MSE Innovation Grants

The idea behind BU MSE Innovation Grants Program is to create a low overhead way of encouraging innovation and risk taking in a national funding environment that makes this increasingly difficult. Each year we will be awarding roughly five awards of approximately $10k each. Any faculty member (any rank) in the extended BU MSE community is eligible for the award. It is a one time, non-recurring award that can be used for equipment, salary for a student or post doc, travel by a BU person to another location, travel by someone else to BU or any other legitimate research expense. The idea is to enable real innovations to take place and encourage far out thinking.

The 2014 BU MSE Innovation Grant winners:

Linda Doerrer
“Molecular Thermoelectrics”

Much contemporary research strives to use the sun as a virtually inexhaustible energy supply, either directly in photovoltaic devices or indirectly by converting its light energy into the chemical energy of solar fuels. The sun’s outpouring contributes thermal energy as well as light energy, and the former is from far being efficiently used in our technology. If we are to make the most of the solar spectrum, materials that can harvest phonons as well as photons are needed. Thermoelectric materials have been less well-studied than photovoltaic materials, but not because they cannot contribute meaningfully to our energy needs. There are many unmet challenges in these materials because of the inherent contradictions in property requirements, a Gordian knot in materials chemistry which requires a new approach.  The Doerrer group will build highly anisotropic structures that facilitate electronic conduction in one dimension, while preventing strong thermal conductivity perpendicular to this flow.

Uday Pal and Peter Zink
“Innovative Recovery and Recycle of Critical Materials”

Rare earth (critical) metals (Dysprosium, Neodymium, Terbium, etc.) are mainly found in very small concentrations as oxides in native ores. Their concentrations in these ores can range from 1 to less than 0.1 w %. Current state-of-the-art extraction processes mainly employ hydrometallurgical techniques which generate large amounts of harmful waste and are capital intensive requiring large plant footprints. This makes it important to recycle the rare earth elements in products such as magnets (used in hybrid/electric vehicles, MRI units, computer hard disks), Phosphors, PV’s and Catalysts. Our technology based on solid oxygen ion conducting oxide membrane shows great promise for the production of critical metals directly from their oxidized feedstock by drastically simplifying the process, lowering the energy requirement, and reducing the environmental impact. The MSE Innovation grant will be used to demonstrate that the new technology can be used for rare earth extraction and recovery from their respective oxides. If successful the technology will be of great commercial interest.

Aaron Schmidt
“Adhesion Energy Microscopy”

The adhesion energy between dissimilar materials is a critical parameter in numerous fundamental problems and practical engineering applications in fields ranging from material science and mechanical engineering to biology and soft-matter physics. For example, adhesion has been shown to be major factor affecting the growth of tumor cells. However, the intermolecular force between different materials is often difficult to quantify, and the established method of measuring the force required to mechanically peel a thin film from a substrate is only applicable to a tiny subset of applications. We propose to develop a new microscopy technique based on high frequency thermal waves that will enable quantitative imaging of the adhesion energy between a solid substrate and soft materials including cells and other biological tissue, liquids, and polymers.

Allison Dennis
“Applying FRET Analysis to Nanoparticle Systems Experimentally and Computationally”

We develop fluorescent biosensors utilizing Förster Resonance Energy Transfer (FRET) between a semiconductor nanoparticle quantum dot (QD) donor and an acceptor (a fluorescent dye, protein, or a second QD). FRET is the distance-dependent, non-radiative transfer of energy from an excited donor to an acceptor through dipole coupling. Ongoing work in nanoparticle-based fluorescent biosensor design incorporates ever more complicated nanostructures and combinations of nanoparticles, such that a very clear understanding of the foundation of the energy transfer mechanism and how it applies to nanoparticle systems is necessary to enhance our ability to appropriately design complex FRET systems and exploit the energy transfer in applications. This MSE Innovator grant will be used to study the energy transfer between a large heterostructured (core/shell) nanoparticle donor and a small organic acceptor experimentally and through a Monte Carlo model in order to ascertain where within the nanoparticle bulk the energy for transfer originates so that more accurate donor-acceptor distances can be determined. This understanding will then be applied to the design of complex nanomaterials-based FRET systems.

