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Dynamic interactions between two oscillating micromechanical cantilevers are studied. In the

experiment, the tip of a high-frequency cantilever is positioned near the surface of a second low-

frequency cantilever. Due to the highly nonlinear interaction forces between the two surfaces,

thermal oscillations of the low-frequency cantilever modulate the driven oscillations of the high-

frequency cantilever. The dissipations and the frequencies of the two cantilevers are shown to be

coupled, and a simple model for the interactions is presented. The interactions studied here may be

useful for the design of future micro and nanoelectromechanical systems for mechanical signal

processing; they may also help realize coupled mechanical modes for experiments in non-linear

dynamics. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819180]

Miniaturized mechanical devices,1 called micro and

nanoelectromechanical systems (MEMS and NEMS), are

steadily progressing toward attaining the speed and effi-

ciency of their electronic counterparts. A mechanical signal

processor2 may soon become a reality if the primary opera-

tions during the processing can be performed mechani-

cally—i.e., using the mechanical motion of MEMS and

NEMS. There is thus a focused research effort to realize

micro- and nano-mechanical switching,3 mixing,4–6 amplifi-

cation,7 and modulation.8,9

Here, we study dynamic interactions between two oscil-

lating micromechanical cantilevers and harvest these inter-

actions for mechanical signal modulation and detection. In

the experiment, the carrier signal from a high-frequency

microcantilever oscillator is modulated by the low-

frequency thermal oscillations of a second microcantilever

by simply bringing the two microcantilevers close together.

The approach relies upon the strong inherent nonlinearity of

the interaction force between two surfaces in close proxim-

ity and offers several advantages. The modulation is purely

mechanical, and mechanical signals need not be converted

to electrical signals. The strength of the coupling between

the two mechanical signals, and hence the modulation

index, can be adjusted by changing the distance between

the two microcantilevers. Conservative and dissipative com-

ponents of the interaction enable tuning of the frequencies

and dissipation. Conversely, monitoring the modulation on

the carrier signal allows for sensitive mechanical displace-

ment detection. Because the approach offers prospects for

creating coupled mechanical modes10 with tunable cou-

pling, it may be useful in fundamental investigations in

nonlinear dynamics.

Our approach is derived from dynamic mode atomic force

microscopy (AFM). Related to our work here, various AFM

modalities have been used to detect the motion of micro- and

nano-mechanical resonators. In these experiments, a resonant

mode of the small device under study is excited, e.g., electro-

statically or by using a piezoelectric shaker. An AFM

cantilever is brought in close proximity of the resonator to

probe its oscillations. Several groups have used contact

interactions;11–13 tapping mode AFM has also been employed

for less intrusive probing.14–16 In addition, other AFM-based

approaches, including acoustic force microscopy17 and electro-

static scanning probe microscopy,18 have also been applied to

the measurement small oscillations. In this work, we extend

the above-mentioned efforts to non-contact mode AFM and

show that even non-contact AFM can perturb small resonators

significantly.

At the core of our experiment are two micro-cantilevers,

which primarily interact through non-contact forces, as

shown in Fig. 1(a). The cantilevers are of different sizes and

oscillate at their fundamental flexural resonance frequencies.

The smaller high-frequency one (hereafter labeled with the

subscript “h”) has an unperturbed fundamental flexural reso-

nance at fh0 ¼ xh0

2p � 153:8 kHz. The larger low-frequency

cantilever (hereafter labeled with the subscript “l”) comes

with unperturbed fl0 ¼ xl0

2p � 10:1 kHz. The in vacuo parame-

ters for both cantilevers are listed in Table I. The cantilevers

remain inside an ultrahigh vacuum (UHV) chamber at a pres-

sure p < 7� 10�10 Torr during the experiments so that gas

damping is not relevant.19 The low-frequency (bottom) can-

tilever is fixed onto a sample holder and is excited by ther-

mal fluctuations at room temperature. The high-frequency

(top) cantilever sits on a nano-positioner and is driven by a

piezo-shaker (PZS) at its base. The response of the high-

frequency cantilever is measured using a standard optical

beam-deflection method.20 The output of the optical trans-

ducer is split three ways between a spectrum analyzer, a self-

oscillating loop, and a detection-feedback loop, as shown in

Fig. 1(a). The self-oscillating loop, shown by the dashed box

in Fig. 1(a), maintains the high-frequency cantilever oscillat-

ing at resonance at a constant amplitude. The detection-

feedback loop has a large time constant (0:01 s � s � 1 s) as

compared to other time scales in the experiment. It thus

keeps the average gap between the cantilevers at a prescribed

value and compensates for drifts.

