluid forces acting on two-

dimensional bluff bodies undergoing periodic oscillation at

angular frequency u will exhibit similar asymptotic behavior in

both limits Reu / 0 and Reu / N.54 In order to estimate the

fluid resistance to M/NEMS in Newtonian regimes, slender beam

structures are conveniently modeled as cylinders that oscillate

perpendicular to the axis of the cylinder. The cylinder approxi-

mation can be effectively applied for beams with a square cross-

section, i.e., unit aspect ratio, and empirical corrections have
Lab Chip, 2010, 10, 3013–3025 | 3015
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been proposed for rectangular cross-section with moderate-to-

large aspect ratios.55 Similarly, mass loading can be estimated

from cylinder or sphere approximations.

Limits of Newtonian hydrodynamics. A typical M/NEMS

resonator in a fluid can attain a size comparable to the micro-

scopic length scale in the fluid, especially in a rarefied gas.

Similarly, the time scale of the high-frequency oscillations of the

device can exceed the equilibrium relaxation time of the

surrounding fluid. Consequently, application of the Newtonian

approximation to the fluid dynamics of M/NEMS becomes

problematic.

Considering flow past a bluff body of linear dimension L, one

often assumes the characteristic length of flow variation to be

�L. Given this, the very concept of a fluid element breaks down

when L becomes comparable to the microscopic length scale l of

the fluid. This is traditionally expressed in terms of the Knudsen

number, Kn ¼ l/L. In other words, Kn � 1 defines a natural

limit for validity of the continuum approximation. Yet, kinetic

theory based analysis of the breakdown of Newtonian hydro-

dynamics immediately reveals the ambiguity of the above crite-

rion. Flows of complex geometry can often be characterized by

different length-scales Li, leading to multiple Knudsen numbers

Kni ¼ l/Li and, as we show below, the choice of a proper one is

a nontrivial matter. Only dynamic treatment of the problem can

resolve these ambiguities.

An additional criterion emerges for flows varying on a time-

scale T. A fluid can be considered to relax to equilibrium in

a characteristic time scale s, called the relaxation time, when

weakly perturbed. If s becomes comparable to T, the key

assumption of Newtonian hydrodynamics that the fluid remains

in the vicinity of equilibrium is no longer valid. This condition is

traditionally expressed in terms of the dimensionless time or the

Weissenberg number, Wi ^ s/T ¼ us � 1.

In fluids, the relaxation time can be estimated via viscosity:

nzs
kBq

m
zscs

2zlcs. Here, kB is the Boltzmann constant, q is the

temperature and m is the molecular mass of the fluid. All other

symbols have been defined above. Thus, s � l/cs. Given that l

stands for the mean-free path in gases, it takes a few intermo-

lecular collisions for an initial perturbation to decay. In dense

fluids the same formula can be used—albeit with l as a charac-

teristic correlation length of density fluctuations as noted above.

In atmospheric air at q ¼ 300 K, cs z 300 m/s, s z 10�9 s

and l z 10�7 m. For high-frequency M/NEMS resonators

operating in the frequency range u/2p z 1 MHz to 1000 MHz,

10�2 # us # 10. For a typical M/NEMS characteristic length

L z 1 mm, Kn z 0.1. Thus, to seriously consider the limits of

validity of Newtonian hydrodynamics for M/NEMS, one must

deal with the interplay of two dimensionless parameters Kn

and Wi.
II.ii. Kinetic theory

Basic concepts. The above discussion suggests that, in dealing

with M/NEMS, one is frequently in a regime where the Navier–

Stokes equations break down. One therefore needs to employ

microscopic methods, such as kinetic theory, in order to capture

the physics when non-equilibrium conditions prevail.
3016 | Lab Chip, 2010, 10, 3013–3025
Kinetic theory describes the (microscopic) state of a physical

system by means of a distribution function defined in phase space

(r,v,t). Such a distribution function f(r,v,t) gives the number n of

molecules each with mass m, within a differential volume of

phase-space, with position r and velocity coordinate v at a time t.

Since n actually represents a mean quantity obtained from

ensemble average, f(r,v,t) can thus be considered to provide

a statistical description of the fluid. There are many subtle issues

involving the distribution function which are beyond the scope of

the discussion here; we refer the reader to in depth reviews on the

topic.56,57 Hydrodynamic variables such as the fluid density r and

the ‘hydrodynamic’ velocity u, can be obtained through the

velocity moments of f(r,v,t):

rðr; tÞ ¼ m
Ð

f ðr; v; tÞdv;
ruðr; tÞ ¼ m

Ð
f ðr; v; tÞvdv:

(10)

The distribution function is governed by the Boltzmann

transport equation

vf

vt
þ v,Vf ¼ Cðf Þ (11)

indicating that, in the absence of external force fields, the

evolution of f(r,v,t) in the 7-dimensional phase space is deter-

mined by the translational motion of the fluid molecules and

intermolecular collisions denoted by C(f). Direct solution of the

Boltzmann equation, in general, is quite difficult and most

problems require expansion procedures or other techniques.

