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Abstract

As we enter the age of designer matter — where objects can
morph and change shape on command — what tools do we
need to create shape-shifting structures? At the heart of an
elastic deformation is the combination of dilation and
distortion or stretching and bending. The competition between
the latter can cause elastic instabilities, and over the last fifteen
years, these instabilities have provided a multitude of ways to
prescribe and control shape change. Buckling, wrinkling,
folding, creasing, and snapping have become mechanisms
that when harmoniously combined enable mechanical meta-
materials, self-folding origami, ultralight and ultrathin kirigami,
and structures that appear to grow from one shape to another.
In this review, I aim to connect the fundamentals of elastic in-
stabilities to the advanced functionality currently found within
mechanical metamaterials.
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1 Readers interested in a more thorough understanding of the ideas presented
Introduction
How do objects change shape? This question has formed
the basis of entire branches of mechanics and physics
dating back centuries, and so it is reasonable to wonder
what new questions and challenges remain. To drasti-
cally change an object’s shape, it should possess some
degree of softness d either in a material sense, for
example, having a low elastic modulus, or in a geometric
sense, for example, having slenderness. This softness
comes at a price d large deformations introduce
nonlinear responses and instabilities. Material
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nonlinearities are common with traditional engineering
materials, that is, metals, wood, ceramics, which,
whether they are brittle or ductile, will tend to irre-
versibly deform in response to small strains, either by
fracturing or flowing plastically. Softer materials such as
rubbers, gels, and biological tissues can often withstand
moderate amounts of strain without reaching a material
limit, and so they can reversibly withstand elastic in-
stabilities without permanent deformation, exhibiting
geometric nonlinearities by bending, buckling, wrin-
kling, creasing, and crumpling. It is perhaps no surprise
then that a resurgence in studying elastic instabilities

coincided with the emergence of new, simple, and
inexpensive ways to prepare soft elastomers in any
desired shape and size, thus enabling researchers to
study how instabilities could perform useful functions.
Now, the study of how to utilize elastic instabilities for
mechanical functionality brings together the disciplines
of soft matter physics, mechanics, applied mathematics,
biology, and materials science with the aim to extend our
understanding of structural stability for generating both
form and function.
Elasticity of slender structures
Stretching and bending
Slenderness, embodied by the canonical forms, rods,
plates, and shells, provides the most direct way to
deform a structure, as the reduced dimensionality en-

ables large deformations while the material stress re-
mains low, that is, s=E≪1, where s is the maximum
principal stress and E is Young’s elastic modulus. Thin
structures are highly susceptible to instability, and this
is due in large part to their tendency to deform by
bending.1 The fact that these structures are by defini-
tion thinner in one dimension than the other two
motivated the development of models of elastic defor-
mation of lower spatial dimension, that is, reduced-order
models, to describe slender structures, such as rods,
plates, and shells. With a rod being the simplest of these

forms, we can develop some intuition for how thin
structures deform by looking at the strain energy of a
thin elastic rod. Reduced-order models of slender
structures have a common form: a stretching energy U s,
which accounts for extension or compression of the
middle surface of the rod and is linear in the rod
thickness, h, and a bending energy U b, which accounts
throughout this review should consult the Supplementary Information [1].
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Elasticity and stability of shape-shifting structures Holmes 119
for the curvature change of the deformed rod, and is
dependent on h3. The strain energy of a thin rod will
scale as [1]
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2du|fflfflfflfflfflffl{zfflfflfflfflfflffl}

U s

þ B

Z
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U b

(1)

where Y ¼ Eh=ð1� n2Þ is the stretching rigidity,
B ¼ Eh3=½12ð1� n2Þ� is the bending rigidity, n is Pois-

son’s ratio, and du is the area element. To gain some
physical intuition about a particular problem, it is often
adequate to simply consider how the relevant energies
scale. For instance, by simply comparing the stretching
and bending energies, we see that U b=U swh2ðk=εÞ2,
where k is the average curvature induced by bending the
rod (units of reciprocal length), and ε is the average
strain induced when stretching the rod (unitless).
Because the rod is thin, this quantity must be very, very
small, indicating that it is far easier to bend a thin
structure than it is to stretch it. This insight helps

explain why thin structures are prone to instability: if
you try to shorten the length of a thin rod by
compressing it, the rod would much rather bend than be
compressed, and to bend, it must buckle.

The remainder of this review deals with the challenge of
controlling the shape change of a structure while over-
coming the constraints on bending and stretching it. An
overview of how researchers have overcome these
Figure 1

Stretching. (a) Highly stretchable gel using double-network gels [2]. (b) Miura
Negative swelling gels [5]. Bending. (e) Capillary origami [6]. (f) Tetherless mi
Snapping poppers [9]. (i) Snapping elements that absorb elastic strain energy
Swelling-induced snapping shells [12]. Buckling. Buckled silicon membranes [
induced kirigami [16].
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constraints is presented in Figure 1, which highlights
how tailoring materials, geometry, and topology can
enable structures to stretch and bend in unconventional
ways, and how elastic instabilities enable structural
morphing and metamaterial behaviors such as negative
Poisson ratio and negative swelling. By building upon
the fundamentals of elasticity (Section Elasticity of
slender structures) and harnessing elastic instabilities

for enhanced functionality (Section Elastic instability
phenomena), we are now ushering in an age of pro-
grammable matter (Section Programmable matter). The
multitude of approaches for changing an object’s shape
share similar techniques d mechanical metamaterials
are built around buckling and snapping mechanisms,
origami and kirigami create local regions that bend
easily, shape-shifting structures swell more or less locally
d and the purpose of this review is to provide the reader
the insight to see the underlying principles that govern
shape change.

Scaling
Using the scaling relations of a thin structure’s

stretching and bending energy, we were able to quickly
see why thin objects bend rather than stretch. This
approach can be useful for understanding the relevant
physics in a whole range of phenomena, and we will
review some of the most relevant examples here.

Elastogravity length
Let’s consider a simple question: If I slide a sheet of
paper over the edge of my desk, at what length will this
Current Opinion in Colloid & Interface Science

-ori fold [3]. (c) Extremely stretchable thin sheets via kirigami [4]. (d)
crogrippers [7]. (g) Programming curvature with origami [8]. Snapping. (h)
[10]. (j) Bistable water bomb fold [3]. (k) Bistable kirigami unit cells [11]. (l)
13]. (n) Negative Poisson ratio [14]. (o) Wrinkle patterns [15]. (p) Buckling-
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Figure 2
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Characteristic length scales in elasticity. (a) Demonstration of the elastogravity length with a sheet of paper. (b) Elastocapillary encapsulation adapted
from the study by Py [6]. (c) Snap-through eversion of a spherical cap, demonstrated with a tennis ball, adapted from the study by Taffetani et al. [44]. (d)
Wrinkles on a soft substrate adapted from the study by Baru et al. [45]. (e) A demonstration of geometric rigidity from the study by Lazarus et al. [46].

2 Depending on the choice of B (which often takes the form of BwEr4 for a rod) and

the choice of r (which may be taken to be an areal density), this exponent may change

accordingly.
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sheet begin to bend under its own weight? Gravity is the
relevant force here, and we know that the gravitational
potential energy scales as

U gwrgh

Z
dds (2)

where r is the volumetric density of the paper, h is the
paper thickness, g is the acceleration due to gravity, and
d is the distance over which gravity is acting. To deter-
mine when gravity will bend a thin sheet, we need to

consider the term k in Eq. (1) more carefully. Here,
bending represents a vertical deflection d occurring
relative to our unknown length [. Because k is a curva-
ture, for small deflections, we may write kzv2d=vx2,
such that from dimensional analysis, we may write
kwd=[2. We expect the sheet of paper will bend when
the energetic potential from gravity is on the same order
Current Opinion in Colloid & Interface Science 2019, 40:118–137
as the energetic resistance to bending, and so by
equating Eq. (2) and U b, we arrive at a characteristic
elastogravity length scale2 [17,18]

[egw

�
B

rgh

�1=3

(3)

Typical office paper has a bending rigidity of B=40
mN,m, thickness of h=0.1 mm, and density of r=800
kg/m3, meaning that an overhang of about 37.1 mm (1.46
in) will cause the paper to start to sag (Figure 2a).
Beyond being a useful back-of-the-envelope calculation,
www.sciencedirect.com
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the elastogravity length has been shown to play an
important role in determining the wavelength of wrin-
kling surfactant monolayers [19], the ability of thin
elastic sheets to ‘grab’ water [20], the curling [21] and
twisting [22] of an elastic rod, the viscous peeling of
plates [23], and the buckling [24] and wrinkling [25] of
elastic sheets on water.

This balance of bending and gravity is also what de-
termines the length of curly hair [26,27]. If the curl is
treated as a circular spring that is opening under the force
of gravity, the bending stiffness of the hair will be
kcurlwEIk3n , where kn is the curvature of the curl, or the
intrinsic, natural curvature of the hair. Gravity acts upon
each curl by rgAL, where r is the density (mass/volume),
A is the cross sectional area of the hair, and L is the total
length of the hair. Each individual curl, or circular spring,
will open by an amount zcurlwrgAL=kcurl, and if there are
n curls, such that nwLkn, the vertical displacement of

the free end of the hair should be Eq., 4 as given in the
study by Audoly and Pomeau [26].

zw
rgAL2

EIk2n
(4)

A similar argument can be used to design a Slinky. A

Slinky is little more than a very floppy spring, and one of
the most iconic features of this toy is that it can be bent
into an arch. The bending energy for this discrete
structure is slightly different than the continuous form
given by U b [28]; however, the concept is the same.
Balancing the spring’s effective bending rigidity against
the gravitational potential yields indicates that this
Slinky would need 71 rings to form a stable arch [28].3 A
Slinky typically has about 82 rings, so if you cut off about
11 or more, it will not be as fun to play with [28].