a)Author to whom correspondence should be addressed. Electronic mail:

ekinci@bu.edu
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In the experiments, the high-frequency cantilever oscil-

lates coherently at a constant rms oscillation amplitude of

10 nm; the rms thermal oscillation amplitude for the low-

frequency cantilever remains around
ffiffiffiffiffiffi
kBT
kl

q
� 0:1 nm, where

kBT is the thermal energy and kl is the (unperturbed) spring

constant. The tip of the high-frequency cantilever is brought

towards the free end of the low-frequency cantilever using

the nano-positioner, and the spectrum of the oscillatory sig-

nal on the photodiode is measured. Fig. 1(b) shows a typical

spectral density measurement. The dominant peak shown

at fh � 153 kHz corresponds to the self-oscillations of the

high-frequency cantilever. This can be regarded as the high-

frequency carrier signal. At fh 6 fl � 153 6 8 kHz, two small

peaks are noticeable. These upper and lower sideband modu-

lation peaks result from the thermal oscillations of the low-

frequency cantilever. The inset shows a close-up of the upper

sideband peak in linear scale. This is the spectral density of

the thermal oscillations of the low-frequency cantilever as

detected by the high-frequency cantilever. Under these ex-

perimental conditions, integrating this spectral density and

using the thermal oscillation amplitude of �0.1 nm, we cal-

culate the noise floor for displacement detection to be

�1� 10�11 m=Hz1=2.

Advancing the nano-positioner leads to changes in the

actual gap between the two cantilevers, resulting in changes

in the measured response. Returning to the inset of Fig. 1(a),

we note that the time-dependent positions of the two cantile-

vers are zhðtÞ and zlðtÞ with respect to a fixed reference point.

The interaction force F, which has an attractive van der

Waals component (see below for details), results in changes

in the average positions, �zl and �zh. In our coordinate system,

the average gap is ��zh � �zl. Because the low-frequency can-

tilever is two orders of magnitude softer than the high-

frequency cantilever, we estimate that the average van der

Waals attraction mostly bends the low-frequency cantilever

toward the high-frequency cantilever (upwards in Fig. 1(a))

as the nano-positioner is advanced to decrease the gap

between the cantilevers (i.e., to reduce �zh). The average posi-

tion of the high-frequency cantilever, �zh, can be taken to be

the same as that of the nano-positioner (up to an additive

constant).

When far away from each other, the cantilevers do not

interact and oscillate at their respective unperturbed reso-

nance frequencies, fh0 and fl0. As they come closer, the

coupling grows and the thermal oscillations of the low-

frequency cantilever become observable in the sidebands of

the carrier. As the separation is reduced, the linewidths and

the frequencies of both cantilevers change. The motion of

the high-frequency cantilever (carrier) remains mostly sinu-

soidal with relatively little perturbation to its resonance fre-

quency and linewidth, since the modulating signal in the

sideband is orders of magnitude smaller than the carrier. The

low-frequency cantilever, on the other hand, suffers large

changes in frequency and linewidth. Fig. 2(a) shows the side-

band peaks corresponding to the low-frequency cantilever

oscillations. The zero in the frequency axis here corresponds

to the resonance frequency fl, which decreases as the nano-

positioner advances to bring the two cantilevers together.

The modulation increases because the mechanical coupling

increases. In addition, the dissipation (linewidth) increases.

Figures 2(b) and 2(c) show results from systematic experi-

ments as the nano-positioner brings the two cantilevers to-

gether, i.e., the gap between the cantilevers is changed.