Relaxation time approximation. The approach here is to

simplify the Boltzmann equation by replacing the collision term

by a BGK ansatz, modeling relaxation to thermodynamic equi-

librium.58 In accord with Boltzmann’s H-theorem, the initially

perturbed non-equilibrium distribution function f monotonically

relaxes to the equilibrium distribution function feq on a charac-

teristic time scale s(f), which is to be found from a microscopic

theory. This leads to

vf

vt
þ v,Vf ¼ � f � f eq

s
: (12)

In the mean-field approximation, valid close to equilibrium

where all gradients are small, one sets s(f) ¼ s ¼ constant. Eqn

(12) is the well-known Boltzmann-BGK (BE-BGK) equation

widely used for both theoretical and numerical studies of non-

equilibrium fluids.59–61 In 3-D velocity space, the equilibrium

distribution is f eq ¼ n

ð2pkBq=mÞ3=2
exp

�
� mðv� uÞ2

2kBq

�
with n ¼

r/m and q ¼ m

3nkB

ð
f ðv� uÞ2dv. We stress that the BE-BGK

equation is not the outcome of a systematic procedure applied to

Hamiltonian equations of motion or Boltzmann transport

equations. Rather, BE-BGK constitutes a phenomenological

model satisfying basic conservation laws and symmetries of the

problem. In the limit of Kn� 1 and Wi� 1, BE-BGK leads to

the Navier–Stokes equations, thus justifying its validity for

Newtonian flows. At the present time, the applicability of BE-

BGK in strongly non-equilibrium flows can only be determined

by comparison with experiments.

In order to obtain the momentum conservation equation, one

takes the first velocity moment of the BE-BGK to obtain
This journal is ª The Royal Society of Chemistry 2010
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vu

vt
þ u,Vu ¼ 1

r
V,P (13)

where the stress tensor is

Pij ¼ �pdij + sij ¼ �m
Ð

f(vi � ui)(vj � uj)dv (14)

To close eqn (13), one attempts to evaluate the stress tensor as

a functional of basic hydrodynamic variables (e.g., r and u). If

relaxation to equilibrium is very rapid, i.e., s / 0, the left-hand

side of eqn (12) becomes negligible and thus f z feq; the zeroth-

order approximation f ¼ feq gives Pij ¼ �pdij ¼ �nkBqdij and s ¼
0. The situation is quite different in non-equilibrium. To find

a solution to the kinetic equation one can resort to a perturbation

expansion f ¼ feq + 3f(1) + 32f(2) + . in powers of small dimen-

sionless parameters 3. This procedure was first developed for the

Boltzmann equation by Chapman and Enskog.62,63 In the

second-order of the so-called Chapman-Enskog (C–E) expansion

one derives64

sijzs
ð1Þ
ij þ s

ð2Þ
ij ¼ 2mSij

zffl}|ffl{first�order

�2ms

	
D

Dt
Sij þ 2

�
SikSkj �

1

3
SklSkldij

�
�


SikUkj þ SjkUki

��zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{second�order

(15)

in the incompressible flow limit (V$u ¼ 0). Here, the rate-of-

strain and vorticity tensors are defined as Sij ¼
1

2

�
vui

vxj

þ vuj

vxi

�
and Uij ¼

1

2

�
vui

vxj

� vuj

vxi

�
respectively, the dynamic viscosity is

m ¼ rsq, and
D

Dt
h

�
v

vt
þ u,V

�
. The first term in the right side of

eqn (15), given by the first-order C–E expansion, corresponds to

the Newtonian fluid approximation [eqn (2)]. Meanwhile, non-

linear (non–Newtonian) corrections, expressed by the remaining

terms in eqn (15), are generated in the second-order expansion.

The second-order constitutive relation (15) is quite complex and,

in general, can be only attacked by numerical methods. For the

general case, complexity of the high-order contributions coming

from proliferation of tensorial indices makes derivation of high-

order corrections to hydrodynamic approximations extremely

difficult, if not impossible.

High-frequency limit of oscillating flows. We now turn to

oscillating flows in the high frequency limit. The equation for the

velocity field can be derived from the BE-BGK for the simple but

physically relevant case of Stokes’ second problem. The deriva-

tion is provided in the Appendix. The equation governing the

flow is the so-called ‘‘telegrapher’s equation’’:

v2u

vt2
þ 1

s
vu

vt
¼ c2

s

v2u

vy2
: (16)

The solution to this equation subject to boundary conditions

u(y ¼ 0) ¼ u0 and u(y / N) ¼ 0 is

u ¼ u0e
�

y

d� cos

�
ut� y

dþ

�
(17)

with
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1

d�
¼


1þ u2s2

�1
4

ffiffiffiffiffi
u

2n

r 	
cos

�
tan�1us

2

�
� sin

�
tan�1us

2

�
:

�
(18)

Accordingly, the energy dissipation rate can be calculated as

Ec ðs;uÞ ¼
Smu0

2

2ð1þ u2s2Þ

�
1

d�
þ us

dþ
:

�
(19)

Let us now turn to the implications of the above solution.

First, all the quantities above converge to their Newtonian values

as s / 0; this is the basic property of a Newtonian fluid. Note

also that all the quantities are symmetric in s and u with the

exception of the Newtonian boundary layer thickness d ¼
ffiffiffiffiffi
2n

u

r
.

It therefore makes sense to refer to the limit us / 0 as the

Newtonian limit. As us / 0, the penetration depth and the

wavelength become equal, d�/d+ / 1. In the high-frequency non-

Newtonian limit us / N, the penetration depth saturates, d�/

2l, but d+ / l/us / 0, so that the ratio d�/d+ / us. This result

defines a propagating shear wave in the boundary layer (d�z l).

Fig. 3 displays the main parameters of high-frequency oscillating

flows.