Elastocapillary length
We are familiar with fluids that deform thin structures
through inertia, for example, consider the flapping of a

flag in the wind [29]. In contrast, capillary forces are
typically negligible at macroscopic scales. However, at
micrometric and millimetric scales, surface tension can
cause thin structures to bend. Therefore, a natural
question to ask is at what length scale should I start to
worry that capillary forces will deform my structure?
Here, we are concerned with surface energy, which
scales as

U gwg

Z
du (5)
3 Using nrwEI=ðmgRhÞ, with radius R=34.18mm, thickness h=0.67mm, mass per

ring m=2.49g, and an experimentally measured effective bending rigidity of

EI ¼ 40� 10�6 N,m2.
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where g is the surface tension of the liquid. The most
elegant scenario to imagine was outlined by Roman and
Bico in their review articles on this topic [30,31] in
which they consider a thin strip spontaneously wrapping
around a wet cylinder of radius R. For the strip to wrap
around the cylinder, it must adopt a curvature of
kwR�1. Here, again, we can balance bending energyU b

with surface energy (Eq. (5)) to arrive at a characteristic

elastocapillary length [32,6].

[ecw

�
B

g

�1=2

(6)

With this simple example, the prefactor can be worked
out to be exactly 1/2 [30], indicating that a sheet of office
paper will spontaneously wrap around a cylinder wet with
water (g=72 mN,m) as long as its radius is greater than
372 mm (Figure 2b). Intuitively, this makes sense d
paper is intrinsically flat, and so it should conform to a
cylinder regardless of g as R/N, but below some crit-
ical R, bending will be too costly. The role of surface
stresses is a highly active research area at the moment
[33], and those interested in this brief primer would be

better served reading the work of Roman and Bico
[30,31], along with recent reviews on deforming soft
solids [34], bundling fiber arrays [35], and approaches for
using fluids to assemble structures [36].

Warping wafers
It is fair to say that one of the most classical examples of
a shape-shifting structure is the bending of a bimetallic
strip when it is heated [37]. While thin bimetallic strips
and beams bend uniformly when subjected to a change
in temperature, thin plates do not. This is perhaps
familiar to those who have cooked in the oven with a
metallic baking sheet, as it may buckle and warp when

heated above a certain temperature. The bowing and
warping of thin plates was a particularly important
problem relating to the deposition of thin metallic films
onto silicon wafers [38,39]. Homogenous heating of a
bimetal plate will endow the plate with a homogenous
natural curvature kn, causing it to bend into the segment
of a spherical cap, which has a positive Gaussian curva-
ture. Gauss’s famous Theorema Egregium states that you
cannot change the intrinsic curvature of a surface
without stretching it, and so this deformation comes at
the cost of stretching the plate’s middle surface.
Eventually, the energetic cost for the plate to bend into

a cylinder becomes lower than the cost to continue
stretching and bending into a spherical cap, and so the
bowing wafer will buckle into a cylindrical shape [1,40].

The cost of stretching the plate’s middle surface into a
spherical cap is quantified by ε in Eq. (1), and this will
scale as the square of the natural curvature kn times the
plate radius r, such that εwð[knÞ2 [41]. Alternatively, to
avoid stretching, the disk will need to maintain its zero
Current Opinion in Colloid & Interface Science 2019, 40:118–137
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Gaussian curvature, which it can accomplish by bending
into a cylinder. If it deforms into a cylindrical shape, the
stretching energy is zero while the sheet has to suppress
the curvature along one direction, such that the bending
energy scales as it is written in Eq. (1), with kwkn [41].
By balancing the bending and stretching energies from
Eq. (1), we find that the plate should buckle when [41].

knw
h

[2
(7)

where for thermal problems, the natural curvature can
be related to the temperature by calculating the curva-
ture of a beam of given modulus and thickness ratios
using Timoshenko’s well-known result [37]. In addition,
the prefactor of this equation has been worked out

exactly for most plate geometries [41]. This scaling
analysis also gives rise to a characteristic length scale
that is relevant to the anticlastic curvature of bent plates
[42,43] and boundary layers in thin shells. By simply
inverting the relation, we find

[blw

ffiffiffiffi
h

kn

s
w

ffiffiffiffiffiffi
hR

p
(8)

where R is the radius of curvature of a given shell. This

characteristic length is easy to identify in thin shells. Take a

tennis ball, cut it in half, and turn it inside out (Figure 2c).

The flat lip that forms along the boundary of the everted

shell has a length on the order of [bl.

Snapping shells
In the previous section, I encouraged an experiment
that involves cutting a tennis ball and turning it inside

out to see if it remains stable. A natural question may
be beginning at the ball’s apex, how far down, that is, at
what latitude from the north pole, should you cut
through it to ensure that it can be turned inside out?
Turning a shell inside out requires the middle surface of
the shell to stretch as it is everted. Pushing on a shell of
radius R, similar to a ping pong ball or water bottle, to a
depth d causes a dent with a characteristic length of
[blw

ffiffiffiffiffiffi
dR

p
d the same scaling that appears in Eq. (8)d

and this dent is equivalent to a locally everted segment
of the shell. This gives us a measure of the stretching

strain, with εwd2=[2blwd=R [44]. Deflection of the apex
of the shell can be estimated in terms of the geometry of
the shell, with d ¼ Rð1� cosaÞwa2R, where a is the
planar angle subtended between the pole and the free
edge of the shell [44]. Now, the stretching energy of the
shell can be found from Eq. (1) using εwa2. To turn a
shell inside out, it will adopt a new radius of curvature
that is quite close to its original radius of curvature, and
the main distinction is that material points that were
originally on the outer (inner) surface of the shell are
now being compressed (stretched). This comes at the

cost of bending the shell, which according to Eq. (1) can
be found using kw1=R. Balancing these two energies,
and, for historical reasons, taking the fourth root of the
Current Opinion in Colloid & Interface Science 2019, 40:118–137
result, gives rise to a dimensionless parameter that
characterizes the shell [47,44].

Lw½12ð1� nÞ�1=4
�
R

h

�1=2

a: (9)

Shells with LT5:75 can be turned inside out, or ever-

ted, and remain that way d that is, they are bistable
[44]. For a typical tennis ball, with R=33.15mm,
h=3.3mm, and Poisson ratio of n=1/2, that means cut-
ting the ball at a height of 15 mm from its north pole will
yield a bistable shell.

Wrinkles
Probably no instability is more responsible for the surge
in research interest on the topic of this review over the
last fifteen years than wrinkling [48e51]. Similar to the
others we have encountered so far, this problem also has
both a long history [52] and a myriad of potential utility
[53]. It is quite easy to see the pattern characteristic of

wrinkling by simply compressing the skin on the un-
derside of your forearm between your thumb and index
finger. What is immediately apparent is the formation of
ridges that are all equally spaced by some distance l and
all seem to have approximately the same amplitude A
(Figure 2d). Therefore, a natural question is what sets
the spacing of these wrinkles? The physics at play here
do not include gravity or a fluid, and balancing bending
and stretching alone is not enough. This is a buckling
problem, but one where a stiff film (skin) is resting on a
softer substrate which is resisting deformationd that is,
we can consider the mechanics of a beam on an elastic

foundation [54]. Consider the outer portion of your skin
to be a stiff plate resting on a substrate that behaves like
a Winkler foundation [54]. We can write the strain energy
of the foundation as

U fwK

Z
d2du (10)

where K is the stiffness of the foundation and d is its

deflection. A wrinkle will adopt a vertical deflection
d relative to some unknown characteristic spacing l.
Therefore, the curvature of these wrinkles, which costs
bending energy, will scale as kwd=l2. The ratio of d to l
is set by the lateral compression D of the plate and
substrate relative to some initial length L. From geom-
etry, we find that d=lzðD=p2LÞ1=2, a relation that is
referred to as the slaving condition [55,56]. If l is large,
the bending energy of the plate will be minimal; how-
ever, this would require a significant stretching of the
substrate. If l is small, the stretching of the substrate is

minimal, yet this would require the plate to bend with
very large curvatures. However, the ratio of d=l can
remain fixed for a given compression if we allow for a
deformation with multiple undulations. With this in
mind, balancing U b with Eq. (10), we expect that the
wrinkles will have a wavelength of [49].
www.sciencedirect.com
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lw

�
B

K
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(11)

For a wide variety of systems, this scaling works
remarkably well. Translating this scaling to a quantita-
tive prediction of the wrinkle wavelength of a stiff skin
on a soft substrate requires some additional analysis and
is described in more detail in the Supplementary
Information. The substrate does not need to be solid;
indeed a fluid will impart an effective elastic stiffness of

Kwrg, where r is the density of water [51]. For
instance, if you consider placing a droplet of water on a
thin film floating on a bath of water, wrinkles will form
on the surface due to surface tension [51,57e60]. The
characteristic scaling of the wrinkles remains consistent
as the loading or displacement is increased; however,
this small perturbation to the shape becomes a much
larger perturbation to the stress field. This change in the
stress field is quantified as a transition from the post-
buckling near-threshold regime to the far-from-
threshold regime [57,59,61]. In the far-from-threshold

regime, the stress field is still nearly axisymmetric
[62] and can be used to determine the shape and
stiffness of loaded films [56]. Eventually, at a large
enough load or displacement, the stress field breaks
axisymmetry, and we experimentally observe a large
number of wrinkles collapse into a small number of
folds: a wrinkle-to-fold transition [63].4

Geometric rigidity
Before we learn about how to control and direct the
deformations of slender structures, it is useful to un-
derstand where these structures derive their rigidity
from. Perhaps the most pleasant demonstration of how
changing shape can increase an object’s rigidity is to

simply pick up a slice of thin-crust pizza. The tip of the
pizza will sag under the weight of gravity, and so we fold
the pizza in half, forming a cylindrical shape with the
generatrix running from the tip to the crust. This cur-
vature makes it much more difficult for gravity to
deform the pizza because it would have to induce
bending in two directions which would require a change
in Gaussian curvature d something too difficult for
gravity to accomplish alone.