Returning to Fig. 1(a), we describe how the experiment is per-

formed. A frequency shift for the high-frequency cantilever is

prescribed; the nano-positioner (in conjunction with the detec-

tion circuit) brings the two cantilevers together until this fre-

quency set point is attained. The proportional-intergral-

derivative (PID) controller keeps this frequency shift (set

point) fixed, thereby ensuring a constant average gap. At this

set point, the line-shape for the low-frequency cantilever is

FIG. 1. (a) Schematic of the experimental setup. The optical transducer (PD:

photodetector), amplifiers (A), phase shifter (U), and amplitude controller

are the components of a positive feedback circuit (dashed box), which drives

the high-frequency cantilever at resonance at a prescribed amplitude via a

PZS. The demodulator and PID controller form a detection circuit, which

keeps the frequency shift (and hence the average gap between cantilevers) at

a desired value. The inset shows the lumped mass models for the two canti-

levers. (b) Spectral density of the high-frequency cantilever oscillations.

Two arrows at the upper and lower sidebands of the carrier at 153.8 kHz

correspond to the thermal oscillations of the low-frequency cantilever. The

inset shows the upper sideband in displacement units.

TABLE I. Unperturbed parameters for the two Silicon microcantilevers

used in our experiments. The stiffness k values are provided by the manufac-

turer. The effective mass m is calculated using k and f0. Both k and m are

approximate.

l� w� t f0 ¼
x0

2p
Q0 k m

lm3 kHz N/m kg

225� 37.5� 7 153.8 2� 104 30 3� 10�11

450� 50� 2 10.1 6� 103 0.2 5� 10�11

083505-2 O. Basarir and K. L. Ekinci Appl. Phys. Lett. 103, 083505 (2013)
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recorded. At very small separations, the two cantilevers snap

to hard contact, causing the carrier signal to become unstable.

In Fig. 2(b) (main), the frequency fl of the low-

frequency cantilever is plotted as a function of the nano-

positioner displacement. The inset of Fig. 2(b) similarly

shows fh of the high-frequency cantilever as a function of the

nano-positioner displacement. The zeros of the x-axes are

taken to be the contact position, where the high-frequency

cantilever can no longer oscillate stably. There is some

degree of uncertainty in the position of this zero. The esti-

mated region of soft contact between the two cantilevers is

shown by the shading around zero in the main figure. This

estimation is simply based on the observation that the dissi-

pation of both cantilevers increases more steeply for dis-

placements �4 nm. The data traces in Fig. 2(b) (main and

inset) showing negative frequency shifts (for both cantile-

vers) appear qualitatively similar to the frequency shift vs.
tip-sample distance curves taken in non-contact AFM

work,21 where attractive forces are dominant. However, there

is a significant difference. Because the low-frequency canti-

lever is soft, the nominal displacement obtained from the

nano-positioner cannot be related to the tip-sample gap in a

straightforward manner. The interaction range in Fig. 2(b)

extends over 10 nm. Due to the attractive force between the

two cantilevers, the soft cantilever follows the stiffer high-

frequency cantilever, as the two are brought together. While

both resonance frequencies fl and fh shift in a qualitatively

similar fashion, the magnitudes of the changes in fl and fh are

quite different. We confirm that the data possess the same

features at larger oscillation amplitudes �40 nm (not shown)

of the high-frequency cantilever. In all the measurements

reported here, non-contact or (intermittent) soft contact inter-

actions dominate, and the average force between the cantile-

vers remains attractive.

Figure 2(c) shows the change in the dimensionless dissi-

pation of each cantilever as a function of the nano-positioner

displacement. Here, the change is obtained by subtracting

the intrinsic value of the dimensionless dissipation, Q�1
0 ,

from the measured value Q�1 for each cantilever. For the

low-frequency cantilever, all the data points are obtained by

fitting Lorentzians to resonance line-shapes, such as those

shown in Fig. 2(a). At large separations between cantilevers,

the data appears noisier. This is because the signal size

becomes smaller, and the fits are not as accurate. For the

high-frequency cantilever, the data are extracted from the

drive force (voltage) applied to the piezo-shaker, given that

the stiffness of the high-frequency cantilever does not

change appreciably and the amplitude controller keeps the

oscillation amplitude constant.21 The general trend is that

dissipation increases as the separation decreases. The

observed dissipation increase in the low-frequency cantilever

is much more dominant.