Hydrodynamic boundary conditions. An important issue in

finite Weissenberg or Knudsen number flows is the determi-

nation of proper boundary conditions for the solution of eqn

(16). Such hydrodynamic (coarse-grained) boundary condi-

tions are determined by complex interactions at microscopic

level. According to the classic depiction of slip at a solid

wall due to Maxwell, a finite mean-free-path l and rate-of-

strain at the solid-fluid interface produce an effective slip

velocity

us ¼ uðy ¼ 0Þ � u0 ¼ al
vu

vy

����
y¼0

þO

 
l2 v2u

vy2

����
y¼0

:

!
(20)

Here, u(y ¼ 0) is the tangential component of the fluid velocity at

the wall, u0 is the actual wall velocity, y is the wall-normal

direction (pointing into the fluid bulk), and a is a slip coefficient.

In the case of steady isothermal flows, the slip coefficient

a ¼ 2� sv

sv

is determined by the so-called surface accommoda-

tion parameter sv that ranges between 0 (specular reflection) and

1 (diffuse scattering) for isothermal and perfectly elastic surfaces.

In studies dealing with unsteady flows, different surface rough-

ness, and wetting properties, widely diverse slip velocities have

been observed via experimental and numerical methods.65 For

near-equilibrium flows where ln

����vnu

vyn

����� 1 (n $ 1), the classic no-

slip boundary condition u(y ¼ 0) ¼ u0 has proven to be an

accurate approximation. On the other hand, for complex flows in

far-from-equilibrium conditions the applicability of effective slip

models has not been fully elucidated.

It is worth notice that in the studied oscillating flows, the

governing hydrodynamic equations are linear and thus general

boundary conditions can be easily introduced into or factored

out of the flow solution by linear scaling: a fluid velocity

u(y ¼ 0) ¼ u0 + us can be adopted in lieu of u(y ¼ 0) ¼ u0 in eqn

(17) and thereafter.
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Fig. 3 Length scales and energy dissipation in high-frequency oscillating flows as a function of dimensionless frequency us. (a) The solid line is the

wavelength d+/l. The dashed line is the penetration depth d�/l. The dotted line shows the boundary layer thickness in Newtonian fluid. (b) Dimensionless

energy dissipation
_Eðs;uÞ

1

2
Sru0

2cs

as a function of us for both the Newtonian (dotted line) and the high-frequency solutions.

Pu
bl

is
he

d 
on

 2
3 

Se
pt

em
be

r 
20

10
. D

ow
nl

oa
de

d 
by

 B
os

to
n 

U
ni

ve
rs

ity
 o

n 
29

/0
4/

20
15

 1
4:

29
:5

6.
 

View Article Online
Numerical simulation. In addition to analytical methods,

numerical simulations are commonly employed to study complex

flows. A number of different approaches,49 such as the lattice

Boltzmann method (LBM), direct simulation Monte Carlo

(DSMC) and so on, have been applied to flows involving

M/NEMS. While LBM is based on numerical solution of BE-

BGK, the standard DSMC approach mimics a microscopic

dynamics governed by the classic Boltzmann equation with

binary interparticle collisions. It has been established that both

LBM and DSMC approaches simulate the Navier–Stokes

hydrodynamics for general flows in near-equilibrium conditions

(Kn / 0, us / 0). Furthermore, recent studies66 present

comparable results for steady flows over a wide range of

Knudsen number well within transitional regimes. In the case of

oscillating flows, substantially different flow dynamics are pre-

dicted for the high-frequency limit us [ 1, even though both

approaches report comparable fluidic damping. For us / N,

while LBM and approximations based on BE-BGK introduce

memory effects responsible for elastic fluid response in the bulk,

DSMC simulations have been favorably compared against

analytical solutions for free-molecular flow. Recent work67 has

demonstrated that LBM approaches based on Galerkin projec-

tion of the BE-BGK can accurately predict fluidic effects on

different M/NEMS oscillators experimentally measured in a wide

range of operation conditions.
II.iii. Scaling

Formulating a type of flow in terms of proper dimensionless

numbers and extracting scaling behavior is a powerful approach

to fluid dynamics. Proper dimensionless numbers form a natural

system of units and determine the physical characteristics of the

flow uniquely. For instance, for a steady Newtonian flow past

a solid body, the Reynolds number Re ¼ u0L

n
emerges as the only

relevant parameter from the Navier–Stokes equations. Here, as

above, u0 is a characteristic velocity; L is a characteristic length

scale, typically, of order of the linear dimensions of the body, and

n is the kinematic viscosity. In other words, the particular details

of the flow are all embedded in Re. Thus, data obtained in

different experiments—for instance, on drag coefficients—can
3018 | Lab Chip, 2010, 10, 3013–3025
conveniently be collapsed onto a single curve as a function of Re.

It is also due to this scaling law that an engineer can accurately

predict flow in full-scale designs by making measurements on

scaled-down models.

The simple and elegant scaling behavior of steady flows

quickly becomes complicated as one ventures into flows where

deviations from equilibrium are no longer small and higher-order

stress terms in the series sij z s(1)
ij + s(2)

ij +. become relevant [see

eqn (2)]. The series, in general, can be considered an expansion in

terms of space and time derivatives. It is thus possible to cast the

solution into an expansion in terms of Kn and Wi through proper

non-dimensionalization.

