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a b s t r a c t

The Slinky is a well-known example of a highly flexible helical spring, exhibiting large, geometrically
non-linear deformations from minimal applied forces. By considering it as a system of coils that act to
resist axial, shearing, and rotational deformations, we develop a two-dimensional discretized model to
predict the equilibrium configurations of a Slinky via the minimization of its potential energy. Careful
consideration of the contact between coils enables this procedure to accurately describe the shape and
stability of the Slinky under different modes of deformation. In addition, we provide simple geometric
and material relations that describe a scaling of the general behavior of flexible, helical springs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The floppy nature of a tumbling Slinky (Poof-Slinky, Inc.) has
captivated children and adults alike for over half a century. Highly
flexible, the spring will walk down stairs, turn over in your hands,
and – much to the chagrin of children everywhere – become easily
entangled and permanently deformed. The Slinky can be used as
an educational tool for demonstrating standing waves, and a
structural inspiration due to its ability to extend many times
beyond its initial length without imparting plastic strain on the
material. Engineers have scaled the iconic spring up to the
macroscale as a pedestrian bridge [1], and down to the nanoscale
for use as conducting wires within flexible electronic devices [2,3],
while animators have simulated its movements in a major motion
picture [4]. Yet, perhaps the most recognizable and remarkable
features of a Slinky are simply its ability to splay its helical coils
into an arch (Fig. 1), and to tumble over itself down a steep incline.

A 1947 patent by Richard T. James for “Toy and process of use”
[5] describes what became known as the Slinky, “a helical spring
toy adapted to walk and oscillate.” The patent discusses the
geometrical features, such as a rectangular cross section with a
width-to-thickness ratio of 4:1, compressed height approximately
equal to the diameter, almost no pretensioning but adjacent turns
(coils) that touch each other in the absence of external forces, and
the ability to remain in an arch shape on a horizontal surface. In

the same year, Cunningham [6] performed some tests and analysis
of a steel Slinky tumbling down steps and down an inclined plane.
His steel Slinky had 78 turns, a length of 6.3 cm, and an outside
diameter of 7.3 cm. He examined the spring stiffness, the effects of
different step heights and of inclinations of the plane, the time
length per tumble and the corresponding angular velocity, and the
velocity of longitudinal waves. He stated that the time period for a
step height between 5 and 10 cm is almost independent of the
height and is about 0.5 s. Forty years later, he gave a further
description of waves in a tumbling Slinky [7]. Longuet-Higgins [8]
also studied a Slinky tumbling down stairs. His phosphor-bronze
Slinky had 89 turns, a length of 7.6 cm, and an outside diameter of
6.4 cm. In his analysis, he imagined the Slinky as an elastic fluid,
with one density at the end regions where coils touch and another
for the rest. His tests produced an average time of about 0.8 s per
step for a variety of step heights.

Heard and Newby [9] hung a Slinky-like spring vertically, held
at its top, with and without a mass attached at the bottom. Using
experiments and analysis, they investigated the length, as did
French [10], Sawicki [11], and Gluck [12], and they studied long-
itudinal waves, as did Young [13], Bowen [14], and Gluck [12]. In
the work by Bowen, the method of characteristics was utilized to
obtain solutions of the wave equation (see also [15]), and an
effective mass of the Slinky was discussed, which was related to
the weight applied to an associated massless spring and yielded
the same fundamental vibration period. Mak [16] defined an
effective mass with regard to the static elongation of the vertically
suspended Slinky. Blake and Smith [17] and Vandergrift et al. [18]
suspended a Slinky horizontally by strings and investigated the
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behavior of transverse vibrations and waves. Longitudinal and
transverse waves in a horizontal Slinky were examined by Gluck
[12]. Crawford [19] discussed “whistler” sounds produced by
longitudinal and transverse vibrations of a Slinky held at both
ends. Musical sounds that could be obtained from a Slinky were
described by Parker et al. [20], and Luke [21] considered a Slinky-
like spring held at its ends in a U shape and the propagation of
pulses along the spring. Wilson [22] investigated the Slinky in its
arch configuration. In his analysis, each coil was modeled as a
rectangular bar, and a rotational spring connected each pair of
adjacent bars. Some bars at the bottom of each end (leg) of the
arch were in full horizontal contact with each other. The angular
positions of the bars were computed for springs with 87 and 119
coils, and were compared with experimental results. Wilson also
lowered one end quasi-statically until the Slinky tumbled over
that end. The discrete model in the present paper will be an
extension of Wilson's model and will include rotational, axial, and
shear springs connecting adjacent bars.

