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Ultimate limits to inertial mass sensing based upon nanoelectromechanical
systems
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Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies
exceeding 1 GHz, with quality factors~Q! in the range 103<Q<105. The minuscule active masses
of these devices, in conjunction with their highQs, translate into unprecedented inertial mass
sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we
evaluate the ultimate mass sensitivity limits for nanomechanical resonators operatingin vacuothat
are imposed by a number of fundamental physical noise processes. Our analyses indicate that
nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at
the level of individual molecules. ©2004 American Institute of Physics.
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I. INTRODUCTION

Following the trend in semiconductor electronics, m
chanical devices are rapidly being miniaturized into the s
micron domain.1 Nanomechanical structures provide e
tremely high resonance frequencies, minuscule active ma
and very small force constants. An additional and import
attribute is the high quality~Q! factors of their resonan
modes. These are currently in the range,Q;103– 105, which
is significantly higher than those of electrical resonant c
cuits. This powerful combination of attributes translates in
opportunities for unprecedented mass sensitivity at high
erational ~resonance! frequencies—thus opening a nov
realm of sensing applications.

Resonant mass sensors are already employed in m
diverse fields of science and technology. These devices
erate by providing a frequency shift that is directly propo
tional to the inertial mass of the analyte molecules accre
upon them. Among the most sensitive realizations are th
based on the acoustic vibratory modes of crystals,2–4 thin
films,5 and micron-sized cantilevers.6–10 In recent
experiments,11 we have demonstrated the unparalleled m
sensitivity of nanoelectromechanical systems~NEMS! oper-
ating in vacuo, using devices that take advantage of t
aforementioned attributes. Given the recent realization of
nomechanical devices operating at microwave frequencie12

prospects for weighing individual, electrically neutral mo
ecules with single-Dalton13 sensitivity are now feasible.11

Two properties are central in establishing the sensitiv
of resonant mass sensors:~a! the effective vibratory mass o
the resonator and~b! the short- and long-term resonance fr
quency stability of the device. The effective vibratory ma

a!Author to whom correspondence should be addressed; electronic
ekinci@bu.edu

b!Electronic mail: roukes@caltech.edu
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is determined by the geometry and configuration of the re
nant structure, and by the properties of the materials co
posing it. The frequency stability of the resonator is, in tu
governed by two classes of mechanisms—extrinsic proce
that originate from the transducer and readout circuitry14,15

and intrinsic processes fundamental to the nanomechan
resonator itself.16,17 The frequency stability in macro- an
micromechanical resonators have, in most cases to date,
limited by extrinsic elements. In the domain of NEMS, how
ever, given the enhanced sensitivity that is attainable as
vices become smaller10 and ultrasensitive displacemen
transduction techniques emerge,18,19 fundamental fluctuation
processes are increasingly likely to determine the outco
These considerations motivate the present work. Below
shall explore how fundamental fluctuation processes imp
ultimate limits upon the sensitivity of NEMS-based inerti
mass sensors.

Even though our focus in this article is upon establish
the fundamental limits to mass sensitivity of NEMS, the r
sults we obtain are more general. As discussed in more d
below, a crucial aspect of investigating the ultimate ma
sensitivity in NEMS is, in fact, determining the fundamen
limits to frequency-shift detection. In this respect, our wo
is complementary to a recent article by Cleland a
Roukes,16 in which expressions are derived for phase no
originating from a variety of physical processes. That wo
however, does not address important considerations conc
ing specific measurement schemes that convert this p
noise into frequency fluctuations. We shall elucidate th
here.

