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We present a scalable patterning method based on surface plate

buckling, or crumpling, to generate a variety of topographies

that can dynamically change shape and aspect ratio in response

to stimuli.

The topographic control of pattern features is of great interest for

a range of applications including the generation of ultrahydro-

phobic surfaces,1 microfluidic devices,2,3 and the control and

tuning of adhesion.4,5 In these areas, surface patterning is achieved

by a variety of techniques including: photolithography,6 imprint

lithography,7,8 ion beam patterning,9 surface wrinkling,10–13 and

stereo lithography.14 We present an alternative, simple patterning

technique to generate various surface topographies using classical

plate buckling, or confined crumpling. Specifically, the buckling of

circular plates leads to the preparation of microstructures with

rotational symmetry (spherical microlenses), tri-fold symmetry,

and quad-fold symmetry (Fig. 1) with predictable aspect ratios.

The geometry of the structures depends on the plates’ material

properties and geometry, and the applied force during preparation.

This approach leads to patterns that are difficult, if not impossible,

to achieve with other methods. Additionally, these patterns

demonstrate dynamic, or responsive behavior.

To fabricate the surface patterns, we use the biaxial compression

of an array of circular plates (Fig. 1a) to generate microstructured

surfaces. The fabrication method is based on earlier work by our

group.15 In this paper, we use crosslinked poly(dimethylsiloxane)

(PDMS) (Sylgard 184TM) to generate the surface patterns, but this

technique can be extended to a variety of materials. We take a

micromolded PDMS substrate with an array of circular surface

depressions, inflate it, and bond a thin film of crosslinked PDMS

(y20 mm) over it. Upon deflation of the PDMS substrate, an

equibiaxial compressive stress is generated at the edges of the

circular plates. Compressive stresses exceeding a critical value

cause the plates to buckle, thus creating a surface array of micro-

structures (Fig. 2). This patterning technique is simple, tunable to

smaller length scales, and applicable to a wide range of materials.

Applying a compressive or tensile force to a confined thin plate

can lead to either buckling,16 wrinkling,17 or crumpling.18 For a

thin plate, the equilibrium shape is determined by a balance of the

elastic plate’s bending and stretching energy since the in-plane

strain is minimal for a thin geometry. The stretching energy scales

linearly with the plate thickness, t, while the bending energy scales

as t3, therefore as the plate thickness decreases, the stretching

energy term dominates and the plate bends significantly to reduce

the in-plane strain.19 As a result, the circular plates buckle under

lateral compression and form equilibrium structures with high

curvatures, due to the plate’s preference for bending.

The specific topography, or shape, of the microstructures is

determined by the initial geometry and material properties of

each plate, and the applied biaxial strain (Fig. 1). The plate

stiffness, D is given by:16

D~
Et3

12 1{n2ð Þ (1)
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Fig. 1 (a) A schematic illustrating an array of individual circular plates

and plate buckling from applied compressive strain. (b) The micro-

structure morphology as the applied biaxial strain is increased. (c)

Confocal microscopy images of spherical and bifurcated shells. Fig. 2 Buckling schematic illustrating various plate buckling possibilities,

where (a) illustrates a plate that buckles to form an axisymmetric, spherical

shell, and (b) shows spherical shells that have bifurcated and exhibit

circumferential waves, or folds dictated by the packing density of the

shells. SEM images of spherical and nonaxisymmetric shells are presented

in (a) and (b).
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where E is the elastic modulus, t is the plate thickness, and v is

Poisson’s ratio. The critical compressive stress of the plate, sc,

determines the stress required to cause a circular plate to buckle

and form a shell:16,20

sc~
k2D

a2
i t

(2)

where ai is the initial plate radius, and k is a numerical constant for

each buckling mode. The first buckling mode, similar to the Euler

buckling of a column, is an axisymmetric buckle which for a

circular plate has the rotational symmetry of a spherical microlens

(Fig. 2a). Using the constitutive relationship between biaxial stress

and strain, e, we solve for the critical biaxial strain to buckle a

circular plate:

ec~
k2

12 nz1ð Þ
t

ai

� �2

(3)