We now describe the coupled resonator dynamics. The

dynamic variables used in the equations below can be identi-

fied in Fig. 1(a). Before analyzing the interacting cantilevers,

we formulate the dynamics of individual cantilevers (far

apart from each other). The one-dimensional lumped equa-

tion of motion for the high-frequency cantilever can be writ-

ten as mh€zh þ mh
xh0

Qh0
_zh þ mhxh0

2ðzh � �zhÞ ¼ FdðtÞ, where

the drive force is FdðtÞ ¼ Rðzhðt� t/Þ � �zhÞ, with R being

the gain, t/ being the delay of the (self-oscillating) loop, and

mh being the effective mass of the cantilever. We use the

simplifying assumption that the cantilever always vibrates si-

nusoidally at resonance at a constant amplitude, and the role

of the external sustaining circuit is to simply compensate for

the energy losses. Thus, we write zhðtÞ � �zh þ Ah sin xh0t,
where Ah remains constant and xh0 does not change appreci-

ably, consistent with experimental observations [Fig. 2(b)

inset]. The low-frequency cantilever is driven by random

thermal noise but oscillates mostly sinusoidally because of

its high quality factor (102 � Ql � 104). Modeling its dis-

placement as narrowband noise,22 we write zlðtÞ � �zl

þAlðtÞ sinðxl0tþ wlðtÞÞ, where AlðtÞ and wlðtÞ are slowly
varying envelope and phase functions. Hence, both cantile-

vers can be treated as simple one-dimensional oscillators

when no perturbations are present: mi€zi þ mixi0
2ðzi � �ziÞ

� 0, where i ¼ l; h. Since xh0 � xl0, each will tend to

respond strongly to the perturbation near its own resonance

frequency. For our system, when the gap between the canti-

levers is large, the generalized non-contact interaction force

FIG. 2. (a) Normalized sideband signals. The signals are normalized using the highest measured signal values. The data traces are taken at the positions shown

with the arrows in (b). Because the resonance frequency fl shifts significantly, the frequency axis is displayed as measured from the resonance frequency fl.
(b) The observed shift in the resonance frequencies of both cantilevers. (c) The change in the dimensionless dissipation of both cantilevers. The dissipation

increases dramatically in the shaded region, suggesting that soft contact interactions start to become dominant. Error bars in all the data are smaller than the

symbol sizes unless shown explicitly. The snap to contact with accompanying instabilities in the high-frequency signal determines the position of zero in the x-

axes of the plots in (b) and (c).
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can be expressed in terms of the coordinates and their time

derivatives F ¼ Fðzh; _zh; zl; _zlÞ.21 This force can further be

broken down into conservative and dissipative components

as F ¼ Fdiss þ Fcons.
23

The dissipative forces Fdiss on the high-frequency and

low-frequency cantilevers can be approximated as�cð _zh � _zlÞ
and �cð _zl � _zhÞ, respectively, based upon phenomenological

arguments.23 Here, c is a function of gap cðzh; zlÞ
¼ c0e�Cðzh�zlÞ, where c0 and C are empirical constants. The

exponentially decaying form ensures that Fdiss becomes

weaker with increasing separation. Interacting only via the dis-

sipative force Fdiss, the two cantilevers can be described by the

following coupled equations:

ml€zl þ mlxl0
2ðzl � �zlÞ � �cð _zl � _zhÞ; (1a)

mh€zh þ mhxh0
2ðzh � �zhÞ � �cð _zh � _zlÞ: (1b)

To make further progress, we approximate the function

cðzh; zlÞ with �c � c0e�Cð�zh��zlÞ. Because of the discrepancy in

the two oscillatory time scales, the low frequency cantilever

notices only the average position of the high-frequency canti-

lever, zh ¼ �zh. It may thus be justifiable to set _zh � 0 in Eq.