Hu [23] analyzed a simple two-link, two-degree-of-freedom
model of a Slinky walking down stairs. The model included a
rotational spring and rotational dashpot at the hinge that con-
nected the massless rigid links, with equal point masses at the
hinge and the other end of each link. The equations of motion for
the angular coordinates of the bars were solved numerically.
Periodic motion was predicted for a particular set of initial
conditions. The apparent levitation of the Slinky's bottom coils
as the extended spring is dropped in a gravitational field has
proved both awe-inspiring and confounding [24–32]. If a Slinky is
held at its top in a vertical configuration and then released, it has
been shown that its bottom does not move for a short amount of
time as the top part drops. A slow-motion video has been used to
demonstrate this phenomenon [33].

A Slinky is a soft, helical spring made with wire of rectangular
cross section. The mechanics of helical springs has been studied
since the time of Kirchhoff [34], and their non-linear deformations
were first examined in the context of elastic stability. The spring's
elastic response to axial and transverse loading was first char-
acterized by treating it as a prismatic rod and ignoring the
transverse shear elasticity of the spring [35,36]. Modifications to
these equilibrium equations initially overestimated the impor-
tance of shear [37], thereby implying that buckling would occur
for any spring, regardless of its length. The contribution from a
spring's shear stiffness was properly accounted for by Haringx [38]
and Ziegler and Huber [39], which enabled an accurate prediction
of the elastic stability of highly compressible helical springs. Large,
non-linear deformations of stiff springs occur when lateral buck-
ling thresholds are exceeded in tension [40] or compression
[38,41]. Soft helical springs, with a minimal resistance to axial
and bending deformations, may exhibit large deformations from
the application of very little force. It can be readily observed with a
Slinky that small changes in applied load can lead to significant
non-linear deformations. Simplified energetic models have been
developed to capture the non-linear deformations of soft helical
springs [22].

Recent experimental work has focused on fabricating and
characterizing helical springs on the nanoscale. Their potential
usefulness in nanoelectromechanical systems (NEMS) as sensors
and actuators has led to extensive developments in recent years
[42] using carbon [43], zinc oxide [44], Si/SiGe bilayers [45], and
CdSe quantum dots [46] to form nanosprings. The mechanical
properties of these nanosprings, including the influence of surface
effects on spring stiffness [47,48], have been evaluated at an
atomistic level [49], as amorphous structures [50], and as viscosity
modifiers within polymeric systems [51]. Recently, nanosprings or
nanoparticle helices were fabricated by utilizing a geometric
asymmetry, and were shown to be highly deformable, soft springs
[46]. While the thickness of these nanosprings is on the nan-
ometer scale, their mechanics have been described using a con-
tinuum description [46], and the model presented in this paper
may capture their non-linear geometric deformations.

In this paper, we provide a 2D mechanical model that captures
the static equilibrium configurations of the Slinky in terms of its
geometric and material properties. In Section 2, we consider a
discretized model in which the Slinky is represented as a series of
rigid bars connected by springs that resist axial, shear, and
rotational deformations. In Section 3, we provide a means for
determining the effective spring stiffnesses based on three static
equilibrium shapes. Finally, in Section 4, we compare experimental
results obtained for the Slinky's static equilibrium shapes, and we
determine the critical criteria for the Slinky to topple over in terms
of the vertical displacement of one base of the arch, and the critical
number of cantilevered coils.

2. Discrete model

In order to adequately account for the contact between Slinky
coils, and the effect this contact has on the Slinky's equilibrium
shapes, we introduce a discretized model that represents an
extension of Wilson's model [22]. The total effective energy V of
a Slinky is composed of its elastic and gravitational potential
energies. Friction between individual coils, and along the contact
surface, further complicates this energetic analysis, and is
neglected in our calculations. In this discretized model, a Slinky
with n coils is represented by n rigid bars. The location of the
center of mass of bar i is denoted by ðxi; yiÞ. The centers of adjacent
bars are connected by axial, rotational, and shear springs. Each
translational spring is assumed to be unstretched when its length
is zero, and each rotational spring is assumed to be unstretched
when its angle of splay is zero. We can separate the displacement
between two adjacent bars into individual components that
correspond to deformations of effective axial, rotational, and shear
springs that connect each coil. Consider the leftmost bars i and
iþ1 in Fig. 2. The angle between the �x axis and bar i is denoted
φi, positive if clockwise. The difference between the angles of bars
i and iþ1 is denoted Δφi, so that Δφi ¼φiþ1�φi. The average
angle is defined as φa;i ¼ ðφiþ1þφiÞ=2. Between bars i and iþ1, the
axial spring acts perpendicularly to the average angle and has

Fig. 1. A Slinky on a flat surface in two stable states.
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extension Δξi, and the shear spring acts parallel to the average
angle and has extension Δzi (see Fig. 2). The differences in
horizontal and vertical coordinates x and y of the centers of mass
of bars i and iþ1 are denoted Δxi and Δyi, respectively. Then the
axial and shear deformations Δξi and Δzi can be determined from
the geometric relationships

Δξi ¼Δxi sin ðφa;iÞþΔyi cos ðφa;iÞ; ð1aÞ

Δzi ¼Δxi cos ðφa;iÞ�Δyi sin ðφa;iÞ: ð1bÞ

The elastic energy of a Slinky is the sum of the strain energy
associated with axial, rotational, and shear deformations, with
stiffnesses denoted by Ka, Kr, and Ks, respectively.