We now turn to the scaling behavior of high-frequency oscil-

lating flows. The dimensionless time in this problem is given by

Wi ¼ s/T ¼ us, as mentioned above. At the Newtonian limit of

Stokes’ second problem, the only length scale available is

dz

ffiffiffiffi
n

u

r
� lffiffiffiffiffiffi

us
p , leading to a Knudsen number, Kndz

ffiffiffiffiffiffi
us
p

(we

henceforth differentiate between various Knudsen numbers by

using a subscript). This Knudsen number must remain small

(us � 1) since us $ 1 (l > d) corresponds to an unphysical

situation. This is because intermolecular collisions must create

the boundary layer. This argument shows that the validity of the

Newtonian approximation is indeed determined by the condition

us� 1. At the high-frequency limit, the solution provided above

in eqn (17)–(18) from kinetic theory can be used to determine the

scaling behavior. Forming dimensionless groups for the para-

meters of this solution, we obtain the following: Knd� ¼
l

d�
/

1

2

and Kndþ ¼
l

dþ
/us as us / N. The first Knudsen number,

Knd�
, cannot serve as a scaling parameter since it does not cover

the possible range of values. The second Knudsen number, Knd+
,

thus emerges as the desired scaling parameter and furthermore,

Knd+
¼ Wi for high-frequency oscillating flows.

Previous attempts to characterize flows involving M/NEMS

resonators employed a geometric dimension w as characteristic

flow length rather than following the kinetic arguments described

above. In one approach,45 a Knudsen number Knw ¼ l/w (see

Fig. 1) is taken as a scaling parameter. When Knw� 1, the flow is

described by classical Newtonian solutions. In the region
This journal is ª The Royal Society of Chemistry 2010
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Knw [ 1, a kinetic treatment, accounting only for collisions

between the resonator and gas particles (i.e., free-molecular flow

approximation) is used for determining the forces acting on the

oscillating body. This approach, however, did not provide

reasonable predictions in the transitional regime Knw � 1. In

other work,68,69 the focus has been on understanding the

squeezing or lubrication flow produced in various N/MEMS

applications, where there is a narrow gap between the resonator

and a stationary substrate. In the transitional regime, this type of

flow has been commonly treated by applying diverse slip

boundary conditions in an attempt to account for rarefaction

and other kinetic effects, which are always present within the

Knudsen layer adjacent to the fluid-solid interface. This

approach has provided predictions for the fluidic damping for

steady flows of rarefied gases. The solutions come in the form of

expansions in terms of Knw with w given by the gap size.68,69

It is important to note that one is typically interested in

macroscopic parameters (observable quantities) determined by

a large number of microscopic interactions, e.g., collisions

between the resonator and fluid molecules. Thus, one is after

the governing hydrodynamic equations that determine the

evolution of macroscopic variables. In order to model the effect

of microscopic interactions, macroscopic conservation equa-

tions typically resort to constitutive relations. A well-known

example of a linear constitutive relation is the Newtonian fluid

approximation [eqn (2)], which involves constant transport

coefficients (shear viscosity) and first-order spatial derivatives

of the fluid momentum. In the case of steady flows when

Kn � 1, rarefaction effects cause spatial fluctuations in

macroscopic parameters and one consequently must resort to

higher-order derivatives of hydrodynamic variables resulting in

nonlinear relations. For high-frequency oscillating flows and

Wi � 1, however, deviations from Newtonian hydrodynamics

are predominantly caused by nonlinearities (e.g., timespace

dependence of transport coefficients) arising when macroscopic

quantities vary on time scales of-the-order of the relaxation

time of the fluid.
III. Experiments

III.i. Damped harmonic oscillator model of a M/NEMS

resonator

An elastic structure can be approximated as a damped harmonic

oscillator around its resonant modes, if the resonances are well-

separated.70 The structure moves at a single frequency, modeled

as a lumped mass mi attached to a spring of stiffness ki. The

position of the mass in one-dimensional oscillatory motion is

described by coordinate x. In the absence of a surrounding fluid

(i.e., in vacuum), the equation of motion of the one-dimensional

oscillator reads:

xtt + gixt + u2
i x ¼ R(t)/mi. (21)

Here, xt denotes the time derivative of x, R(t) is an external drive

force; gi accounts for the intrinsic energy dissipation; ui is the

resonance frequency and ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ki=mi

p
. A quality factor can be

defined as Qih
uiEst

E_
¼ ui

gi

; Est is the energy stored in the
This journal is ª The Royal Society of Chemistry 2010
oscillations of the resonator. Note that the subscript i stands for

intrinsic in all the above quantities.

We are interested in determining the increase in the dissipation

and the effective resonator mass due to the fluid. First, we

consider the case of a Newtonian fluid. Rewriting the fluid force

on the oscillating resonator, described in eqn (21), as

�migf u�mibf

du

dt
, we obtain

(1 + bf)xtt + (gi + gf)xt + u2
i x ¼ R(t)/mi. (22)

The fluid thus generates a contribution to both the oscillatory

mass and the dissipation. The loaded parameters of the oscillator

are uLzui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ bf

s
and gL z gi + gf. In a dense fluid such as

water, a M/NEMS resonator typically satisfies gL z gf since

gi� gf. As such, structural dissipation can be neglected and the

loaded quality factor QL is determined by the fluidic dissipation

1

Qf

,
1

QL

z
1

Qf

z
gf

uL

. On the other hand in a rarified gas, bf� 1 and

1

QL

z
1

Qi

þ 1

Qf

.