A simple and particularly illustrative structure for realiz
ing high frequency nanomechanical resonators is the dou
clamped beam~Fig. 1!. We derive estimates for the ultimat
limits to mass sensing based upon doubly clamped
beam resonators with a fundamental resonance freque

il:
2 © 2004 American Institute of Physics
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f 0‘ 5v0/2p51 GHz. We evaluate sensing prospects for t
different model realizations of 1 GHz fundamental-mod
doubly clamped beam resonators; these are summarize
the parameters displayed in Table I. We use a damp
simple harmonic oscillator model to describe the flexu
motion of the beam~here chosen as out-of plane, Fig. 1! in
the vicinity of the fundamental resonance. ForQ>10, this
provides an accurate description of the resonant respon
within 1%.20 In this model, the mechanical response for
particular mode is approximated by that of a damped h
monic oscillator with an effective massMeff , a dynamic
stiffness~for point loading at the beam’s center! keff , and a
quality factorQ. All of these factors apply uniquely to th
specific mode considered. For the fundamental-m
response of a simple doubly clamped beam, the effec
mass, dynamic stiffness, and the resonance frequency
given as Meff50.735l twr, keff532Et3w/ l 3, and v0

52p(1.05)AE/r(t/ l 2), respectively.21 Here, l 3t3w are
the beam’s dimensions,E is Young’s modulus, andr is the
mass density of the beam. We have assumed the mater
isotropic; for single-crystal devices anisotropy in the elas
constants will result in a resonance frequency that depe
upon specific crystallographic orientation.

In resonant sensing applications, one generally drives
resonator to a predetermined amplitude and meas
amplitude22 or frequency15 shifts in the steady state upo
changing the resonator’s physical environment. To maxim
the signal-to-noise ratio~SNR! one wishes to apply the larg
est drive level tolerable. For the sake of concreteness,
assume that this is the maximum rms level,^xc&, still con-
sistent with producing a predominantly linear response.23 For
a doubly clamped beam, this can be roughly approximate
^xc&'0.53t, which depends only upon the beam thickness
the direction of vibration.24 A more rigorous definition can be
established for the case of frequency-stiffening nonlinea
induced by the Duffing instability for doublyclampe
beams.25,26

FIG. 1. Doubly clamped beam resonator with lengthl, width w, and thick-
nesst. Our illustrative analyses are based upon the fundamental-mode,
of-plane~z-directed! flexural response of the beam.
Downloaded 19 Feb 2004 to 128.197.50.128. Redistribution subject to AI
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In the simple harmonic oscillator model, both the res
nator and the added~accreted! massdM are, to lowest order,
approximated as point masses. Interpreting real experim
with this assumption involves consideration of addition
details,27 but these do not qualitatively alter the fundamen
picture that emerges.

In Sec. II of this article, we develop a detailed formalis
for obtaining the mass sensitivity of a nanomechanical re
nator. Mass sensitivity limits imposed by various frequenc
fluctuation processes in nanomechanical resonators are
cussed. Numerical estimates are obtained for the two mo
realizations of a 1 GHz nanomechanical doubly clampe
beam resonator~Table I!. In Sec. III, we evaluate these re
sults and present our conclusions.

II. ANALYSIS

In general, resonant mass sensing is performed by c
fully determining the resonance frequencyv0 of the resona-
tor and then, by looking for a frequency shiftdv0 in the
steady state due to the accreted mass. Assuming that
added massdM is a small fraction of the effective vibrator
resonator massMeff , we can write a linearized expression

dM'
]Meff

]v0
dv05R21dv0 . ~1!

This expression assumes that the modal quality factor
compliance are not appreciably affected by the accreted
cies. This is consistent with the aforementioned presump
thatdM!Meff . Hereafter, we shall refer todM , as the mass
sensitivity or the minimum detectable mass of the syste
Apparently,dM critically depends on the minimum measu
able frequency shiftdv0 and the inverse mass responsivi
R21.

Since the resonator’s compliancekeff for the employed
resonant mode—a function of the resonator’s elastic prop
ties and geometry—is unaffected by small mass changes
can further determine that

R5
]v0

]Meff
52

v0

2Meff
, ~2!

and

dM'22
Meff

v0
dv0 . ~3!