It has long been known that geometry alone can provide

functionality, such as enhanced structural integrity d
arches have been used in architecture to bear loads for
over four thousand years, and these structures exhibit
their rigidity due to their intrinsic curvature. Shell
structures, such as domes, are no different. Research by
Vella et al. [64,65] and Lazarus et al. [46] has shed light
on the intimate connections between a shell’s geometry
and its mechanical behavior, demonstrating that tuning
4 This topic is discussed a bit more in the Supplemental Information.
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a shell’s shape, rather than the materials, provides a
straightforward way to enhance its ability to sustain a
load. Consider a positively curved (e.g. spherical, ellip-
soidal), pressurized shell loaded at its apex by a point
force. The rigidity of the shell depends on both the
depth of indentation relative to shell thickness and the
degree of shell pressurization. In the limit of weakly
pressurized shells, the classical stiffness of an unpres-

surized shell, first obtained by Reissner, are recovered
[66,64,46], which find that the stiffness is dependent on
the shell’s Gaussian curvature K . The shell’s rigidity is
correlated to the in-plane stretching of the shell [64], an
energetically costly deformation. Consider an egg shell,
which is effectively ellipsoidal. If we take the Gaussian
curvature at any point on the shell to be the product of
the two principle curvatures, then K will be largest at
the north pole of the shell and lowest at the equator d
therefore, the enhanced stiffness observed with
compressing a chicken egg at its poles compared to its

equator is a consequence of geometry-induced rigidity
[46] (Figure 2e). In the limit of high pressure, the mean
curvature H , not the Gaussian curvature, governs the
shell stiffness [65]. The absence of a dependence onK
in the large deflections of highly pressurized shells im-
plies that the internal pressure negates the effect of
geometric rigidity.

Understanding how a shell’s stiffness depends on both
the degree of internal pressure and the extent of
deformation may be an important tool for biomechanical

characterization. An important question for quantifying
the morphogenesis of cellular and multicellular struc-
tures is how to deconvolute measurements of the cell
wall mechanics from measurements of the pressure
caused by osmotic fluid flow through the cell wall [67],
that is, turgor pressure. Vella et al. [64] demonstrated
that their results on the indentation of pressurized
elastic shells could characterize the turgor pressure
within yeast cells, viz. Saccharomyces cerevisiae. Using the
stiffness from the Reissner limit, a turgor pressure
within the yeast cells was estimated that was consistent
with those measured using other experimental tech-

niques [68]. Preliminary work has begun on extending
this analysis to the measurement of the elastic proper-
ties of tomato fruit cells [69] and plant tissues [70,71],
and further development of this model to include
different loading types may provide insight into the
large deformations observed within artificial biological
microcapsules, for example, refer to the study by
Neubauer et al. [72] and the references therein.
Elastic instability phenomena
The scaling from Eq. (1) tells us that thin structures
prefer to bend rather than stretch, and in doing so will
often exhibit an elastic instability. The efficient design
of thin and lightweight structures out of high-strength
materials leads to a conundrum at the heart of
Current Opinion in Colloid & Interface Science 2019, 40:118–137
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structural engineering: an optimum design is by its very
nature prone to instability. With ample evidence that
structural instability plays an integral role in the
morphogenesis of biological materials [73] d from
fingerprint formation [74,75], to the folds in the cerebral
cortex [76e78], to the tendril perversion in climbing
plants [79] d it is perhaps more important than ever
that scientists and engineers studying solid materials

have a strong understanding of the mechanics of elastic
stability.

Stability requires us to consider the internal exchange of
energy within a structure, with the total potential
energy consisting of the internal strain energy and the
potential from the external loads, that is, V ¼ U sþ
U bþ P . We recall that the first variation of the total
potential energy must be equal to zero for a structure to
be in equilibrium, dV ¼ 0. This statement is equiv-
alent to Newton’s second law. Equilibrium does not

ensure stability, however. It is possible to balance a ball
on the apex of a steep hill, such that it is in equilibrium,
but this equilibrium is unstable because any slight
perturbation will cause the ball to role far away and not
return. A ball resting at the bottom of a hill is of course
stable because any perturbation to it, for example, roll-
ing it slightly up the hill will cause it to return to its
original position once the perturbation is removed. We
can also speak of neutral equilibrium, which would refer
to the ball resting on a flat surface d any perturbation
will not change the ball’s potential energy. With this

simple analogy, we may recognize that these hills
represent a potential energy landscape, and that we
need to investigate the convexity or concavity of this
landscape at an equilibrium point to determine if this
equilibrium is stable or unstable, respectively. This re-
quires us to investigate the character of the second
variation of the total potential energy d a structure is
stable if d2V > 0, unstable if d2V < 0, and neutral if
d2V ¼ 0 [1]. It is tempting to relate these ideas to
finding the extrema and curvature of a function in or-
dinary calculus; however, energy is not a function, but
rather a functional d a function of a function of a vari-

able. Evaluating the character of a functional requires
the tools from variational calculus, and perhaps the most
enjoyable primer on the calculus of variations can be
found in Feynman’s lectures [80].

For an elastic structure under a conservative load, the
critical point at which an instability occurs will always
correspond to either a bifurcation (‘buckling’) or a limit
point (‘snapping’). Imperfections in the structure’s
shape or within the material, or the eccentricity of the
load can cause bifurcation critical points to change in

character to a limit point, suggesting that buckling is
perhaps more the exception than the rule [81]. On the
surface, it seems surprising that buckling problems are
abound in the literature, whereas limit point problems
appear far less frequently. There are, in general, two
Current Opinion in Colloid & Interface Science 2019, 40:118–137
reasons for this imbalance. First, the distinction between
bifurcations and limit points is not merely semantic: one
mathematical tool that allows us to study bifurcationsd
namely, linear stability analysisd is impossible to use to
study a limit point instability [82,83], making buckling
problems far easier to analyze. Second, slender structures
are most efficient if they carry their load in a primarily
membrane state of stress d meaning the loads act to

stretch or compress the middle surface of the thin object,
and such configurations will typically fail by buckling
rather than snapping [81]. The primary mathematical
difference between a bifurcation and a limit point
instability is this: A limit point occurs when the equi-
librium position becomes unstable, and the structure
moves to the closest, stable point on the same equilib-
rium path, while a bifurcation occurs when two equilib-
rium pathways intersect, and an exchange of stability
occurs as the structure follows the stable equilibrium
path. By way of a metaphor, I view snapping as akin to

walking along a path in the woods and encountering a
puddle that one must jump over to continue, while
buckling represents a fork in the road, occurring when a
new path appears. Concrete examples of these two
generic instability phenomena are given in the
Supplementary Information. For the chemist or physi-
cist, these definitions may bring to mind a connection
between these instabilities and phase transitions [84e
86], wherein one could draw an analogy between a
limit point instability and a first-order phase transition,
and a bifurcation with a second-order phase transition.

This is perhaps more useful conceptually than practically,
but several similarities are shared. We will begin with
snapping, which requires us to consider only one equi-
librium path, whereas buckling requires the exchange of
stability between two equilibrium paths.

Snapping
The snap-through instability presents an important
mechanism for directed shape change in the design of

shape-shifting structures. A recent review on this topic
by Hu et al. will hopefully provide a nice compliment to
the following discussion [87]. There have been dem-
onstrations of actuating snap-through instabilities for
just about every conceivable mechanical and nonme-
chanical stimulus, including temperature [88], light
[89], acoustic excitation [90,91], elastomer or gel
swelling [92e94,12], magnetic fields [95,96], fluid flow
[97], surface tension or elastocapillarity [98], and elec-
trical current with materials that include from ceramic
(piezoelectric) [99,100], metallic (electrostatic)

[101,102], and rubber (dielectric elastomers)
[103,104,24,105]. Laminated composites of epoxy and
carbon fiber or fiber glass may exhibit bistability or
multistability while thermally curing [106e109].
Depending on the fiber orientation, the presence of the
fiber embedded in the epoxy matrix may give these
materials an orthotropic response, thus providing design
criteria for the orientation of the stimulus chosen to
www.sciencedirect.com
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induce snapping [40]. Such structures may enable
morphing components for wind turbines [110], mecha-
nisms for swimming or flying [111], ventricular assist
devices [112], and for lightweight, deployable structures
[113,114]. In a similar manner, the orientation of the
residual stress or prestress resulting from fabrication can
alter the geometric criteria for bistability [115e117]. In
addition, rapid prototyping techniques, such as 3D

printing and laser cutting, have made it much easier to
generate bistable structures on a wide range of scales. Of
note is the elastomer-coating technique pioneered by
Lee et al., [118] which has made the preparation of thin,
spherical caps with nearly uniform thickness simple,
fast, and affordable. With all of these ways to induce
snapping, it is no surprise that it has found utility in a
wide range of engineering fields.