Kamil Ekinci
“Energy Harvesting from Active Biomaterials” 

Active microscopic biomaterials — such as bacteria and spores — provide an abundant and untapped source of energy, especially for low-resource settings. The potential of energy harvesting from microorganisms has been realized early on, and much research has been performed in this promising field. Most efforts in bio-energy harvesting from microorganisms have been focused on bio-chemical (e.g., photosynthesis) and bio-electro-chemical approaches (e.g., microbial fuel cells). Bio-mechanical motion of microorganisms remains largely unexplored as a source of energy. The goal of this project is to convert the mechanical motion of common microorganisms into electrical energy, opening up bio-mechanical energy harvesting at the micron and sub-micron scales.

 

The 2013 BU MSE Innovation Grant winners:

Ramesh Jasti and Xi Lin *

“Theory-Guided Synthetic Design of Novel n-Type Carbon Nanohoops for Organic Photovoltaics”

Professor Ramesh Jasti (Chemistry, MSE) and Professor Xi Lin (ME, MSE), who have developed the first gram-scale synthesis of carbon nanohoops and the first accurate electronic structure model that can handle mesoscopic crystalline and amorphous π-conjugated stacking arrays, will design and synthesize new conductive polymers with carbon nanohoop functionality. Envisioned as the smallest unit cycle of an armchair carbon nanotube, carbon nanohoops have tremendous electron accepting potential, stack with very good π-π overlap in the solid state, and will act as electron-hopping bridges between polymer chains to enhance charge mobility. These soluble, graphitic n-type bundles are expected to perform better than C60 fullerene with the added advantages of synthetic tuneability and processability.

*This proposal was also selected as most suitable for an additional $10K from the Center for Computational Science (CCS) to promote experimental-theoretical collaborations.

Catherine Klapperich

“Mechanisms of Surface Driven Nucleic Acid Isolation from Biological Solutions”

We will study the interactions between DNA and silica surfaces.  Silica surfaces are commonly used in diagnostics to grab, wash and release nucleic acids before enzymatic amplification reactions for the detection of disease.  Although many theories have been proposed, the mechanism by which deoxyribonucleic acid (DNA) specifically adsorbs onto SiO2 has not been experimentally confirmed. We will use the grant funds to perform solid-state nuclear magnetic resonance (ssNMR) experiments to validate our proposed mechanisms.

Roberto Paiella and Ted Moustakas

“Dislocation- and Polarization-Free III-Nitride Quantum Cascade Structures for THz Light Emission”

Terahertz technologies have great potential for many sensing, spectroscopy, and imaging applications in areas of high relevance and timeliness, such as security screening, medical diagnostics, and manufacturing quality control.  However, the widespread emergence of these technologies has so far been severely limited by to the lack of practicalTHz radiation sources.  In particular, existing semiconductor devices, based on GaAs quantum wells are fundamentally limited to incomplete coverage of the THz spectrum and to operation at cryogenic temperatures.

III-nitride semiconductors are particularly promising for the purpose of overcoming these limitations, by virtue of several intrinsic material properties such as large optical-phonon energies well above the THz spectral range.   At the same time, however, the development of these devices has so far been hindered by the limited crystalline quality and complex band structure of existing III-nitride QWs, due to strain-induced defects and strong built-in electric fields along the polar crystallographic c axis.  To address these issues, we propose to synthesize quantum cascade structures for Terahertz light emission based on novel bandgap engineering of III-nitride heterostructures.

 Tyrone Porter

“Lipid-polymer Hybrid Nanoparticles for Targeted Delivery of Cis-platin”

Cisplatin is a platinum-based anticancer agent that has found broad clinical use in the treatment of a variety of cancers, including breast and ovarian. While potent, the dose of cisplatin administered to patients is severely limited due to its toxic effects, which includes nephrotoxicity and severe renal dysfunction. In the proposed project, cisplatin will be loaded into lipid-polymer hybrid nanoparticles designed to release their payload specifically in the cytoplasm of cancer cells, thus sparing healthy cells and tissues.  Conjugating cisplatin to the polymer core of the nanoparticle via a cleaveable linker allows for sustained drug release. Coating the cisplatin-loaded nanoparticles with a mixture of folic acid-terminated lipids and fusogenic lipids will increase the specificity with which the particles are internalized and facilitate endosomal escape, respectively.  As the novel hybrid nanoparticle is designed to prolong the exposure of cancer cells to cisplatin, it may be possible to overcome the resistance of cancer cells to cisplatin therapy using the delivery vehicle.  This would be a major achievement, as attempts to overcome cisplatin resistance have largely been unsuccessful.  The proposed lipid-polymer nanoparticle has the potential to provide a more favorable biodistribution and pharmacological profile for cisplatin, thus enhancing its potency while minimizing systemic toxicities.