The critical strain required to buckle a circular plate is

dependent on k, which can be determined through classical plate

theory. From classical plate theory, the equilibrium equation of a

circular plate is:16,20

r2 d2w

dr2
zr

dw

dr
z

Pr2

D
{1

� �
w~0 (4)

where r is the distance along the radius of the plate, w is the change

in amplitude, h, with respect to the change in r, and P is the applied

equibiaxial compressive load. This equation is solved using Bessel

functions16 and applying the boundary conditions for a simply

supported plate which dictate that there is no rotation along the

edge of the plate. The solution to eqn (4) allows the first buckling

mode constant to be determined by solving the Bessel function, J,

for its smallest root:16,20

kJ0(k) 2 (1 2 n)J1(k) = 0 (5)

Assuming n # 0.49 for PDMS, k = 2.16 for the first buckling

mode of a simply supported circular plate under biaxial

compression. This value is used in eqn (3) to determine the strain

required for the first mode of buckling for a circular plate of a

given geometry, which is plotted as a solid line in Fig. 3b. The data

below this line did not buckle while the data points above it did

exhibit buckling. The aspect ratio of the shells, i.e. ratio of shell

height (h) to final hole radius, (a), can be approximated by

conservation of surface area15 (Fig. 3a):

h

a
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e 2zeð Þ

p
(6)

According to classical theory,16,20 this assumption should be

valid for thin plates, where t/2ai , 0.1, which is accurate for all the

circular plates that exhibited buckling. Here, the strain is defined as

the biaxial surface strain of the depression covered substrate. As e

increases, eqn (6) continues to predict the microstructure aspect

ratio, but the shape of the microstructure deviates from the lowest

buckling mode, i.e. spherical shell. Shells exhibiting these stable,

nonaxisymmetric buckling modes are depicted in Fig. 1 and

Fig. 2b, where shells have three or four lobes in the circumferential

direction.

Due to the boundary condition of asymmetric bonding at

the plates’ edges, and the change in volume in the encapsulated

microwells, buckling always produces structures with a convex

shape. During fabrication, the volume enclosed beneath the

microstructures changes. Assuming ideal gases, the pressure

change is given by Dp = Patm(Vi/Vf 2 1), where Dp is the change

in pressure, Patm is the atmospheric pressure, and Vi and Vf are

the initial and final volumes. If the structures form in a concave

state, the volume of the encapsulated microwells decreases, leading

to a pressure increase. This pressure increase always exceeds

the pressure decrease associated with the convex structure

formation, thus convex formation is preferential. Although the

concavity of the structures is impacted by this pressure difference,

the resultant shape is not significantly affected. For our

Fig. 3 (a) The prediction of aspect ratio from the applied biaxial strain on the surface of the substrate. (b) A phase map demonstrating the buckling

modes of a circular plate under compression. In region iii the ratio of plate thickness to radius is too high to buckle, as predicted by classical plate theory, in

region ii the plates buckle and form axisymmetric, spherical shells, while in region i the spherical shells bifurcate to form nonaxisymmetric geometry. The

dashed line separating regions i and ii was determined empirically. The open circles represent experimental data for plates that did not buckle, the filled

circles represent plates that buckled to form spherical microlenses, and the triangles indicate shells that bifurcated into nonaxisymmetric microstructures. (c)

A schematic illustrating regions i, ii, iii.
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microstructures, Dp/E # 1024–1022, making the effect of pressure

change on the buckled plate geometry negligible for these

materials. This relationship suggests that for softer materials or

shallower hole depths, the pressure change may impact the

resultant geometry.

In Fig. 3b, a phase diagram illustrates the applied biaxial

compressive strains that cause non-spherical geometries for circular

plates with different t/ai. The data above the dashed line exhibit

nonaxisymmetric geometries, while the data for circular plates in

between the dashed and solid lines buckle and form axisymmetric

spherical shells. The dashed line in Fig. 3b is empirical, but

some insight into the onset and shape of the nonaxisymmetric

shells can be gained by considering the bifurcation of a spherical

shell. At an applied e, a spherical shell is created with h/a

defined by eqn (6). In this initial state, the base edge of the shell

is resisting an applied bending moment related to a, e, and E.

As Shilkrut numerically demonstrated,21 for spherical shells

of h/t ¡ 3, the applied bending moment is resisted by a stable

surface of constant curvature. For spherical shells with h/t . 6, the

applied bending moment leads to the bifurcation and secondary

buckling of the spherical shell, causing a break in asymmetry.21,22

This bifurcation leads to local bending to minimize in-plane strain,

causing waves in the circumferential direction, and effectively

resists the applied bending moment. The shape of the bifurcated

shell is related to the surface metric tensor determination of the

Gaussian curvature, similar to discussions by Klein et al. for

elastic sheets.19

Additionally, the geometry of our bifurcated shells is determined

by the packing density and configuration of the patterned surface.