Experimental results on the adhesion of 2D materials
such as graphene and MoS2 have indicated that there is

a snap into adhesive contact between the film and a
substrate containing roughness [119,120], which has
enabled researchers to demonstrate that this instability
may be a useful metrology tool to measure the material
properties of 2D materials [121]. The snap-through
instability has also been used to tune a material’s
properties in response to an applied load by altering the
material’s lattice structure to generate dramatic, dy-
namic increases in a material’s stiffness [122]. On a
slightly larger scale, there is interest in the micro-
electromechanical and nanoelectromechanical (MEMS

and NEMS, respectively) communities to use the rapid
snap-through of arches and shells in electromechanical
systems [123] for accelerometers [124] or as a means to
rapidly change a surface’s texture or optical properties
[92]. The precise placement of folds in thin sheets can
generate a wide range of multistable structures, with the
most fundamental being the water bomb [125e127,3],
which has generic bistability for any number of creases
[3]. In addition to traditional folding and cutting tech-
niques, programming creases into a material through
spatial variations in its thickness can enable bistability in
folded shells d cylinders, spheres, or saddles [128].

One function that has drawn particular attention is the
design of bistable structures as a means to capture, trap,
or harness elastic strain energy [129,10,130]. This pro-
cess may be amenable for use with soft elastomers [10],
which can undergo very large snap-through instabilities
without exhibiting material failure [103,131,104,105]. If
these soft materials are used as actuators, rather than
energy harvesters, the instability can be used to trigger
large, nonlinear changes in shape, pressure, and exten-
sion within soft, fluidic actuators [132].

Buckling
The elastic buckling of a beam or plate provides a
straightforward way to get large, reversible, out-of-plane
deformations, which can be used for generating
advanced functionality [133]. For instance, embedding a
www.sciencedirect.com
flexible plate within a microfluidic channel provides a
means for mechanically actuated valving [134,135].
Buckled plates have been used to fabricate semi-
conductor nanoribbons for stretchable electronics
[136e138]. In recent years [139e141], researchers have
used this principle to fabricate single-wall carbon
nanotube arches [142], single-crystalline silicon arches
that were used as metal-oxide semiconductor field-

effect transistors (MOSFETs) [143], and buckled lead
zirconate titanate (PZT) ribbons for ceramic piezo-
electric energy-harvesting devices [144]. Buckling
bilayer plates can be used to generate shape-shifting
structures [41] that may be used as soft grippers
[145]. Buckling of shells has provided an intriguing way
to control global shape [146,147,12] and local patterning
[148e151], reduce aerodynamic drag [152,153],
generate lock-and-key colloids that can selectively
aggregate [154], form liquid crystal shell actuators
[155], and pave the way for buckling microswimmers

[156].

Wrinkles are what appear when a thin structure buckles
and the soft substrate it is bound to constrains the
amplitude of the out-of-plane deformation [52,48e
51,53]. There are a variety of ways to fabricate wrin-
kled surfaces, but the underlying principle is simple:
bond a stiff film containing residual compressive stress
onto a compliant substrate. Some of the first experi-
ments in this manner involved the deposition of a thin
metallic film onto a polydimethylsiloxane (PDMS)

substrate by electron beam evaporation [157,158]. This
deposition locally heats the PDMS surface, expanding it
equibiaxially. Upon cooling, this compressive stress
causes the metallic film to buckle with wrinkles in a
herringbone pattern that cover a large surface area.
Wrinkles have long added functionality to structural
materials, such as with their ability to damp the struc-
tural vibrations occurring on composite plates [159].
Similar to the buckled ribbons used for flexible elec-
tronics, these wrinkled plates enabled the fabrication of
stretchable gold conductors [160], flexible-electronic
devices using wrinkled ribbons [161,141,162], and

wrinkled single-walled carbon nanotubes [163]. Sinu-
soidal wrinkles have been used to alter and tune friction
[164,165], to fabricate tunable phase gratings [166], and
to improve the metrology of thin films via the strain-
induced elastic buckling instability for mechanical
measurement (SIEBIMM) technique [167]. In addi-
tion, there is significant evidence within biological sys-
tems to suggest that patterned surfaces alter adhesion
[168e171]. Wrinkles are not limited to stiff films on
soft substrates and can appear by merely stretching [49]
or twisting a thin sheet [172,173]. Control of the pattern

topography is a crucial component for using these
structured surfaces (Figure 1o). Linear stability of the
cylindrical pattern reveals the emergence of hexagonal,
triangular, and square modes, and the commonly
observed herringbone pattern [174,175,15]. Finally, as
Current Opinion in Colloid & Interface Science 2019, 40:118–137
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the amount of overstress, or confinement, of the com-
pressed plate increases, the bending energy along the
plate goes from being broadly distributed among wrin-
kles to being localized within sharper features
[176,63,1].
Programmable matter
Mechanical metamaterials
Metamaterials are rationally designed structures
composed of building blocks to enable functionality that
cannot be found in natural materials [181]. While this
term has been traditionally associated with electro-
magnetism and optics, the field has recently broadened

to include elastostatic and elastodynamic meta-
materials, collectively called mechanical metamaterials.
Figure 3

Mechanical metamaterials. (a) Spherical encapsulation with a ‘buckliball’, ada
chanical metamaterials [178]. (c) Programmatic shape change with a pixelate
structural polarity through external constraints, adapted from the study by Flo

Current Opinion in Colloid & Interface Science 2019, 40:118–137
There is an excellent review that will cover the details of
this topic far better than I will do here, so I encourage
the curious reader to seek out Bertoldi et al. [182]. In
general, the underlying concept of a mechanical meta-
material is to use hierarchical structures, such as
microscale or mesoscale geometric features, to alter the
macroscopic deformation of an object. Foam has natural
microscale features and its atypical mechanical response

exhibits a negative Poisson ratio [183]. This auxetic
behavior [184] has been explored in a variety of con-
texts, many of which use the buckling of microscale/
mesoscale beams within the macroscale structure
[185,14]. With the inclusion of additional constraints,
this auxetic behavior can be finely tuned to provide a
programmatic structural deformation with a tailored
Current Opinion in Colloid & Interface Science

pted from the study by Shim et al. [177]. (b) Static nonreciprocity in me-
d cube, adapted from the study by Coulais et al. [179]. (d) Programmatic
rijn et al. [180].
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forceedisplacement response [180,186] (Figure 3d).
Buckling of microstructural features to generate auxetic
behavior can be extended from structured plates to
structured shells to potentially encapsulate material
[177] (Figure 3a). Instability is at the heart of me-
chanical metamaterials that exhibit negative compress-
ibility, in which they contract while being loaded in
tension, potentially enabling force amplification [187].

Buckling of subscale features becomes truly ‘meta’ when
one considers the Euler buckling of metabeams [188],
wherein the microstructure has a significant affect on
the postbuckling response. More generally, precise
control of pixelated structures provides a way to pro-
grammatically dictate a structure’s deformation across
multiple length scales [189] (Figure 3c). For example,
the combinatorial design of specific building blocks can
enable a cube to produce a smiling face in response to
uniaxial compression [179]. Mechanical metamaterials
are now veering closer to classical metamaterials by

examining the role of topology in addition to geometry
to transform shape and mechanical properties [190],
with notable examples including structures to break the
static reciprocity formalized by the MaxwelleBetti
reciprocity theorem [178] (Figure 3b). Static reci-
procity is the principle that describes why pushing a
block on a table from the left will move it the same
amount as pushing it from the right.

Origami and kirigami
Recall that Gauss’s famous Theorema Egregium states that
you cannot change the intrinsic curvature of a surface
without stretching it, and we know from Eq. (1) that it is
far easier to bend a thin object than stretch one.

Therefore, if you want to stretch a thin object or wrap a
sheet of paper around a soccer ball, what is one to do?
One answer is to design regions that enable stretching,
such as with the inclusion of folds and cuts. A review by
Witten [191], which in my opinion did much to catalyze
this entire discipline, describes at great lengths the way
stress within thin sheets will localize into sharp folds,
essentially acting as sacrificial regions in which a mate-
rial begrudgingly stretches.5 Understanding the me-
chanical nature of these folds guides their strategic
incorporation into engineering systems. If these folds

are precisely placed and sequentially actuated, they
represent a means to develop advanced engineering
structures. Taking inspiration from the Japanese art of
origami, sequential folding has long been used in
structured systems [192]. Deployable structures, used
in space technologies, typically require damage-free
actuation, reliable deformation, and autonomous or
automated conformational change and have been used
within small satellite deployable structures, deploy
5 There are important distinctions to be made about the structure of crumpled

paper, including the formation of developable cones, or decones and the stretching ridges

that connect them. Conversely, creases are localized deformations that seem similar to

folds, yet are much sharper. Some of these details are covered in the SI.
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booms, and array panels [193,114]. Recent research has
examined the mechanics of these foldable structures,
with a focus on origami-inspired design [194,195], and
thus, it may be useful to the reader to seek out the
review article by Peraza-Hernandez et al. on this specific
topic [196]. The fundamental mechanics of a fold [197]
or more broadly a conical defect or singularity within a
thin plate [198e201] are at the heart of understanding

and designing origami mechanisms. While the geometric
properties of a fold have been studied in great detail, the
role of a material’s properties in these systems has been
largely overlooked to date. A notable exception is the
work by Croll et al. [202] on the role of adhesion in
crumpled structures. Unit cells of a repeating fold
pattern provide origami building blocks [203] and
enable the programmatic design of structural de-
formations [204e206], 3D shape-shifting [207], and
folding-induced curvatures [8]. Such systems may
exhibit multistability, as noted briefly in section on

snapping [208,209].