In a typical experiment, harmonic motion of a M/NEMS

resonator can be actuated by electrostatic,71 photothermal,72 or

inertial forces.73 One usually measures the response of the

M/NEMS resonator as a function of the frequency of the actu-

ation force near a resonance under different environmental

(fluidic) conditions,41,42 again using optical74–78 and electrical79

techniques. It follows from eqn (22) that the frequency response

is in the form of a Lorentzian, which provides the resonance

frequency and the Q as a function of the fluid loading. Alter-

natively, the drive force can be removed altogether and just the

thermal fluctuations of the resonator can be measured in any one

of its resonant modes. Curve fitting again provides the resonance

frequency and the Q. In all the measurements, it is important to

keep the resonance amplitudes of the resonators extremely small,

within the linear limit. In Fig. 4, the driven frequency response of

a nanomechanical beam resonator around its fundamental out-

of-plane resonance is shown in nitrogen (N2) at different

pressures. The normalized frequency u/u0 and Q as a function of

pressure are plotted in Fig. 4(b) and (c), respectively. Both the

frequency and the Q saturate as the pressure is lowered,

converging to their intrinsic values.

III.ii. Results

The above discussion on resonators and the theoretical frame-

work provided in section II can now be applied to experiments

on high-frequency flows. An ideal system to study high-

frequency nanofluidics is a simple, relatively inert gas, such as

N2. The ideal gas law provides a good approximation for the

macroscopic parameters of the gas: The viscosity m is indepen-

dent of the pressure p and the relaxation time can be expressed

as s ¼ m/p. Thus, by changing the gas pressure and the resonator

frequency, one can explore a broad range of us. Moreover, the

fact that l f 1/p provides an accurate way to test the effects of

Kn on the flow.

The theory provides the average energy dissipated, _E, i.e., eqn

(19) (in units of W), for a large plate. In order to make further
Lab Chip, 2010, 10, 3013–3025 | 3019
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Fig. 4 (a) Fundamental resonance of a silicon doubly clamped beam of width w ¼ 500 nm, thickness t¼ 280 nm, and length l ¼ 17.1 mm at various dry

nitrogen pressures: p ¼ 0.507, 4.84, 7.59, 12.6, 28.1 and 94 kPa. (b) The normalized resonance frequency and (c) Q of the same device as a function of

pressure. Notice that the fluidic dissipation becomes appreciable around 103 Pa and the crossover from non-Newtonian to Newtonian flow (us z 1)

takes place around 104 Pa. The error bars in the data arise due to thermal fluctuations in resonance, measurement noise and fitting errors. For most data

points, they are smaller than the symbol size.
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progress, we approximate the M/NEMS resonator as a plate with

surface area (wet area) S. The motivation for the assumption

comes from the fact that the high frequency flow becomes

tangential to the surface as discussed in section II; any object

oscillating in a fluid at high frequencies can thus be described as

a plate to a good approximation. Fluidic energy dissipation can

be related to quality factor as
1

Qf

¼
_E

uEst

, where Estz
1

2
miu0

2 is

the energy stored in the resonator. Using the average dissipated

energy from eqn (19) and rearranging terms, we arrive at the

expression

1

Qf

z
S

m
f ðusÞ

ffiffiffiffiffiffi
mr

2u

r
: (23)

The index i referring to intrinsic values has been dropped for

brevity. All the symbols have been defined in eqn (23) with the

exception of f(us) [not to be confused with the distribution

function f(r,v,t) above], which is a dimensionless function

obtained from eqn (18) and eqn (19),
Fig. 5 Fluidic dissipation 1/Qf as a function of pressure for cantilevers (top ro

The dashed lines are fits to the molecular collision model.45 High-frequency nan

(246 ms-Pa)/p. The molecular collision and the high-frequency nanofluidics p

3020 | Lab Chip, 2010, 10, 3013–3025
f ðusÞ ¼ 1

ð1þ u2s2Þ3=4

	

1þ us

�
cos

�
tan�1us

2

�
� ð1� usÞsin

�
tan�1us

2

��
: (24)

Fig. 5 shows
1

Qf

for a number of resonators with different sizes

and shapes as a function of pressure. The solid lines are self-

consistent fits to data based on eqn (24), where all parameters

except for s are available. In order to obtain the fits, we assume

that s satisfies the empirical ideal gas form s f 1/p. In the bulk of

the gas, the proportionality constant is the viscosity, s¼ m/p. This

value, however, only reflects interactions between gas molecules;

in the experiments, however, gas-solid surface interactions

determine the proportionality constant. In order to account for

this, we extracted the proportionality constant from experi-

mental data as follows: At us z 1, all the experimental data

show a change in slope, transitioning from
1

Qf

fp
w) and doubly-clamped beams (bottom) with varying linear dimensions.41

ofluidics predictions are the solid lines calculated from eqn (24) using s z
redictions were multiplied by fitting constants of order 1.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 6 Pressure dependence of the relaxation time s, extracted from the

transition point us z1 (crossover from non-Newtonian to Newtonian

flow) observed in the dissipation data sets of many resonators, such as

those shown in Fig. 4 and 5.41 Best fit line provides the empirical corre-

lation s z (246 � 30 ms-Pa)/p.
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(non-Newtonian or molecular flow) to
1

Qf

fp1=2 (Newtonian or

viscous flow). Given the resonator frequency u and the transition

pressure, s can be extracted as a function of pressure as shown in

Fig. 6, yielding the empirical relation sz
246� 30

p
ms-Pa (p is in

units of Pa). The end result of this exercise is the self-consistent

fits in Fig. 5. To improve the fits, the results emerging from eqn

(24) were multiplied by fitting factors of order 1.