We note that Eq. ~3! is analogous to the Sauerbre
equation,28 but is instead here written in terms of the abs
lute mass, rather than the mass density, of the accreted
cies.

ut-
.
TABLE I. Parameters for the two representative 1 GHz doubly clamped beams considered in this work

w3t3 l
~nm!

M eff50.735wltr
~g!

keff

~N/m!
^xc&
~nm!

Ec5M effv0
2^xc

2&
~J!

DR at 300 K
DR510 log(Ec /kBT)

~dB!

503803780
Si beam

5.303 10215 ;290 42 3.73 10213 ;80

153153340
Si nanowire

1.303 10216 ;6.73 8 3.53 10216 ;50
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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To make further progress, an important question ne
to be addressed: what is the minimum measurable freque
shift dv0 that can be resolved in a~realistic! noisy system?
In principle, a shift comparable to the mean square no
~the spread! in an ensemble average of a series of freque
measurements should be resolvable, i.e.,dv0

'1/NA( i 51
N (v i2v0)2 for SNR51. An estimate fordv0

can be obtained by integrating the weighted effective spec
density of the frequency fluctuationsSv(v) by the normal-
ized transfer function of the measurement loopH(v)14

dv0'F E
0

`

Sv~v!H~v!dvG1/2

. ~4!

Here, Sv(v) is in units of ~rad/s!2/~rad/s!. We can further
simplify Eq. ~4! by replacingH(v) with the square transfe
function H8(v), which has the same integrated spect
weight but is nonzero only within the passband delineated
v06pD f ~i.e., of width D f ; see Fig. 2!. Here,D f '1/2pt
and is dependent upon the measurement averaging timt.
Given this assumption, Eq.~4! takes the simpler, more famil
iar form

dv0'F E
v02pD f

v01pD f

Sv~v!dvG1/2

. ~5!

This, of course, is an approximation to a real system—al
a good one. If necessary, one can resort to the more acc
expression, Eq.~4!.

Equations~4! and~5! are general expressions. Howeve
the precise functional form ofSv(v) depends upon the
physical noise processes that are operative, as well as
specific readout process that is employed. We shall disc
both in Sec. II A.

A. Thermomechanical fluctuations

We first consider the fundamental limit imposed up
mass measurements by thermomechanical noise. These
nator fluctuations are a consequence of the fluctuati
dissipation theorem; detailed expositions can be fou
elsewhere.29 They originate from thermally driven random
motion of the mechanical device. For the one-dimensio
simple harmonic oscillator representation of the NEM
modal response introduced above—characterized byMeff

andkeff5Meffv0
2—the mean square displacement fluctuatio

of the center of masŝxth& satisfy 1
2Meffv0

2^xth
2 &5 1

2kBT. Here,
kB is Boltzmann’s constant andT is the resonator tempera
ture. The spectral density of these random displacem
Sx(v) ~with units of m2/Hz! is given by

Sx~v!5
1

Meff
2

SF~v!

~v22v0
2!21v2v0

2/Q2
. ~6!

The thermomechanical force spectral density~with units
N2/Hz) has a white spectrum,SF(v)54Meffv0kBT/Q.

Before proceeding, we reiterate that the manner in wh
Eq. ~5! is evaluated will depend upon the particular measu
ment scheme implemented. In Fig. 2, we present schem
of two common measurement circuits used for freque
tracking in mass sensing applications. In the first sche
Downloaded 19 Feb 2004 to 128.197.50.128. Redistribution subject to AI
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based upon negative feedback depicted in Fig. 2~a!, small
phase shifts of the resonator are tracked through the use
phase locked loop~PLL! that is driven by a constant
amplitude voltage-controlled oscillator~VCO!.30 Conversely,
in the positive feedback scheme illustrated in Fig. 2~b!, the
resonator operates within a self-excited loop. While the fi
value ofdv0 does not depend upon the particular measu
ment scheme employed, the evaluation of the integral
the determination of the appropriate bandwidth does. In F
2~c!, we illustrate the thermomechanical noise in the reso
tor in relation to the measurement bandwidth of the circu