The Miura-ori folding pattern is a well-known example
of functional origami d a parallelogram of folds defined
by two fold angles and two lengths, which enables the
compact folding of a flat plate [210e212]. This func-
tional array of pleated folds has been used for collapsable
maps and deployable satellite arrays [213] and to in-
crease the areal energy density of folded lithium-ion
batteries [214]. Mathematicians and mechanicians
alike have borrowed concepts from origami to create

biomedical stents [215], nanostructured foldable elec-
trodes [216], ultrathin high-resolution, folded optical
lenses [217], photovoltaics [218], and materials with
tunable coefficients of thermal expansion [219] and for
folding rigid, thin-walled structures around hinges
[220]. The techniques for generating folds include
actuation by shapeememory alloys [221], light
[222,223], microfluidic flow [224], and direct-printed
wet-origami [225].

A natural extension of using folds inspired by origami to
enable elaborate shape changes is to use cuts inspired by

kirigami. Here, the fundamental behavior is governed by
the nonlinear mechanics of thin frames [226]. With
kirigami, the roles of topology [227] and geometry are
once again at the heart of design rules that enable
targeted shape changes [228e230]. Mechanics enters
the picture by enabling these flat sheets to buckle into
3D structures when stretched or compressed beyond a
critical point [16,231]. While lattice cuts have primarily
been studied to date, with the work of Dias et al. being a
notable exception [231], additional functionality was
demonstrated with multiscale cuts, that is, kiri-kirigami

[232], randomly oriented [233] and fractal cuts
[234,235], and patterns that naturally interlock [236].
One of the primary demonstrations of functional shape
change via kirigami is the extreme stretchability of thin
sheets [237e239], which even translates to 2D
Current Opinion in Colloid & Interface Science 2019, 40:118–137
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materials, such as graphene [4]. Dias et al. [231] showed
that to leading order, the out-of-plane deformation of a
single cut is independent of the thickness of the sheet,
providing mechanical insight into why this shape-shift-
ing mechanism can scale down to the thinnest materials.
Kirigami-inspired cut patterns have enabled the fabri-
cation of photonic metamaterials [240], metamaterials
with tunable material properties [11,241], smart adhe-

sives [243], solar tracking devices [244], stretchable
lithium-ion batteries [245], optical beam steering [246],
shape-shifting structures [247], and ultra-lightweight
linear actuators [231].

Shape-shifting structures
The control of geometry and elasticity to create adap-
tive, morphing structures paves the way for an era of
designer materials [133]. We have reviewed the ener-

getic limitations on bending and stretching structures,
and we have seen how carefully chosen stretching re-
gions d through, for example, origami and kirigami d
enable a much wider range of shape changes. An alter-
native approach for shape-shifting structures is through
the programmatic design of the volumetric strain within
a material. An elegant example of controlling the spatial
distribution of volumetric strain was recently demon-
strated in the nonhomogenous pneumatic inflation and
collapse of soft, elastic plates [254]. In general, this
approach draws the closest analogy to synthetic struc-

tural growth. Swelling presents a simple and effective
technique to spatially tune volumetric strain, while
falling short of growth by not permanently adding mass
to the reference elastomer, or reference configuration.
Swelling is the infiltration of an elastic network with a
favorable solvent, such that the characteristic size of the
polymer chains, that is, their radius of gyration,
dramatically increases. The balance of fluid movement
and elastic response dictates the timescale over which
swelling-induced phenomena will occur, and the ability
for the fluid to swell the polymer network dictates the

magnitude of stress imparted. Fluid flow within natural
structures plays a crucial role in the morphology of
growing tissues [255e257]; the opening of seed pods
[258]; the shrinkage of mud [259] and moss [260]; and
the curling of cartilage [261], leaves [262,263], and pine
cones [264]. Porous thin films, such as fuel cell mem-
branes [265], are highly susceptible to swelling-induced
delamination and buckling, which cripple their
functionality.

Swelling-induced deformations provide a means for

shaping two-dimensional sheets into three-dimensional
structures [248e250,266], with features spanning mul-
tiple length scales [267,268]. Differential swelling d
where portions of the material locally swell more than
othersd have been used to create helical ribbons [269],
cylinders [41], saddles [270,251], pinched spheres [12],
and wavy strips and discs [271e273] (Figure 4). The
shape selection process is nontrivial, and many efforts
Current Opinion in Colloid & Interface Science 2019, 40:118–137
have focused on predicting what shape will emerge from
programming the volumetric strain, often tailored using
the metric tensor of the middle surface of a thin plate or
shell [274e278,12]. The alternative, inverse problemd
predicting what metric to program to achieve a specific
3D shape d may be even more desirable [279]. In
addition to the contributions from the sheet’s elastic
energy, understanding the dynamic morphing of a

swelling structure, such as the curling of paper
[280,281], gels [282], and rubber [266,283], poses
additional challenges [284,285]. An intricate photoli-
thography technique, for example, halftone lithography,
has been developed to scale this dynamic process down
to create responsive, morphing structures on the micron
scale [248]. The mechanics behind this structural
morphing combines dynamic aspects of swelling, ge-
ometry, stability, and material properties, thereby
creating a rich environment for experimental and theo-
retical insights. It is likely that building on the concept

of programmable matter will inspire novel rapid-
prototyping technologies, such as 3D ‘inkjet’ printing
that uses small amounts of polymerizable solvents to
create complex structures. Such ideas are already
emerging in a technique known as 4D printing, where
the fourth dimension represents the timescale corre-
sponding to swelling [286,252,253,287e291].
Summary and outlook
Shape-shifting materials require working with and
around the constraints of elasticity and utilizing
nonlinearity to generate functionality. Most of what I
have covered in this review does exactly that d over-

coming the difficulty of stretching thin sheets by folding
or cutting them, using the buckling and snapping of
beams and plates and shells to generate metamaterial
behavior, and playing with swelling to tune spatial dis-
tributions of strain. So, where do we go from here?
Certainly, important research will continue in the areas
we have covered at length, although new opportunities
are beginning to emerge in a few specific areas. Much of
the research captured by the moniker of programmable
matter would be more aptly described as programmed
matter. While at first glance this seems like a semantic

distinction, I believe it is quite important. Very little
work has produced materials that can be programmed
and reprogrammed after fabrication or programmed in
response to a mechanical computation or an array of
external stimuli. How we take shape-shifting building
blocks and produce generic structures that are truly
programmable is an open question that will hopefully
drive innovation in this area in the coming years.

I think one of the most significant areas of research
going forward will focus on woven fabrics and knits for
tailoring shape and properties [292,293], led in part by

Prof. Matsumoto et al., and for example, such ideas are
already enabling the form finding of grid shells [294].
www.sciencedirect.com
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Shape-shifting structures. (a) Morphing with halftone lithography adapted from the study by Kim et al. [248]. (b) Non-Euclidean plates adapted from the
study by Klein et al. [249]. (c) A monkey saddle, adapted from the studies by Holmes [250] and Stein-Montalvo et al. [251]. (d) Pollen grain isometry of a
spherical cap, related to the work in the study by Pezzulla et al. [12]. (e) 4D printing using shape–memory polymer joints, adapted from the study by Ge
et al. [252]. (f) Active printed meshes, adapted from the study by Raviv et al. [253].
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Another interesting area may lie at the interface be-
tween elastic structures and granular or colloidal mate-
rials, so-called elastogranular interactions. Research in

this regard is beginning to lay out the fundamental
behavior of bending and packing of elastic rods within
grains [295e297], which is clearly relevant in the form
and function of growing plant roots, an effort that has
been led by Prof. Kolb [298e300]. Elastogranular me-
chanics is beginning to show promise for programmable,
reversible architecture [301e303]. Finally, in my
opinion, the biggest limitation in achieving the next
generation of shape-shifting structures is the absence of
simple-to-fabricate and robust materials that are highly
responsive to stimuli d that is, we need help from

chemists and materials scientists. Dielectric elastomers
offer a lot of promise yet require extreme voltages and
fail often. Swelling of elastomers and gels is slow, re-
quires a bath of fluid, and usually involves brittle ma-
terials that fail when they either deform too much or dry
out. We need addressable and programmable materials
www.sciencedirect.com
to take full advantage of the recent advances in me-
chanical metamaterials. Too often, the research covered
in this review uses ordinary office paper, dental poly-

mers, and traditional acrylic plastics and urethane rub-
bers. This approach is fine and should even be
applauded, when the purpose is to show how an
appropriate understanding of mechanics, geometry, and
topology can make profound predictions with run-of-
the-mill materials, but additional materials science ad-
vances are necessary to fully realize the potential op-
portunities for technological insertion of shape-shifting
materials. Among the leaders of this effort to connect
materials and mechanics is the work of Prof. Sottos et al.,
who has made advances in self-healing and autonomous

damage indicating materials [304e306], and Prof.
Hayward et al., see who often works at the interface of
polymer chemistry and mechanics [307e309]. Another
recent interesting effort to tune the material response of
traditional thermal bimorphs highlights the ability to
use encapsulated phase change materials to
Current Opinion in Colloid & Interface Science 2019, 40:118–137
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spontaneously induce thermal bending at critical tem-
peratures [310]. There is much work to be done to
better blend the insights from mechanics with the ad-
vances in materials.
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1. A bit more on stretching & bending