Boundary conditions can be prescribed on the variables xi, yi, or
φi for some of the bars. For instance, for the splayed Slinky in
Fig. 1, the boundary conditions at the left end would be
x1 ¼ y1 ¼φ1 ¼ 0, and at the right end they would be yn¼0,
φn ¼ 1801, and xn ¼ 2Rþc0, where R is the radius of the Slinky
(and half the length of each bar), and c0 is some positive constant.

Equilibrium shapes of this system of springs and masses can be
found by minimizing V with respect to all unprescribed variables.
The effective potential energy, including the gravitational potential
energy (which acts in the �y direction), is written as

V ¼ 1
2
Ka ∑

n�1

i ¼ 1
Δξiþ

mgnp

Ka

� �2

þ1
2
Ks ∑

n�1

i ¼ 1
Δz2i þ

1
2
Kr ∑

n�1

i ¼ 1
Δφ2

i þmg ∑
n

i ¼ 1
yi;

ð2Þ

where m is the mass per coil, and g is the acceleration in the �y
direction due to gravity. We assume that pretensioning of the
Slinky causes a constant precompression force Pp and, when the
Slinky hangs vertically, causes np coils at the bottom to be
compressed together [16]. The precompression force is approxi-
mately equal to the weight of these compressed coils, i.e.,
Pp¼mgnp. The axial term in Eq. (2) includes the deformation
required to overcome Pp.

Accounting for the elastic potential energy of the springs alone
will only correspond to equilibrium shapes in the regime where
there is no contact between Slinky coils. While we assume that the
three springs behave in a linearly elastic manner, the contact
between coils adds a non-linearity that is not accounted for in
Eq. (2). Two types of contact can occur along the extended length of
the spring. The first type, which we refer to as axial contact, occurs
when two adjacent coils are in contact around the entire circum-
ference of the Slinky, as seen in the legs of the arch in Fig. 1. The
second type, which we refer to as rotational contact, occurs when
two adjacent coils touch at only one point along the circumfer-
ence, as seen in the coils above the legs of the arch in Fig. 1. We
account for this contact by introducing two penalty functions, Pa
and Pr, and defining the augmented total potential energy E by

E¼ VþPaþPr ð3Þ

To enforce the axial contact constraint, we must ensure that the
axial deformation is never smaller than the thickness, i.e. ΔξiZh.
Pa adds a penalty when this constraint is violated, and has the
form

Pa ¼ αa ∑
n�1

i ¼ 1
maxð0; �ðΔξi�hÞÞ2; ð4Þ

where αa controls the weight of the axial contact penalty function.
To account for rotational contact, consider Fig. 2 with the lower
end of the left bar in contact with the next bar. In this configura-
tion, Δξi ¼Δξmin where

Δξmin ¼ 2R sin
Δφi

2
þh cos

Δφi

2
�Δzi tan

Δφi

2
: ð5Þ

Therefore, for a given Δzi and Δφi, Δξmin is the minimum
admissible axial deformation. We can impose the constraint that
Δξi4Δξminð7Δφi;ΔziÞ with the penalty function Pr defined by

Pr ¼ αr ∑
n�1

i ¼ 1
maxð0; �ðΔξi�Δξminð7Δφi;ΔziÞÞÞ2; ð6Þ

where αr controls the weight of the rotational contact penalty
function. The local minima of E from Eq. (3) with respect to all

Fig. 2. A schematic showing the Slinky discretized into n bars, illustrating the axial,
rotational, and shear springs between individual bars, and relative displacements
between adjacent bars.

Fig. 3. (A) An image of the Metal (L) Slinky hanging vertically suspended at its top. (B) An image of the same Slinky hanging horizontally in a gravitational field with its end
coils held at a fixed angle of 901, and separated by a distance L0. (C) An example of the experimental setup for the center loading and (D) edge loading on a single coil.
(E) Force vs. displacement data for the center loaded and edge loaded coils. The slopes of these curves are used to determine Ka and Kr, respectively.
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unprescribed xi, yi, and φi yield predictions for stable equilibrium
shapes of the Slinky.

3. Spring stiffnesses and equilibria

The augmented total potential energy is dependent on the
stiffnesses of the springs. We will determine the relevant spring
stiffnesses based on simple mechanical equilibrium of the Slinky
structure in three specific configurations. The benefit of the static
equilibria method is its ease of implementation for flexible springs
large enough to have gravity be the dominant body force, while
single coil analysis via Castigliano's method provides a scalable
means for determining the relevant spring stiffnesses [52].