FIG. 2. Schemes for the operation of two port resonant NEMS devices~a!
In the phase locked loop~PLL!, the principal components are:~VCO! volt-
age controlled rf oscillator;~PS! power splitter; two port-NEMS;~M! mixer
~with RF, LO, and IF ports!; ~B! phase shifter;~L! amplitude limiter;~A!
variable gain amplifier;~LPF! low pass filter.~b! In a self excited circuit,
similar components are used.~c! Power spectral density of thermomechan
cal fluctuations in a driven simple harmonic oscillator as a function of f
quency, normalized to the response on resonance forQ51. The coherent
drive, assumed noiseless, is represented by the vertical arrow at the
nance frequency,v5v0 . Thermomechanical noise in the measureme
bandwidth contributes to the observed frequency fluctuations. A large m
surement bandwidth,D f , in general, results in enhanced noise, but give
better characteristic response timet51/(2pD f ). The measurement band
width in the phase locked loop~PLL! measurement, for instance, is dete
mined either by the bandwidth of the low pass loop filter~LPF! that is
employed, or by the ring-down time of the resonator itself.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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We now turn to the evaluation of the minimum meas
able frequency shift,dv0 , limited by thermomechanica
fluctuations of a NEMS resonator readout by a PLL circu
In such a measurement, the resonator is driven at a con
mean square amplitude,^xc&, by the VCO. Thermal dis-
placement fluctuations in turn generate frequency fluct
tions, with an effective spectral density given by14

Sv~v!5
Sf~v!

~]f/]v!2
'S v0

2QD 2 Sx~v!

^xc
2&

'
v0

5

Q3

kBT

EC

1

~v22v0
2!21v2v0

2/Q2
. ~7!

Here,Sf(v) is the spectral density of the phase fluctuatio
~with units of dBc/Hz!, given by Sf(v)5Sx(v)/^xc

2&. We
can characterize the carrier level~the VCO output delivered
to the resonator! by an energyEc5Meffv0

2^xc
2&, which repre-

sents the maximum drive energy. We shall, for simplicity a
without loss of generality, assume this carrier to
noiseless.31 To obtaindv0 , the integral in Eq.~5! must be
evaluated using the expression forSv(v) given in Eq. ~7!
over the effective bandwidth. Performing this integration
the case whereQ@1 and 2pD f !v0 /Q, we obtain

dv0'FkBT

EC

v0D f

Q G1/2

. ~8!

Both of our assumptions for evaluating the integral are r
sonable. First, for a wide variety of present-day NEMS re
natorsQ>103; second, the maximum allowable measu
ment bandwidth in this scheme is;v0/2pQ since the
transient response of the resonator is characterized b
~‘‘ring-down’’ ! time scale;Q/2v0 .

The mass sensitivity is then

dM'2MeffS Eth

Ec
D 1/2S D f

Qv0
D 1/2

. ~9!

Here, the ratio of the maximum drive~carrier! energy,Ec

5Meffv0
2^xc

2& to the thermal energy,Eth5kBT, represents the
effective dynamic range intrinsic to the nanomechani
resonator itself. This is the SNR~measured in terms o
power! available for resolving the coherent oscillatory r
sponse above the thermal displacement fluctuations. We
express this dynamic range, as is customary, in decib
DR(dB)510 log(Ec /kBT). This yields a very simple and
compelling expression

dM'2MeffS D f

Qv0
D 1/2

10~2DR/20!, ~10a!

which can be rewritten as

dM'
1

R S D f
v0

Q D 1/2

10~2DR/20!. ~10b!

HereR is the mass responsivity@Eq. ~2!#, andQ/v0 is the
open-loop response~‘‘ring-down’’ ! time of the resonator.