The above discussion establishes the role us plays in high-

frequency nanofluidics of M/NEMS resonators. In a compli-

mentary set of experiments,42 we have looked for size effects in

high-frequency nanofluidics, i.e., possible scaling behavior based

upon Kn. In order to do this, we extended our measurements to

macroscopic quartz resonators. In thickness shear mode, the flow

for small amplitude oscillations of quartz resonators matches the

flow generated by a large plate to a very good approximation. In

Fig. 7, we compare 1/Qf data on resonators, which span a broad

range of linear dimension L, oscillate in different modes (illus-

trated in the insets) but at close frequencies: a macroscopic

quartz crystal in shear mode at 5 MHz; a microcantilever and

a nanomechanical doubly-clamped beam in flexural modes at

1.97 and 24.2 MHz. Here, the dynamically relevant linear
Fig. 7 Pressure dependent fluidic dissipation across length scales, measured u

mm � 3.6 mm resonating in its first flexural harmonic mode in the out-of-plane

moving in fundamental shear mode. (c) A nanomechanical doubly-clamped be

in fundamental out-of-plane flexural mode. The upper axes shows Kn ¼ l/L

This journal is ª The Royal Society of Chemistry 2010
dimension of the flow is taken as L z S1/2, determined by the

surface area of the resonator. For the quartz crystal LQ z 10�2m,

for the cantilever LC z 10�4m and for the beam LB z 3� 10�6m.

The Knudsen numbers Kn¼ l/L for the devices are shown on the

upper axes. Two observations are noteworthy: the dissipative

behaviors are similar for all vibration modes, and the L or Kn

appears to have no effect on the flow. These measurements

establish that the simple size dependent Kn is not a relevant

parameter for small amplitude high-frequency flows—as long as

the oscillating body has one macroscopic dimension and,

subsequently, a macroscopic number of collisions with the fluid.

Furthermore, the shape and oscillation-mode independence of

the data provide indirect support for the assumption that the

flow remains tangential to the solid surface and skin friction

dominates the dissipation. If the opposite were true, the same

approach would not be able to provide acceptable fits to large

plates as well as slender beams and cantilevers.
IV. Scaling and universality

The data obtained from different resonators can be collapsed

onto a dimensionless plot as shown in Fig. 8. Here, the dimen-

sionless function f(us) of eqn (24) is plotted against the dimen-

sionless Weissenberg number Wi ¼ us. Each symbol in the plot

represents a separate device with parameters displayed in Table

1. The collapsed data were obtained as follows: Using eqn (23),

1/Qf values for each device were scaled to obtain f as a function of

pressure; the pressure axis for each resonator was subsequently

converted into us by using the empirical relationship

sz
246� 30

p
ms-Pa (p is in units of Pa) along with the resonator

frequency u. The solid line is f(us) calculated from eqn (24). In

analyzing the data of flexural resonators, a fitting factor of 2.8

was used as opposed to the near unity fitting factors used for the

shear-mode quartz crystals.

There are two distinct regimes in the data: the viscous (New-

tonian) regime as us / 0 and the opposite limit of high-

frequency (non-Newtonian) flow. All the data from different

resonators, with length scales extending from sub-microns all the

way up to millimeters, follow the same trends. Moreover, the

shape of the resonator and the way it oscillates (mode) does not
sing (a) a microcantilever with linear dimensions (l � w � t) 125 mm � 36

direction, (b) a quartz crystal of diameter 0.5 cm and thickness �0.1 mm

am with linear dimensions (l� w� t) 9.6 mm� 0.23 mm� 0.2 mm moving

. Solid lines are fits to eqn (24) using s z (246 ms-Pa)/p.

Lab Chip, 2010, 10, 3013–3025 | 3021
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Table 1 The parameters for devices of Fig. 8. The letters c, b and q stand
for cantilever, doubly-clamped beam and quartz, respectively. The linear
dimensions for the beams and cantilevers are as shown in Fig. 1. These
are typically operated in flexural modes. The quartz crystals are in the
form of thin disks with diameter �1 cm and varying thicknesses
�0.1 mm. They are operated in thickness shear modes

No. Type w � t � L (mm) f0 (MHz)

1 c 53 � 2 � 460 0.078 (1st Harmonic)
2 c 36 � 3.6 � 125 0.31 (fundamental
3 c 36 � 3.6 � 125 1.97 (1st Harmonic)
4 b 0.50 � 0.28 � 17.1 10.4
5 b 0.50 � 0.28 � 11.2 18.1
6 b 0.93 � 0.22 � 9.9 22.8
7 b 0.76 � 0.22 � 9.9 22.9
8 b 0.23 � 0.20 � 9.6 24.2
9 b 0.50 � 0.28 � 9.1 27.1
10 b 0.32 � 0.20 � 7.7 33.2
11 b 0.50 � 0.28 � 5.9 45.7
12 b 0.25 � 0.20 � 5.6 53.2
13 b 0.73 � 0.23 � 5.6 58.6
14 b 0.24 � 0.20 � 3.6 102.5
15 q — 5
16 q — 14.3
17 q — 32.7

Fig. 8 Scaling of fluidic dissipation obtained from quartz resonators,

microcantilevers and nanomechanical beams. Fitting factors of order one

and S/m values calculated from geometry and mode shape were used.41

The solid line is the dimensionless dissipation function f(us) of eqn (24).
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seem to have a strong effect on the flow as long as the amplitude

of oscillation is small. The only relevant parameter, which

determines the flow is Wi¼ us. In other words, all characteristics

of the flow, including the constitutive stress-strain relations, the

flow geometry, size and so on, are embedded in the single

parameter Wi¼ us; such behavior in physical systems is typically

considered a universality.