Shell theories have a common structure: a stretching energy
Us, which accounts for in–plane deformations, that is linear in
the shell thickness, h, and a bending energyUb, which accounts
for the curvature change of the deformed shell, and is dependent
on h3 [1, 2, 3, 4]. The dimensionless strain energy of the Koiter
shell equations are written in covariant form as [5]

Us =
Y
2

∫ [
(1 − ν)εαβεαβ + ν(εαα)2

]
dω ∼ Y

∫
ε2dω, (1a)

Ub =
B
2

∫ [
(1 − ν)καβκαβ + ν(καα)2

]
dω ∼B

∫
κ2dω, (1b)

where Y = Eh/(1 − ν2) is the stretching rigidity, B =

Eh3/[12(1 − ν2)] is the bending rigidity, E is Young’s elastic
modulus, ν is Poisson’s ratio, dω is the area element, and ε
and κ are the tensors that describe the stretching and bending of
the middle surface of the shell, respectively. The Greek indices
α ∈ [1, 2], and raised indices refer to contravariant components
of a tensor, while lowered indices refer to covariant compo-
nents. The intricacies of this notation are not important upon a
first introduction to this topic, but for the curious reader I would
recommend the instructive text by Niordson [5]. I will elaborate
on the covariance of the these tensors in the following section.
The energies each contain the square of two invariants, since the
shell is two–dimensional, for example with εαα being a measure
of how the area changes and εαβεαβ being a measure of how the
shell is distorted.

2. A brief note on covariance

Continuum mechanics is not often taught with a covariant
framework, and so those not trained in physics, where this
framework is at the heart of special and general relativity, the
notation can be quite confounding. If space is flat, like a sheet
of paper, then Cartesian coordinates are adequate to grasp much
of the underlying principles. However, much is lost in this rep-
resentation, and while the covariant framework of elasticity is
terrifying for most, including myself, when they first encounter
it, we can start making sense of the objects that this represen-
tation relies on without too much work. I am indebted to Einar

Email address: dpholmes@bu.edu (Douglas P. Holmes)
URL: www.bu.edu/moss (Douglas P. Holmes)

Rødland on the Mathematics StackExchange for the analogies
that follow [6].

Contravariance – Consider a map projection of the Earth,
and so we are all on the same page, let’s consider the Mercator
projection. In this projection, land areas near the poles (such as
Greenland and Antarctica) are severely stretched as compared
to those around the equator. Let’s assign a coordinate system
xα to identify the locations places on the surface of the Earth,
where α, β ∈ 1, 2 correspond to axes of longitude (along the hor-
izontal) and latitude (along the vertical) with units of degrees.
If we walk from East to West, the duration of our walk will be
denoted by t, and we can determine our speed by ẋα = dxα/dt.
The vector ẋα is a tangent vector, which for convenience can
be visualized as an arrow, with the length indicating the mag-
nitude of our speed. These tangent vectors will be quite small
while walking along the equator, and quite large while walking
around the South Pole. Stretching parts on the map causes the
tangent vectors to be stretched with it.

Covariance – Now, instead of concerning ourselves with our
velocity as we walk, let’s imagine we have measured the ele-
vation at every point on Earth. By examining the gradient of
elevation at points on Earth, we can draw contours that indicate
regions where elevation is constant. Contours that are close
together indicate a steep hill, while contours that are far apart
indicate a flat plain. The gradient of elevation is a covector,
and since it has units of elevation per distance, the contour lines
will be far apart on the regions of map that are stretched (e.g.
the South Pole). Stretching parts of the map causes the gradient,
or covectors, to become less steep.

3. A bit more on elastic stability

Unfortunately, most student’s first and only exposure to a
problem of elastic stability is a rather deceptive one – the Euler
buckling of a column. In studying the Euler buckling of a col-
umn, it is customary to make a one particularly significant as-
sumption – that the column is incompressible. This assumption
is advantageous because it is both reasonable, as most columns
do not shorten significantly before buckling, and it simplifies
the calculation. However, it is quite misleading, and I will let
one of the forefathers of stability theory, W.T. Koiter explain
why (emphasis mine):

“Here it appears that a negative second variation of
the potential energy of the external loads is the cause
of a loss of stability, but this state of affairs is due to our
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Figure 1: a. Normalized force P/EA plotted as a function of angle q showing
extrema at ncα, where nc = − 2π3

75
√

3
. b. The second variation of the total potential

energy is plotted as a function of angle q. The equilibrium configuration is
unstable when ∂2

qq ≤ 0. c. Normalized force is plotted as a function of rotation,
showing the loading path from i. the initial configuration to ii. the limit point at
ncα, at which point stability is lost and the structure snaps to iii.Upon unloading
from iii. to the limit point at iv. the structure snaps to v. Removal of the load
restores the initial configuration i.

simplifying assumption of an incompressible rod, and
we may not generalize this experience to other cases,
as still happens only too frequently. In fact, in the case
of elastic structures under dead loads the potential en-
ergy of the external loads does not enter at all into the
stability condition. Loss of stability of elastic struc-
tures is always due to an internal exchange of en-
ergy.” [7]

What that means physically is that it is the energy, and more
specifically its second variation, in the deformed or fundamen-
tal state that needs to be evaluated for stability, and not the po-
tential acting on the structure in its original or reference state.
For a more fundamental and at times conceptual discussion of
elastic stability, I recommend the two textbooks by Thompson
and Hunt [8, 9].

4. The simplest snapping structure

The simplest structure that exhibits snapping is the bistable
truss first analyzed by von Mises, in which two elastic bars
of elastic modulus E, cross sectional area A, and an axial
stiffness EA/(L/ cosα) are pinned together with an initial an-
gle α, and pinned at supports separated by a distance 2L. A
force P applied to the apex of the truss will change the an-
gle from α to q, and induce a compressive strain in the bars
of ε = cosα/ cos q − 1, which causes a vertical displacement
w = L(tanα − tan q). In this single degree of freedom exam-
ple, the total potential energy is simply the strain energy in the
spring minus the potential energy of the load,

V(q) =
EAL
cosα

(
cosα
cos q

− 1
)2

− PL(tanα − tan q). (2)

Equilibrium is found by setting the first variation of the poten-
tial energy to zero,

∂V
∂q

=
L

cos2 q
[
2EA(cosα tan q − sin q) + P

]
= 0, (3)

from which we can find the equilibrium path

P
EA

= 2(sin q − cosα tan q), (4)

which is plotted in figure 1a. Here we note an important dis-
tinction between snapping, which is a limit point instability, and
buckling, which is a bifurcation – there is only one equilibrium
path, meaning the truss will deflect under any infinitesimal load
P. A system that exhibits a limit point instability has only one
equilibrium path, and loss of stability will cause a discontin-
uous jump in a given parameter, i.c. a finite change in q in
response to an infinitesimal change in P. Stability of this truss
will be lost when the second variation of its potential energy,
δ2V = 1

2!
∂2V
∂q2 δq2, ceases to be positive definite. We will eval-

uate the stability of the equilibrium state at a constant load by
inserting the load from equation 4 into equation 3, and calculat-
ing the second variation of V as

∂2V
∂q2 = 2

EAL
cos4 q

(
cosα − cos3 q

)
, (5)

which is plotted in which is plotted in figure 1b. It is clear
from the graph that a region of this second variation is below
zero, specifically when −α/

√
3 ≤ q ≤ α/

√
3. This region of

the equilibrium path given by equation 4 is unstable. Since in
this example we have considered a load–controlled experiment,
meaning the magnitude of the low is being increased, the truss
has no choice but to jump (horizontally) from point ii. to point
iii. on Fig. 1c., since this is the closest, stable part of the equi-
librium curve at the same fixed value of P/EA.

In general, finding the critical point of a snap–through insta-
bility is a challenge, because when you linearize the equations
you lose all information about the instability. This can be im-
mediately seen with our simple example of the von Mises truss
from equation 2 – a Taylor series expansion of q for any α leaves
you with a linear equation, and thus the critical point is lost –
its second variation will never be negative, so one would erro-
neously think the system is always stable. Numerically, there
are multiple approaches for finding, following, and continuing
through instability points [10], including utilizing arc–length
methods or dynamic simulations.