An identical expression to Eq.~8! can be obtained in the
case of the self-excited~positive feedback! circuit of Fig.
2~b!. In this case, analysis of the role of thermomechan
Downloaded 19 Feb 2004 to 128.197.50.128. Redistribution subject to AI
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fluctuations in determiningdv0 has previously been given
by Albrecht et al.15 We note that the aforementioned ban
width limitation issue, i.e.,D f ,v0/2pQ, can be circum-
vented by employing this self-exciting detection scheme.

In Fig. 3, we plotdM @Eq. ~10!# as a function of the
measurement bandwidth for the two model 1 GHz be
resonators, for two differentQ values. Note that mass sens
tivity in the Dalton range is easily achievable, even for mo
erately large bandwidths. As device sizes are scaled do
ward while maintaining high resonance frequencies,Meff and
keff shrink in direct proportion. Devices with small stiffnes
~high compliance! are indeed more susceptible to therm
fluctuations, and consequently the measurement dyna
range is correspondingly reduced.

B. Temperature fluctuations

Given its small heat capacity, a nanomechanical reso
tor can be subject to rather large temperature fluctuations
susceptibility to such fluctuations depends upon the stren
of its thermal contact to the environment.16 Since the reso-
nator’s dimensions and material parameters are both t
perature dependent, temperature fluctuations will gene
frequency fluctuations. Cleland and Roukes16 have evaluated
the spectral density of frequency fluctuations arising fro
temperature fluctuations of a NEMS resonator. They find t

Sv~v!5S 2
22.4cs

2

v0
2l 2

aT1
2

cs

]cs

]T D 2
v0

2kBT2

pg~11~v2v0!2tT
2!

.

~11!

Here, cs5AE/r is the temperature dependent speed
sound;aT5(1/l )] l /]T is the linear thermal expansion coe
ficient; andg and tT are the thermal conductance and t
thermal time constant for the nanostructure, respectively.
expression Eq.~11! was derived for a simple distribute

FIG. 3. Limits to mass sensitivity,dM , imposed by thermomechanical fluc
tuations, in units of Daltons~Da!, as a function of the measurement ban
width, D f , for the two representative 1 GHz resonators. Here, for e
device,dM is presented for two different values ofQ. Although the ordinate
extends to 107 Hz, note that the attainable open-loop measurement ba
width, v0 /(2pQ), is limited to ;106 and;104 Hz, for Q5103 and 105,
respectively. The attainable bandwidth will be further altered in a clos
loop measurement~i.e., with feedback!.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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model of thermal transport along a doubly clamped beam
constant cross section, neglecting material anisotropy. U
evaluating the integral of Eq.~5!, using the expression in Eq
~11! for Sv(v), we obtain

dv05F 1

2p2 S 2
22.4cs

2

v0
2l 2

aT1
2

cs

]cs

]T D 2

3
v0

2kBT2

g

arctan~2pD f tT!

tT
G 1/2

~12!

and

dM5
2

p1/2
2MeffS 2

22.4cs
2

v0
2l 2

aT1
2

cs

]cs

]T D
3FkBT2 arctan~2pD f tT!

gtT
G1/2

. ~13!

The values of the material dependent constants for sili
have been calculated in Ref. 16 as

2
22.4cs

2

v0
2l 2

aT1
2

cs

]cs

]T
51.2631024/K,

g57.431026 W/K, and tT530 ps. Given that 1/tT is well
above any experimental frequency shift,dv0 , we can ap-
proximatedM as

dM'2Meff~1.2631024/K!FkBT2D f

pg G1/2

. ~14!

In Fig. 4, we plot the above expression fordM as a function
of the measurement bandwidth for the 1 GHz dou
clamped beams. Despite the role of thermal fluctuations
generating phase noise limitations to the mass sensiti
single-Dalton sensing is readily achievable. Obviously,
smaller incarnations of NEMS are the most susceptible

FIG. 4. Mass sensitivity limits imposed by temperature fluctuations a
function of measurement bandwidth, for the two representative 1 GHz
con resonators, for operation atT5300 K. The accessible measureme
bandwidth is subject to the same restrictions mentioned in connection
Fig. 3.
Downloaded 19 Feb 2004 to 128.197.50.128. Redistribution subject to AI
f
n

n

in
y,
e
o

temperature fluctuations—and this progressively becom
more significant at elevated temperatures. This can be
cumvented by lowering the device temperatures and by
timizing thermal contact between a NEMS with its enviro
ment.