Recent experiments of Svitelskiy et al.44 have extended the

parameter space of this universality and shed more light on high-

frequency nanofluidics. Their data show general agreement with

the theoretical development and the experimental data presented

here for 0.1 < us < N for a number of different gases including

CO2, N2 and He. Svitelskiy et al., however, show that in the

viscous regime, the simple plate solution becomes less and less

accurate. They suggest that this effect may simply be due to

mass loading. Furthermore, these authors present a different
3022 | Lab Chip, 2010, 10, 3013–3025
explanation for the deviation of the experimentally determined

relaxation time from that in bulk. They suggest that many

intermolecular collisions may be needed to establish equilibrium,

thereby leading to a longer relaxation time.
V. Conclusions and outlook

We have presented a universal formulation of the fluid dynamics

of M/NEMS resonators. In this formulation, the fluid relaxation

time s in conjunction with the resonator frequency u determines

the nature of the flow; linear dimension and geometry appear to

have weak effects. As us � 1, the Newtonian approximation

provides accurate predictions of the flow generated by M/NEMS

resonators; this is typically referred to as the viscous or the

Newtonian limit. At us � 1, the flow starts to deviate from the

Newtonian approximation, and as us [ 1, viscoelastic and

eventually (us / N) elastic fluid response emerges. This is the

non-Newtonian or high-frequency flow regime. Here, the inval-

idity of the Newtonian approximation for us > 1 is not only due

to surface effects, which might be absorbed by proper hydro-

dynamic boundary conditions, but also due to the qualitatively

different fluid dynamics in the bulk: the simple linear relation

between stress and rate-of-strain in a Newtonian fluid breaks

down at high frequencies. Such viscoelastic response of simple

fluids (gases) in the high-frequency limit is a well-known

phenomenon within the realm of transport theory and statistical

physics:80 diffusion processes in non-equilibrium systems can

only be established after a finite time of the order of the relax-

ation time s. When one looks at the fluid for a short time

compared to its relaxation time, where diffusion effects are still

weak and transport coefficients such as shear viscosity become

frequency dependent, one observes an ensuing decay in the

dissipation of fluid momentum and energy.

In our experiments, Re � 0 and nonlinear effects, such as

hydrodynamic instabilities and viscoelastic turbulence, are not

present.81 The observed transition is due to the intrinsic

dynamical response of the simple fluid to high-frequency

perturbations. Similar observations are commonplace in

macroscopic flows of concentrated long-chain polymer solutions,

where s can be long and, consequently, us > 1 due to the rela-

tively slow polymer dynamics.82–84 In rheology, polymers are

often treated as elastic springs, and viscoelastic behavior of

polymer solutions is attributed to the direct contribution of

polymer molecules to the stress tensor. In kinetic theory, the

breakdown of the Navier–Stokes equations for Kn � 1 and/or

Wi � 1 is usually attributed to ballistic dynamics or kinetic

effects associated with the relatively low frequency of inter-

particle collisions. Kinetic equations predict that inertial forces

become dominant in the high-frequency limit while viscous terms

vanish in the hydrodynamic limit. The ‘viscoelastic’ response

observed here at us > 1 is linked to the underlying microscopic

dynamics, i.e., kinetic and ‘viscoelastic’ effects correspond to the

same phenomenon in the studied systems. In this sense, our work

points to a deep dynamical connection between oscillating flows

of complex and simple fluids.

Finally, there is a relentless effort to develop M/NEMS

resonators operating in gaseous85 and liquid environments.86 As

noted above the dissipation or the Q sets the performance limits

of a M/NEMS resonator. In mass sensing, for instance, a large
This journal is ª The Royal Society of Chemistry 2010
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resonator Q translates directly into high mass resolution. The

fluid dynamics discussed here should impact the design of next

generation M/NEMS resonators. First, it is important to observe

that shrinking the size of a resonator (M/NEMS) tends to put

one at a disadvantage in fluids: as a resonator is shrunk in size, its

surface-to-volume ratio gets larger; fluidic dissipation should

scale with the surface area, while stored mechanical energy

should be proportional to the resonator volume. The prefactor

S/m in eqn (23) is a manifestation of this fact. Second, the theory

and the data in Fig. 8 suggest that f(us), which determines the

dissipation in fluid or Qf [see eqn (23)] is a decreasing function of

us as us grows beyond us > 1. Given two resonators with

identical S/m ratios, the higher-frequency resonator will always

be more resilient in a given fluid, but the degree of resilience

depends upon the fluid s and the value of f(us). In this sense, the

function f(us) can be used as a design aid. It may also be feasible

to decrease the effective relaxation time of the fluid through less

trivial mechanisms, e.g. through polymer addition or foams for

water. Other strategies that can potentially improve device

performance include modifying the cross-sectional shape and

surface properties. The employment of hydrophobic or super-

hydrophobic coatings for resonators in water could further

increase the effective hydrodynamic slip with a subsequent

reduction of the resistance forces.
Appendix 1. Derivation of telegrapher’s equation

Extended hydrodynamics from BE-BGK

The BE-BGK [eqn (12)], having a linear advection term, can be

solved by integrating along the characteristics

f ðr; v; tÞ ¼
ðt=s
0

e�s f eqðr� vss; v; t� ssÞdsþ f0ðr� vt; vÞe�t=s

(A.1)

with f0(r � vss,v) given by the kinetic initial condition at t ¼ 0.