5. The simplest buckling structure

To see the buckling and postbuckling behavior of a structure,
it is useful to consider a nonlinear, finite–deflection theory –
something that is straightforward to examine in a discrete, one
degree of freedom system. Consider a rigid bar of length L that
is held vertical by a rotational spring of stiffness kr, and loaded
at the free end of the bar by a a load P. If it is perfectly vertical,
there is no initial inclination angle to the bar1, i.e. α = 0. We

1To consider the role of imperfections, or to analyze the stability of a whole
array of structures and materials, I recommend pouring over the invaluable tome
by Bažant and Cedolin [11], especially chapter 4.
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Figure 2: A plot of the two equilibrium curves of a buckling rigid bar, using
the equilibrium paths given by equation 8. When PL/kr ≤ 1, the bar remains
vertical, and it buckles either to the left (q < 0) or right (q > 0) when PL/kr > 1.
At the critical point, which is stable [8, 9], there is an exchange of stability
between the gray equilibrium curve and the black curve as the structure buckles.

can again use q to measure the inclination angle of the bar after
loading, so that the total potential energy may be written as

V(q) =
1
2

krq2 − PL(1 − cos q), (6)

where the first term on the right hand side is the strain energy
stored in the rotational spring, and the second term is the work
of the load. Its first variation yields

∂V
∂q

= krq − PL sin q, (7)

and since equilibrium requires the first variation to be station-
ary, i.e. ∂V = 0, we find the equilibrium relation between force
and angle to be

P(q) =
kr

L

(
q

sin q

)
. (8)

Upon inspection of equation 8, we see that there are two solu-
tions that satisfy this equation: q = 0 or q , 0 (Fig. 2). The
bar can stay perfectly vertical, i.e. q = 0 ∀ P, but that solution
is not always stable. We can check the stability of our system
by evaluating the second variation of V , and requiring it to be
positive definite. The second variation is

∂2V
∂q2 = kr − PL cos q. (9)

By setting this second variation equal to zero, we find the criti-
cal buckling force

Pc =
kr

L cos q
, (10)

and by inserting equation 8 into equation 9 we see that this post-
buckling path is stable for all q. For P ≤ Pc, the bar will remain

vertical and undeflected, and for P > Pc, the bar will buckle
either to the left or the right, breaking symmetry, and this buck-
ling direction will be dictated by imperfections in the bar or the
eccentricity of the load.

6. Buckling of continuous structures

6.1. Elastica

The history behind the mathematical treatment of a thin elas-
tic structure is rich, and a detailed discussion of it is well be-
yond the scope of this review. I would encourage all interested
to read a history of it as detailed by Levien [12]. A nice recent
article that revisited the mathematical intricacies of the prob-
lem was prepared by Singh et al. [13], along with a detailed
derivation of the governing equations and various solutions in
a recent book by Bigoni [14]. There are typically three flavors
of equilibrium equations for the elastica, and their utility very
much depends on either what community the research is em-
bedded within, or how the particulars of a given problem lend
themselves to a straightforward solution. In general, you will
encounter the equations parameterized by the angle along the
arc length of the elastic curve θ(s), the curvature along the arc
length κ(s), or through a force and moment balance. All three
are equivalent and can be recovered with a little effort and some
geometry – an exercise left up to the reader. For instance, a mo-
ment and force balance yields

m′(s) + t̂(s) × f (s) = 0, (11a)
f ′(s) + n̂(s) = 0, (11b)

where m(s) and f (s) are the moments and forces acting on the
curve, respectively, and t̂(s) and n̂(s) are the tangent and nor-
mal vectors along the curve, respectively. Here, we use an apos-
trophe to denote an ordinary derivative with respect to the arc
length. Using the Frenet–Serret frame, the equations can be
rewritten in terms of the curvature along the arc length as

2κ′′(s) + κ3 − µκ(s) + σ = 0, (12)

where µ and σ are constants corresponding to how the elastica
is loaded. Finally, this equation can in turn be shown to be
equivalent to the equilibrium equation of a planar elastica as
parameterized by the angle along the arc length as

θ′′(s) + λ2
p sin θ(s) = 0, (13)

where s is the arc length that parameterizes the curve, θ is the
angle that the tangent vector at a given point s makes with the
horizon, and λ2

p = P/B is the ratio of the applied load P to the
bending rigidity B of the beam.

The buckling of an elastica, or an Euler column, is a problem
encountered by most engineers during their studies. Its solution
begins by linearizing equation 13, which is nonlinear because
of the term sin θ(s). Linearizing about the flat state allows us to
consider small angles, such that sin θ(s) ≈ θ(s), such that what
started as a nonlinear eigenvalue problem now becomes a linear
eigenvalue problem. For example, for an elastica that is simply
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Figure 3: (Top) Shapes of a simply supported elastica subjected to various end
shortenings. Graphs were generated in Mathematica using equations 15a,b.
(Bottom) Shapes of a clamped–clamped elastica subjected to various end short-
enings. Graphs were generated in Mathematica using equations 16a,b using the
code block provided below these equations.

supported at its ends, the lowest eigenvalue is gives a critical
buckling load of

Pc = π2 B
L2 , (14)

where L is the length of the elastica. For a clamped–clamped
elastica, the buckling load is four times as large. Linearizing the
equations comes at a cost, however – while we gain insight into
the force at which buckling will occur, along with the mode
shape of the buckled structure, we lose the ability to quantify
the amplitude of the deflection.

The post–buckling shape of a simply supported elastica is
determined by the parametric equations [14]

x(s) =
2

Λ(k)
(E[am[sΛ(k) +K[k]|k]|k]

− E[am[K[k], k], k]) − s, (15a)

y(s) = −
2

Λ(k)
kcn[sΛ(k) +K[k]|k], (15b)

where k = sin α
2 , α is the angle of rotation at the inflection

point at s = L/2, i.e. symmetry allows the analysis to focus on
only half of the rod length, Λ(k) = 2mK[k] which for a mode
one deformation m = 1, K[·] is the complete elliptic integral
of the first kind, E[·|·] is the incomplete elliptic integral of the
second kind, am[·|·] is the amplitude for Jacobi elliptic func-
tions, and cn[·|·] is the Jacobi cn elliptic function. Increasing
α will increase the amplitude of the elastica while conserving
the elastica’s arc length. Similarly, the post–buckling shape of
clamped–clamped elastica is then determined by the parametric
equations [14]

x(s) =
2

Λ(k)
E[am[sΛ(k)|k]|k] − s, (16a)

y(s) =
2

Λ(k)
k(1 − cn[sΛ(k)|k]), (16b)

where k = sin α
2 , α is the angle of rotation at the inflection point

at s = L/4, i.e. symmetry allows the analysis to focus on only

quarter of the rod length, and Λ(k) = 2(m + 1)K[k] which for
a mode one deformation m = 1. Increasing α will increase
the amplitude of the elastica while conserving the elastica’s arc
length. The following Mathematica code is provided to en-
able the reader to visualize the deformed shape of the clamped–
clamped elastica given by equations 16a

In[1]:= k[α_]:= Sin[α/2]

In[2]:= λc[k_, m_]:= 2 (m + 1) EllipticK[k]

In[3]:= xc[s_, α_, m_]:= (-s +

2/λc[k[α],
m] (EllipticE[JacobiAmplitude[

s λc[k[α], m], k[α]], k[α]]))

In[4]:= yc[s_, α_, m_]:= (2 k[α]/λc[k[α],
m] (1 - JacobiCN[s λc[k[α], m],

k[α]]))

In[5]:= ParametricPlot[

{xc[s, 1.5, 1], yc[s, 1.5, 1]},

{s, 0, 1}]

where for the parametric plot, values of α = 1.5 and mode num-
ber of m = 1 were chosen arbitrarily. Example elastica curves
are plotted in Fig. 3.

In both the simply supported and clamped–clamped case, the
end shortening u(α)/L is given by

u(α)
L

= 2
(
1 −
E(k)
K(k)

)
. (17)

6.2. Plates & Shells

We began this review with Koiter’s thin shell equations, i.e.
equations 1a and 1b. There are various simplifications that can
be made to these equations to make them more mathemati-
cally tractable [5], and we will begin with a commonly used
set of equations to describe the mechanics of thin plates: the
Föppl-von Kármán (FvK) plate equations. The FvK equations
are rooted in an approximation for the plate’s in–plane strain
εαβ where the non–linear terms describing the plate’s out–of–
plane deflection w are retained, while the non–linear terms cor-
responding to the plate’s in–plane displacements uα are dis-
carded, such that εαβ ≈ 1/2(uα,β + uβ,α + w,αw,β), where the
comma represents differentiation, i.e. f,α ≡ ∂ f /∂xα. Using the
FvK approximation for strain, a plate’s equilibrium equations
can be arrived at from a variational approach that minimizes
the plate’s free energy [15].

B∇4w − hσαβw,αβ = 0, (18a)
σαβ,β = 0, (18b)

where B = Eh3/12(1 − ν2) is the bending stiffness. Alterna-
tively, by introduction of the Airy potential, σαβ = εαγεβµφ,λµ,
where εαβ is the two–dimensional Levi–Civita symbol, and the
“die” operator, which represents a symmetric contraction of two
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components,i.e. ♦4[ f , g] ≡ f,ααg,ββ − 2 f,αβg,αβ + f,ββg,αα [16],
the equilibrium equations can be written as

B∇4w − ♦4[φ,w] = 0, (19a)
1
Y
∇4φ +

1
2
♦4[w,w] = 0, (19b)

where Y = Eh is the stretching stiffness. These equations are
non–linear, with the term ♦4[φ,w] coupling the plate’s curva-
ture with in–plane stress, and the term ♦4[w,w]/2 representing
the Gauss curvature K. The explicit appearance of the Gauss
curvature illustrates the intimate connection between a plate’s
elasticity and its geometry [17], and this interplay will consis-
tently appear in the various examples that follow.