C. Adsorption-desorption noise

Gas molecules in the vicinity of a resonator—each w
massm—can adsorb upon the resonator’s surface, mass
the device, and thereby change its resonant frequency. R
dom, thermally driven adsorption and desorption of m
ecules will therefore induce fluctuations in the resonance
quency.

This so-called adsorption–desorption noise has been
cussed in detail by Yong and Vig,32,33 and Cleland and
Roukes.16 The adsorption–desorption cycle can most con
niently be modeled by a flux-dependent adsorption rate

r a5
2

5

p

AmkBT
s

and a thermally activated desorption rate

r d5vd expS 2
Eb

kBTD .

Here,p andT are the gas pressure and temperature, res
tively, andEb is the binding energy between the surface a
the adsorbate atom. The adsorption rater a depends upon a
phenomenological coefficient called the sticking coefficie
s, where 0,s,1. Similarly, r d depends upon a phenomen
logical desorption attempt ratevd , wherevd is on the order
of vibrational frequencies of diatomic molecules,vd

;1013Hz. Note: bothr a and r d depend upon the tempera
ture, the nature of the surface and its preparation, the ads
ing species—among other sample-specific factors. It is m
convenient, therefore, to regard them as phenomenolog
quantities.

The spectral density of frequency fluctuations arisi
from adsorption–desorption processes is given by16,32

Sv~v!5
2pv0

2Nasocc
2 t r

~11~v2v0!2t r
2!

S m

Meff
D 2

. ~15!

Here, the surface is modeled as comprisingNa sites for ad-
sorption, withsocc

2 representing the variance in the occup
tion probability of a site.t r is the correlation time for an
adsorption–desorption cycle.socc

2 andt r can be expressed in
terms of r a and r d as socc

2 5r ar d /(r a1r d)2 and t r51/(r a

1r d), respectively.
Upon integratingSv(v), we obtain

dv05
1

2p

mv0socc

Meff
@Na arctan~2pD f t r !#

1/2. ~16!

The mass sensitivity follows as

dM'
1

2p
msocc@Na arctan~2pD f t r !#

1/2. ~17!

Numerical estimates for mass sensitivity limited b
adsorption–desorption noise are presented in Fig. 5. The

a
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culations were made for various background pressures o2

at 300 K. A typical sticking coefficient,34 s50.1 and a typi-
cal desorption attempt frequency,16,32 vd51013 were used at
T5300 K. We have also assumed an occupancy of appr
mately one adsorbate species per surface ‘‘site.’’ The bind
energy of N2 on Si is Eb;10 kcal/mol.16,32–34At different
pressures, the correlation time gives the cutoff freque
1/2pt r in Eq. ~15!.

Figure 5 clearly shows that adsorption–desorption p
cesses will not preclude attainment of single-Dalton m
sensitivity. Adsorption–desorption noise becomes most
nificant in the temperature regime where the adsorption
desorption rates are comparable; hence, for a given de
configuration, it can be minimized by judicious choice
operating temperature. Surface passivation to reduce
binding energy between the molecule and the surface sh
also be effective in this regard. Given that the adsorptio
desorption noise is a surface effect, it becomes increasi
important as device sizes shrink.

D. Momentum exchange noise

We now turn to a discussion of the consequences
momentum exchange, in a gaseous environment, betwee
nanomechanical resonator and the gas molecules that
pinge upon it.35 Gerlach first investigated the effect of a ra
efied gas surrounding a resonant torsional mirror.36 Subse-
quently, Uhlenbeck and Goudsmit37 calculated the spectra
density of the fluctuating force acting upon the mirror due
these random collisions. We reproduce here a simplified
sion of their discussions. In the molecular regime at l
pressure,35 the resonator’s~representative! equation of mo-
tion takes the form38,39

Meffẍ1S Meff

v0

Qi
1

pA

n D ẋ1Meffv0
2x5F~ t !. ~18!