(1a). This results in ml€zl þ �c _zl þ mlxl0
2ðzl � �zlÞ � 0.

Similarly, the dissipative force acting on the high-frequency

cantilever is approximately ��c _zh because Ahxh0 � Alxl0.

Thus, we arrive at the approximation mh€zh þ �c _zh

þmhxh0
2ðzh � �zhÞ � 0. It can be seen that �c terms give rise

to the energy dissipation in both cantilevers. Thus, one should

be able to relate the measured dissipation changes in

the coupled cantilever system. In other words, mhxh

ðQh
�1 � Qh0

�1Þ � mlxlðQl
�1 � Ql0

�1Þ at a given gap. At the

largest gap values, where the perturbation is weak and the

approximations should hold better, we find the right hand

side and the left hand side to be of the same order of magni-

tude (r:h:s � 2� 10�10 kg=s and l:h:s � 6� 10�10 kg=s)

using the numbers from Table I and data from Fig. 2(c).

Given that the values in Table I are approximate, this is quite

satisfactory and suggests that our approximations are not

unreasonable.

Returning now to the conservative component of the

interaction force, we take Fcons ¼ � HR
ðzh�zlÞ2

, as suggested by

numerous AFM experiments.23 Here, H is the Hamaker con-

stant and R is the tip radius (of the high-frequency cantile-

ver). We emphasize that this simple form is valid when the

gap is large (non-contact regime), and the attractive van der

Waals force dominates. Because the thermal oscillation am-

plitude (of the low-frequency cantilever) remains extremely

small, we expand the force around �zl, obtaining

~Fcons � �
HR

ðzh � �zlÞ2
� 2HR

ðzh � �zlÞ3
ðzl � �zlÞ: (2)

Note that the sign of ~Fcons must be adjusted such that it remains

attractive for both cantilevers. As above, we set zh ¼ �zh in
~Fcons in the equation of motion of the low-frequency cantile-

ver, ml€zl þ mlxl0
2ðzl � �zlÞ � j ~Fconsj. This yields

xl
2 � xl0

2 � 2HR

mlð�zh � �zlÞ3
: (3)

Finally, the source of the modulation can be identified as

the � 2HRðzl��zlÞ
ðzh��zlÞ3

term in the drive force in

mh€zh þ mhxh0
2ðzh � �zhÞ � �j ~Fconsj. This term can be

expanded, with the leading order term in ðzh � �zhÞ being
6HRðzl��zlÞðzh��zhÞ

ð�zh��zlÞ4
. Including this term in the equation of motion,

we derive

xh
2 � xh0

2 � 6HR

mhð�zh � �zlÞ4
Al sinðxl0tþ wlÞ: (4)

This is the source of the frequency modulation. The modula-

tion index can be found as22 M ¼ 3HRAl

mhxh0xl0ð�zh��zlÞ4
, with the

ratio of the power in the carrier to that in a (single) sideband

being M2

4
. For the measurement shown in Fig. 1(b),

M2

4
� 1:8� 10�3. Using H � 10�19 J; R � 50 nm and experi-

mental values for the remaining parameters, we find

�zh � �zl � 1 nm.

More experimental and theoretical work is needed for a

better understanding of this interesting coupled system.

From an experimental perspective, a direct measurement of

the gap between the cantilevers may be important. In the

model, we assume that the amplitude Ah stays constant and

the cantilevers oscillate sinusoidally. To fully account for the

nonlinear interaction, a better model must allow for the

amplitudes to be affected, with some degree of amplitude

modulation as well as nonlinearity in the oscillations.

Furthermore, the presented model is expected to become

inaccurate as the perturbation grows (i.e., the gap becomes

smaller), and the dynamics becomes complicated due to

stronger non-linearities, hysteresis, and larger fluctuations.

One can incorporate contact effects by using Derjaguin-

M€uller-Toporov interaction. Regardless, the data and the

simple model presented here may be useful for designing

MEMS and NEMS devices for future applications. Given

that the interaction between the two cantilevers can be tuned

efficiently by reducing the gap between them, one can also

study non-linear dynamics of coupled oscillators.
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