A plate is a thin structure that is flat in its stress–free con-
figuration, while a shell has a non–zero initial curvature. An
instructive approach to the complexities that arise with shell
mechanics is to regard the shell as consisting of two distinct
surfaces: one which sustains stretching stress resultants and
the other which sustains the bending stress resultants. Calla-
dine [18] covers this two–surface approach to the equilibrium
equations for shells in a comprehensive manner, and we will
only highlight the key components here. In this two–surface
approach, the stretching surface is equivalent to the membrane
hypothesis of shells, and the bending surface is very similar to
the FvK analysis detailed above. The general interaction be-
tween these two imaginary surfaces, i.e. the way an externally
applied force is distributed between them, leads directly to the
Donnell–Mushtari–Vlasov (DMV) equations [19].

B∇4w + ∇2
kφ − ♦

4[φ,w] = 0, (20a)
1
Y
∇4φ − ∇2

kw +
1
2
♦4[w,w] = 0. (20b)

These equilibrium equations contain the Vlasov operator
∇2

k( f ) ≡ R−1
β f,αα + R−1

α f,ββ, which incorporates the shell’s prin-
cipal curvatures. It should be immediately apparent that in the
absence of any initial curvature, equations 20a and 20b revert
directly to the FvK equations given by equations 19a and 19b.
Since these equations are an extension of the FvK plate equa-
tions, they retain the same variational structure, and are appli-
cable under similar assumptions of small strains and moderate
rotations [17].

Few exact solutions to the Föppl-von Kármán equations are
known to exist, but geometrical simplifications make the FvK
equations useful for describing the Euler buckling of a plate
in response to an in–plane stress. A uniaxially compressed
plate that buckles out–of–plane will have cylindrical symme-
try, which greatly simplifies the geometry, since a cylindri-
cal shape is developable to a plane, such that in equation 19b
K = ♦4[w,w]/2 = 0. Since there is only stress in one direction,
say the x–direction, equation 19b reduces to φ,xxxx = 0. Consid-
ering a plate with clamped boundary conditions, this equation
for φ can be integrated, allowing equation 19a to reduce to an
ordinary differential equation, which can be solved in terms of
the plate’s deflection [17],

w(x, y) = ±
h
√

3

(
σ

σEu
− 1

)1/2 (
1 + cos

πx
L

)
, (21)

where L is the length of the plate, σ is the uniaxial stress, and
the Euler buckling stress is

σEu =
π2E

3(1 − ν2)

(
h
L

)2

. (22)

As noted in the subsection on Warping Wafers, buckling of
thin plates can also occur from a mismatch of strains through
the thickness, in particular with heated or differentially swollen
plates. Some additional, relevant references to this topic in-
clude [20, 21, 22, 23, 24, 25].

6.3. Wrinkling

When a thin plate is bound to a compliant substrate and com-
pressed, higher buckling modes emerge, and the pattern forma-
tion of these ordered buckled structures, or wrinkles, have gar-
nered significant recent interest. The wavelength of wrinkles
is selected by a balance of plate’s bending energy and the en-
ergy required to deform the underlying elastic substrate. The
bending resistance of the sheet penalizes short wavelengths,
while deformation of the elastic foundation that is supporting
the sheet penalizes long wavelengths. An intermediate wave-
length emerges when we consider that the reaction of the un-
derlying layer K is proportional to the deflection of the plate
w. In the simplest case, for 1D wrinkles extending in the x–
direction, equation 18a becomes

Bw,xxxx − hσxxw,xx + Kw = 0, (23)

when a Winkler foundation is included [26]. By linearizing this
equation, and discarding any stretching of the mid–plane due to
curvature, i.e. the second term is zero, a characteristic length
scale emerges based on a balance of the two rigidities. The
scaling we found in equation 11 can be recovered here from
dimensional analysis. In the limit of wrinkles on a very deep
substrate, i.e. h � λ � Hs, the stiffness of the elastic foun-
dation scales as K ∼ Es/λ [27], and the wrinkle wavelength
therefore scales as

λ ∼ h
(

E
Es

)1/3

. (24)

We can explicitly determine the critical stress required for
wrinkles to form and the resulting wavelength by lineariz-
ing equations 18a and 18b about the flat, unbuckled state,
i.e. uα = w = 0, and performing linear stability analy-
sis [28, 29, 30, 31, 32, 33, 34]. Linearizing these equations
requires the strain tensor to simplify to εαβ ≈ 1/2(uα,β + uβ,α).
The plate will be considered infinite in the xα directions, and
exposed to equibiaxial stress, such that the linearized equations
are B∇4w − hσ0∇

2w = −p and ∇4φ = 0. The stress compo-
nent exerted by the substrate onto the plate is introduced as p.
These ordinary differential equations allow periodic solutions
in the form w(x, y) = ŵ cos (k1x), which result in a cylindrical
pattern described by a critical threshold σc and wavelength λ
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given by [35, 29, 30, 32]

σc = E∗
(

3E∗s
2E∗

)2/3

, (25a)

λ = πh
(

2E∗

3E∗s

)1/3

. (25b)

The starred quantities E∗ and E∗s represent the effective, or re-
duced, modulus of the plate and substrate, respectively. The
reduced modulus of the plate is E∗ = E[1 − ν2]−1, while the
reduced modulus of the substrate includes the tangential trac-
tion forces exerted by the substrate onto the plate, such that
E∗s = Es(1 − νs)[(1 + νs)(3 − 4νs)]−1 [31, 32, 33].

Wrinkles that form under compression are familiar to most
everyone – they appear by simply compressing our skin. It
is less intuitive to observe wrinkles that form as a free elas-
tic sheet is pulled in tension [36, 37, 27, 38]. This problem
is no longer confined to 1D as there is a tension T in the
y–direction, and localized regions of compressive in the x–
direction near the clamped boundaries. The equilibrium equa-
tion that emerges from minimizing the free energy for this con-
figuration is Bw,xxxx − hσxxw,xx − Tw,yy = 0 [27]. Cerda et
al. [27] identified an analogy between the energy in an elastic
foundation supporting a thin sheet, U f ∼

∫
AKw2 dA,and the

sheet’s stretching energy, Um ∼
∫

AT
(
w,x

)2 dA. Since these en-
ergies are of similar form, and with the in–plane strain scaling
as w,x ∼ w/L, comparing the two leads to the emergence of
effective stiffness of the elastic foundation, K ∼ T/L2. This
connection is convenient as it allows equation 23, and the scal-
ing in equation 24, to hold for a variety of wrinkling problems,
with each problem varying only in the actual form of the effec-
tive stiffness of the elastic foundation, K.

6.4. Folding

As the amount of overstress, or confinement, of the com-
pressed plate increases, the bending energy along the plate goes
from being broadly distributed among wrinkles to being local-
ized within sharper features [39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54]. When the compressive strain ex-
ceeds a critical value of ε ' 0.2, a pitchfork bifurcation of the
wrinkle morphology emerges as one wrinkle grows in ampli-
tude while neighboring wrinkles decrease [40, 41, 42]. This
focusing of bending energy leads to a break in the up–down
symmetry of the wrinkled plate, and is analogous to period–
doubling bifurcations in dynamical systems [42]. The sym-
metry breaking occurs from the nonlinear contribution of the
compliant foundation that supports the stiff plate as the out–of–
plane deflection and in–plane compression of the plate are no
longer equivalent [42, 50]. Further compression of the plate
beyond a strain of ε ' 0.26 leads to a period-quadrupling bifur-
cation [42], in which sharp folds appear, localizing the much of
the stress within highly curved ridges [55, 40, 41, 42, 56, 50].
This folding is a means for focusing the elastic energy within
the plate. Qualitatively, a fold occurs when the radius of curva-
ture of the deformed feature is on the same order as the thick-
ness of the film.

When folds occur over a large scale, for instance with the
crumpling of a piece of paper, these stress-focused ridges can
significantly alter the mechanical properties of the structure. A
crumpled piece of paper is characterized by sharp ridges that
terminate at point–like singularities. These singularities are
conical dislocations, and they emerge as the sheet tries to re-
sist stretching, thereby localizing the stretched region into the
tip of the cone. Referred to as developable cones, or d–cones,
due to their isometry to a flat plate, the shape is a particu-
lar solution to the FvK equations in the limit of large deflec-
tions [57, 58, 59, 60, 61]. A d–cone is a building block to a
crumpled sheet, and two of these singularities are connected by
a stretching ridge, which contains much of the deformation en-
ergy within a strongly buckled sheet [62, 63, 64]. The width
of these stretching ridges can be arrived at either by scaling
considerations of the sheets elastic energy [63] or by a bound-
ary layer analysis of the FvK equations [65]. Upon forma-
tion of a ridge, the bending and stretching energies are of the
same order, and for a sharp fold on a plate with a given thick-
ness, these energies will scale linearly with the crease length
χ, i.e. Um ∼ Ub ∝ χ. In reality, the curvature of the fold
is softened by a small amount of stretching along the ridge,
and as the length of the fold increases these energies grow at
a slower rate, Um ∼ Ub ∝ χ1/3 [62, 63, 65, 64]. Recent
work has focused on the dynamic deformations of d–cones and
ridges [66, 67], the interactions of disclinations and e-cones in
extensible sheets [68], the existence and annihilation of mul-
tiple singularities in a constrained elastic plate to minimize
stretching [69, 70], the mechanics of curved–folds [71], the na-
ture of dipoles in thin sheets [72], and the appearance of a state
variable for characterizing crumpled sheets [73].
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