FIG. 5. Limits to mass sensitivity imposed by adsorption–desorption p
cesses, for the two representative 1 GHz doubly clamped silicon beam
nators. The calculations displayed are for three different pressures o2

with s50.1 andvd51013—with approximately one adsorbate per surfa
silicon atom site. Here,s is a phenomenological sticking coefficient andvd

is a phenomenological desorption attempt rate. The accessible measur
bandwidth is subject to the same restrictions mentioned in connection
Fig. 3.
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The (Meffv0 /Qi)ẋ term gives rise to the intrinsic damping
The term (pA/n) ẋ represents the drag force due to the g
molecules;n5AkBT/m is the thermal velocity of the ga
molecules,p the gas pressure, andA5 lw the surface area o
the beam resonator~see Fig. 1!. The quality factor due to the
gas dissipation can be defined asQgas5Meffv0n/pA. The so-
called loadedQ of the device can then be determined eas
as QL5(QU

211Qgas
21)21, where QU is the intrinsic ~un-

loaded! Q of the device. Here, we focus only upon the noi
due to the impinging gas molecules; we have already
dressed their complement, i.e., the intrinsic thermomech
cal fluctuations, in Sec. II A. Hence, assuming thatQU

@Qgasand all the fluctuations in the system result from c
lisions with gas molecules, the spectral density of this r
domly fluctuating force is

Sp~v!54mnpA5
4Meffv0kBT

Qgas
. ~19!

An identical result can be deduced from Eq.~18! by using
the fluctuation–dissipation theorem.

The resonator responds to this random ‘‘drive’’ by exhi
iting displacement fluctuations with spectral density

Sx~v!'
1

Meff
2

Sp~v!

~v22v0
2!21v2v0

2/Qgas
2

. ~20!

Note that the form of Eq.~20! is very similar to Eq.~6!
describing thermomechanical fluctuations. According to E
~6! these displacement fluctuations will then also appea
frequency fluctuations. After taking similar steps leading
Eq. ~8!, we obtain

dM'2MeffS Eth

Ec
D 1/2S D f

Qgasv0
D 1/2

. ~21!

Figure 6 showsdM for the representative 1 GHz resonato

-
so-

ent
th

FIG. 6. Limits to mass sensitivity set by momentum exchange noise
tween the resonator and gas molecules for a resonator intrinsicQ of QU

5105 at atmospheric pressure of N2 , p5760 Torr. The inset showsQgasas
a function of the gas pressure for both resonators. The momentum exch
noise becomes relevant only whenQU@Qgas, i.e., for p@1 Torr for the Si
nanowire resonator andp@10 Torr for the Si beam resonator. The accessi
measurement bandwidth is subject to the same restrictions mentione
connection with Fig. 3.
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TABLE II. Expressions for mass sensitivity for different physical noise mechanisms.

Type of noise Sv(v) dM

Thermomechanical
v0

5

Q3

kBT

EC

1

~v22v0
2!21v2v0

2/Q2
~PLL! 2MeffSkBT

Ec
D1/2S D f

Qv0
D 1/2

kBTv0

EcQ
~self-excited loop!

Temperature fluctuations S 2
22.4cs

2

v0
2l 2

aT1
2

cs

]cs

]T D 2
v0

2kBT2

pg~11~v2v0!2tT
2!

4Meff

p1/2 S 2
22.4cs

2

v0
2l 2

aT1
2

cs

]cs

]T D FkBT2 arctan~2pDftT!

gtT
G1/2

Adsorption–desorption
2pv0

2Nasocc
2 t r

~11~v2v0!2t r
2!