 Joe Tien

“Active Biomaterials for Applications in Tissue Engineering”

Professor Joe Tien (BME, MSE), who will investigate the development of active
biomaterials for applications in tissue engineering.  Most current
biomaterials are chemically or optically active, but mechanically passive.
For many applications (e.g., in the treatment of lymphatic disease), it is
desirable to have an autonomous material that can move and perform useful
work by harvesting local energy sources.  Tien aims to create
valve-containing, self-oscillating hydrogels that can continuously pump in
the presence of external stress or glucose.

 

The 2012 BU MSE Innovation Grant winners:

Soumendra Basu and Siddharth Ramachandran

“Novel semiconductor core optical fibers for mid-infrared applications”

Professors Basu and Ramachandran will attempt to design novel semiconductor core optical fibers that can guide mid-infrared (IR) light over tens of meters, the order of fiber- lengths needed for non-telecommunications applications such as jamming heat-seeking missiles or detecting bioterror threats. Their ultimate goal is to develop alternatives to conventional silica optical fibers, in which transmission losses increase dramatically at wavelengths in the mid-IR part of the electromagnetic spectrum.

Mark Grinstaff

“Real-time control of drug release from superhydrophobic biomaterials using clinical ultrasound”

Professor Grainstaff will investigate the use of new biomaterials to control the release of drugs in implantable drug delivery systems (DDS) in real time using ultrasound. While implantable DDS are designed to deliver a therapeutic drug dose over extended periods directly to a target site, they lack real-time control over the release of the drug; once implanted, the drug is delivered at a preprogrammed dose and rate. Grinstaff aims to design a unique, implantable, ultrasound-activated DDS using newly synthesized materials that will enable healthcare providers to release specific doses at specific times in coordination with diagnostics technologies for lung cancer and other diseases.

Anders Sandvik

“Novel computer simulation method for quantum glasses”

Professor Sandvik will develop a novel computer simulation method for “quantum glasses.” A common “glass,” such as a window pane, has an exceedingly long relaxation time—its microscopic structure changes so slowly that it normally appears stable. A “quantum glass” is a generalization of the classical glass concept to systems in which quantum fluctuations play an important role, particularly at low temperatures. Theoretical models of quantum glasses are notoriously difficult to study reliably, but Sandvik recently developed a novel algorithm which he plans to use in computer simulations of these systems. A better understanding of quantum glasses is important for future materials applications.

Anna Swan and Bennett Goldberg

“Landau levels at room temperature: Plasmonic-enhanced optical signatures from strain-induced pseudo magnetic fields in graphene”

Professors Swam and Goldberg will attempt to engineer graphene, a single sheet of carbon atoms arranged in a honeycombed structure, to exhibit discrete electrical energy levels that could be exploited to design very efficient electronic devices. A very strong magnetic field could in principle accomplish this, but would be completely impractical. Instead, they plan to stretch and deform the material in such a way to give rise to the desired energy structure. They will probe the response of the material to stretching using light-amplifying plasmonic structures developed by Professor Hatice Altug (ECE).

Joyce Wong

“3D Vascularized tissues from self-assembly of cell-encapsulated microbeads”

Professor Wong will investigate the development of 3D vascularized tissues using self-assembly techniques. A major challenge for tissue engineering is the formation of thick, replacement tissue equipped with blood vessels that integrate the tissue with its host. For example, the current standard practice of care for reconstructive surgery after mastectomy is to obtain vascularized fat tissue from another part of the patient’s body and then transplant it to replace tissue removed during the mastectomy. Elimination of the need to harvest the tissue from the patient would have tremendous impact, because the majority of the surgery is taken up by the time required to harvest tissue with a sufficiently large diameter blood vessel that can then be hooked up via microsurgery to the vessel in the transplant site.