Solution to the boundary value problem (t [ s) can be formally

written as

f ðr; v; tÞ ¼
ðN
0

e�sð1þsvVÞf eqðr; v; t� ssÞds (A.2)

after employing the shift operator f(x + Dx) ^ f(x)eDxV. Since

boundary (surface) terms have been neglected, the solution in

eqn (A.2) is only exact within the fluid bulk. It follows that

hydrodynamic expressions derived from eqn (A.2) must be

regarded as approximate within a thin layer adjacent to the wall;

as a consequence, nontrivial boundary conditions (e.g., effective

slip) may be required in some flow regimes. A formal expression

for the fluid velocity field can be obtained by taking the first

velocity moment of f(r,v,t):

ruðr; tÞ ¼ m

ð
vdv

ðN
0

e�sð1þsvVÞf eqðr; v; t� ssÞds: (A.3)

In the studied case of unidirectional shear flow (V ^ vyj) we have

u(r,t) ¼ u(y,t)i and r(r,t) ¼ nm ¼ const; the equilibrium distri-

bution then reads
This journal is ª The Royal Society of Chemistry 2010
f eq ¼ n

ð2pkBq=mÞ3=2
exp

 
�mðvx � uðy; tÞÞ2

2kBq

!

exp

 
�

mv2
y

2kBq

!
exp

�
� mv2

z

2kBq
:

�
(A.4)

Use of eqn (A.4) in eqn (A.3) and evaluation of the Gaussian

integrals lead to

uðy; tÞ ¼
ðN
0

e�se

s2s2qV2

2 uðy; t� ssÞds: (A.5)

In order to construct a conservation equation for the fluid

momentum we take partial time derivatives of eqn (A.5):

vu

vt
¼ sq

ðN
0

se�se

s2s2qV2

2 V2uðy; t� ssÞds (A.6)

v2u

vt2
¼ q

ðN
0

e�se

s2s2qV2

2 þ s
v

vs
e�se

s2s2qV2

2

0B@
1CA

264
375V2uðy; t� ssÞds:

(A.7)

We then combine eqn (A.6) and (A.7) and arrive at the following

integro-differential equation:

s
v2u

vt2
þ vu

vt
¼ sq

0@V2uþ s2q

ðN
0

s2e�se

s2s2qV2

2 V4uðy; t� ssÞds

1A
(A.8)

Provided that the BE-BGK equation is valid, the hydrodynamic

relation in eqn (A.8) is formally applicable to arbitrary Knudsen

or Weissenberg number regimes.
Asymptotic hydrodynamic approximations

Our goal here is to evaluate hydrodynamic approximations for

the frequency limits us / 0 and us / N. We proceed by

recasting eqn (A.8) as

s
v2u

vt2
þ vu

vt
¼ vð1þ fÞV2u (A.9)

where n ¼ sq is the kinematic viscosity and

f ¼ s2q

ðN

0

s2e
�s

�
1þ s

v

vt

�
e

s2s2qV2

2 V2ds: (A.10)

For the case of unidirectional shear flow, we seek a single

hydrodynamic mode

u(y,t) ¼ u0eiute�iky (A.11)

as the flow solution; u and k are allowed to have both real and

imaginary components. After defining Kn ¼ s
ffiffiffi
q
p

khlk, the

dimensionless dispersion relation for eqn (A.9) becomes
Lab Chip, 2010, 10, 3013–3025 | 3023
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(us)2 � ius ¼ Kn2(1 + f) (A.12a)

f ¼ �Kn2

ðN
0

s2e�sð1þiusÞe
�

s2Kn2

2 ds: (A.12b)

Note that the Knudsen number Kn(su) is determined by the

non-dimensional frequency, or Weissenberg number, Wi ¼ su

according to a nontrivial dispersion relation. After expansion,

the operator in eqn (A.12b) is

f ¼ �Kn2
ÐN
0

s2e�sð1þisuÞPN
n¼0

1

n!

�
� s2Kn2

2

�n

ds. Using the identity

ÐN
0

sne�Asdsh
n!

Aðnþ1Þ, we obtain

f ¼ 1

Kn

XN
n¼0

ð � 1Þðnþ1Þ

2n

ð2nþ 2Þ!
n!

	
Kn

ð1þ isuÞ

�ð2nþ3Þ

¼ � 2Kn2

ð1þ isuÞ3
þ 12Kn4

ð1þ isuÞ5
�. (A.13)

the dispersion relation (A.11) can be then expressed as

ðusÞ2�ius ¼ Kn2 þO

 
Kn4

ð1þ iusÞ3
:

!
(A.14)

As expected, the Newtonian relation�iu¼ nk2, with a kinematic

viscosity n ¼ sq, is recovered in the limit su / 0. In flow regimes

where Kn < 1 and su < 1, the telegrapher’s equation

s
v2u

vt2
þ vu

vt
¼ nV2uþO



Kn4

�
ðKn� 1Þ (A.15)

is obtained by neglecting contributions of order O(Kn4). In the

case that Kn [ 1, we can estimate

f � �Kn2

ð1=Kn

0

s2ds e� 1

Kn
(A.16)

and thus (us)2� ius¼Kn2 + O(Kn). The hydrodynamic relation

(A.15) becomes approximately valid in the high-frequency

regime when us [ Kn [ 1;

s
v2u

vt2
þ vu

vt
¼ nV2uþOðKnÞ ðsu[Kn[1Þ:

Hence, we adopt the wave-diffusion eqn (A.17), known as the

telegrapher’s equation, as an approximate hydrodynamic rela-

tion in order to predict macroscopic features of the flow in both

low- and high-frequency limits.
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