S m

Meff
D2 1

2p
msocc@Na arctan~2pDftr!#

1/2

Momentum exchange
v0

5

Qgas
3

kBT

EC

1

~v22v0
2!21v2v0

2/Qgas
2

~PLL! 2MeffSkBT

Ec
D1/2S D f

Qgasv0
D 1/2

kBTv0

EcQgas
~self-excited loop!
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at atmospheric pressures of N2 at 300 K. The inset to Fig. 6
shows howQgas evolves as a function of the gas pressu
Momentum noise appears to be an insignificant source
noise for NEMS operatingin vacuo, i.e., p,1 mTorr.

III. DISCUSSION

In Sec. II we have evaluated the ultimate sensitivity lim
its to mass sensing via nanomechanical resonators tha
imposed by several important noise processes. Our ana
culminates in the expression Eq.~10b!,

dM'
1

R S D f
v0

Q D 1/2

10~2DR/20! ~22!

and its equivalent, Eq.~10a!. Equation ~22! distills and
makes transparent the essential considerations for optimi
inertial mass sensors—at any size scale. There are three
cipal considerations. First, the mass responsivity,R, should
be maximal. As seen from Eq.~2!, this emphasizes the im
portance of devices possessing low mass, i.e., small volu
which operate with high resonance frequency. Second,
measurement bandwidth should employ the full range tha
available.40 Third, the dynamic range for the measureme
should be maximized. At the outset, this latter considera
certainly involves careful engineering to minimize what w
have termed ‘‘extrinsic’’ noise processes. But this is u
mately feasible only down to the point where fundamen
limits are reached. In this regime it is the ‘‘intrinsic’’ nois
processes that become predominant. In this article we h
evaluated those that are most important; Table II summar
the corresponding functional forms of noise-limited ma
sensitivity that result.

In Figs. 3–6, we have translated these analytical res
into concrete numerical estimates for the two representa
and realizable configurations of 1 GHz doubly clamp
beam silicon resonators. The implications of these results
manifest—the plot abscissae span only the regime from
Downloaded 19 Feb 2004 to 128.197.50.128. Redistribution subject to AI
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few tenths, to a few tens of Daltons. This is the mass ra
for a small individual molecule; hence it is clear that nano
mechanical mass sensors offer unprecedented sensitivity

This raises an important question: how optimally can
nanomechanical device perform for sensing species w
large mass, say in the megadalton~MDa, i.e., 106 Da) range?
Heretofore, our focus has solely been upon the ‘‘mass no
floor,’’ and not on how much can be accreted upon a NEM
mass sensor without degrading its performance. Here we
not carry out a detailed analysis of the attainable ‘‘mass
namic range’’ of nanomechanical sensors, but instead o
several brief comments. First, masses of the resonators
consider are themselves of order 0.1–10 fg (108– 1010Da),
i.e., much greater than that of an individual 1 MDa partic
Accretion of hundreds, to hundreds of thousands of s
macromolecules would only shift the natural~unloaded!
resonant frequency downward by about 50%. At this surf
coverage, the molecules, which are much more mechanic
compliant than silicon, would negligibly perturb the dynam
stiffness of the resonatorkeff . In fact, for surface coverage
below 1 ML, one would also expect the resonator’s qua
factor to be minimally affected by the adsorbates. Acco
ingly, in addition to their unprecedented mass sensitiv
NEMS mass sensors appear to offer remarkably large m
dynamic range. Our recent experiments, reported elsewh
confirm this.11

In these recent mass sensitivity measurements,11 extrin-
sic amplifier noise processes have imposed the domin
source of phase noise. Recently, significant progress has
made in pushing this phase noise down close to fundame
limits.41 With such advances, it is clear that nanomechan
mass sensing with the single-Dalton sensitivity will be re
izable in the near future. This will give researchers the u
precedented ability to weigh individual neutral molecul
routinely—blurring the distinction between conventional i
ertial mass sensing and mass spectrometry.
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