In the case of hexagonally packed circular plates, the bifurcation of

an individual spherical shell creates a microstructure with inflection

points, creating a tri-fold symmetry (Fig. 1). This geometry

influences the orientation of the shell’s nearest neighbors. The

shells couple together and the stress concentration from each of the

three buckle folds of a single shell directs the inflection points of its

nearest neighbor (Fig. 2). The geometric coupling of these shells is

also evident when the shells exhibit a four-fold symmetry. Again,

the stress concentration from the folds of the shell directs the

inflection points of its nearest neighbors. This suggests a method

for controlling the long-range order of these patterned features

using defects to template order.

By changing strain through environmental triggers, the relation-

ship between shell geometry and strain defines a responsive surface

of microstructures that can dynamically change their shape.

Depending on the material properties of the patterned surface, a

variety of stimuli can be used to change the strain applied to the

shell structures. As one example, we use swelling of the PDMS

network with hexane to change the applied strain. When a

hexane droplet is added to the surface of initially spherical shells

(Fig. 4a-ii), the thin film shell swells initially, but is laterally

confined by the edges of the unswollen hole below it, to which it is

bound. This lateral confinement increases the compressive strain

along the edge of the shell, which from eqn (6) increases the height

of the shell when a remains constant. Since the change in film

thickness is negligible, the shell transitions through a bifurcation

point to form a stable, nonaxisymmetric geometry (Fig. 4b-ii).

Upon evaporation of the solvent, the shell returns to its initial,

spherical geometry. The swelling time required to induce this

change is on the order of seconds.

The reverse topographical change can occur by changing the

diameter of the hole below an initially nonaxisymmetric shell

structure. To demonstrate this change, we swelled the PDMS

substrate below the thin film shell with hexane to increase the hole

diameter (Fig. 4a-i). This increase in a causes a decrease in the

compressive biaxial strain along the edge of the shell, which in

turn decreases the height of the shell to achieve an h/t value

where an axisymmetric shell can resist the bending moment

in a stable manner (Fig. 4a-ii). Therefore, the initially nonaxisym-

metric shell forms a spherical shell geometry. The timescale for

this process is approximately an hour as the entire PDMS

substrate needs to swell before the shell layer. This process

allows the surface to return to its initial topography once the

hexane evaporates.

In summary, we have presented a simple, scalable patterning

method to generate a variety of controlled, tunable surface

topographies that would be difficult, if not impossible, to achieve

using current fabrication techniques. The geometry of these

microstructures can be understood using classical plate buckling

and shell theory and can be tuned by varying the plate’s geometry,

material properties, and applied biaxial strain. The resulting

surface patterns can dynamically and reversibly change shape and

aspect ratio by changing the strain applied to the shell structures.

Fig. 4 A schematic illustrating two (i and ii) manners of responsive behavior in the microstructures. b-i. The responsiveness of convex shells that are

initially nonaxisymmetric and form spherical shells as the substrate swells with hexane. b-ii. Shells that are initially spherical bifurcate to form

nonaxisymmetric geometries when the shells are swollen with hexane.
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This surface patterning strategy offers a novel approach for

fabrication of the next generation of surface patterns, especially in

the context of responsive materials.

Experimental

For fabrication of patterned features, PDMS substrate, and

microstructures refer to reference 15. The film thickness in

microstructure fabrication was varied from 9 mm to 55 mm, and

was measured by stylus profilometry (Veeco Dektak 3 Stylus

Profilometer). The microstructure height was measure by

observing the contact of a glass probe controlled by a sub-

nanometre precision inchworm actuator (Exfo Burleigh IW-812)

with the shell surface via optical microscopy (Ziess, Variotech).

Geometry of the convex and concave shells was examined by

scanning electron microscopy (JOEL 6320FXV FESEM, SEI

mode, 10 kV, gold-coated) and confocal microscopy (Leica

Confocal Optical Microscope).

Swelling of the PDMS thin film was done by depositing a 10 ml

droplet of hexane (VWR) onto the surface of spherical microlens.

The swelling of the PDMS substrate was done in a bath of hexane,

and the substrate was swollen to equilibrium.
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