The axial stiffness Ka can be determined by measuring the
extended length of the vertically hanging Slinky suspended at its
top (Fig. 3A), and analyzing the discrete model. The compressed
length of the spring is L0 ¼ nh. The extended length of the hanging
model is denoted L and includes the length nph of the np bars that
are compressed together at the bottom. We define N� n�np. For
this vertical configuration we define the positions of the bars yi to
be positive if downward, with y1 ¼ 0 at the center of the bar that is
held at the top, and L¼ yNþ1þnph where yNþ1 gives the equili-
brium position of the center of the top bar among the compressed
bars at the bottom.

The governing equations are

Kað�yiþ1þ2yi�yi�1Þ ¼mg for i¼ 2;3;…;N; ð7aÞ

KaðyNþ1�yNÞ ¼ npmg�Pp ð7bÞ

The solution is

yi ¼
ði�1Þ
2Ka

2ðnpmg�PpÞþð2N� iÞmg
� �

for i¼ 2;3;…;Nþ1 ð8Þ

Therefore, if Pp¼npmg, the extended length of the hanging Slinky
model is

L¼ nphþ
NðN�1Þmg

2Ka
ð9Þ

Conversely, the axial spring stiffness can be obtained from Eq. (9)
as

Ka ¼NðN�1Þmg
2ðL�nphÞ

ð10Þ

In the present notation, the result obtained in Mak [16] (see
also [24,30]) for a continuous spring is Ka ¼N2mg=½2ðL�nhÞ�.
For the standard steel Slinky whose metrics are given in
Table 1 denoted “Metal (L),” using n¼83, Eq. (10) results in
Ka¼64.0 N m�1. (Similar values were obtained by observing the

lowest natural frequency of axial vibration of the hanging Slinky
and comparing the measured value to the theoretical value [9].)

The shear stiffness can be determined by measuring the
maximum deflection of the spring hanging horizontally in a
gravitational field, such that the first and the last coil are fixed
with zero displacement, y1 ¼ yn ¼ 0. To determine the shear
stiffness, the end coils are held at a fixed angle of 901, and
separated by a distance L0 corresponding to the spring's com-
pressed length (Fig. 3B). A very small initial separation beyond L0
was imposed to reduce frictional effects. A force balance reveals
that the shear stiffness Ks to the left and right of the ith coil acts to
resist gravity, such that Ksð�yiþ1þ2yi�yi�1Þ ¼mg, for i¼ 2;3;…;

n�1. The maximum deflection depends on whether the spring
contains an even or odd number of coils, with ymax ¼
nðn�2Þmgð8KsÞ�1 for an even number of coils, and ymax ¼
ðn�1Þ2ðmgÞð8KsÞ�1 for an odd number. Therefore, the shear
stiffness is given by (where j denotes a positive integer)

Ks ¼

mg
8ymax

ðn�1Þ2 if n¼ 2jþ1;

mg
8ymax

nðn�2Þ if n¼ 2j:

8>><
>>: ð11Þ

For the Metal (L) Slinky in Table 1, with n¼83 and ymax ¼ 15:0 mm,
this results in a shear stiffness Ks¼1370 N m�1. Table 1 describes
the Slinkys that were tested. The symbol L denotes long, XL
denotes extra long, M denotes medium length, and S denotes
short. Values reported in Table 1, beyond those already described
in the text, include coil thickness h, coil width b, and the mass of a
single coil m.

The axial stiffness Ka and rotational spring stiffness Kr can also
be obtained from force (F) vs. displacement (δ) experiments on a
single coil loaded from the center by means of bails bent outward
from half coils (Fig. 3C) and the edge (Fig. 3D), respectively. The
slopes of the center-loaded and edge-loaded segments in Fig. 3E
are denoted Sc and Se, respectively. The curves are approximately
linear, although they display a slight concavity, particularly with
the edge-loaded coil. A dashed line illustrates the deviation from
linear behavior at moderate extension. Assuming that the center-
loaded coil behaves like a linear spring, the force is simply the
axial spring stiffness times the vertical displacement. For the edge-
loaded case, the total deflection at the edge, δ, is a superposition of
the axial deformation, δa, and the bending deformation, δr, i.e.
δ¼ δaþδr . If the angle of splay between the coils, θ, is small, then
the moment about the center is M¼ FR¼ Krθ� KrδrR�1. There-
fore, we can write δa ¼ FK �1

a and δr ¼ FR2K �1
r . This leads to

δ
F
¼ 1
Se

¼ 1
Sc
þR2

Kr
; ð12Þ

and hence

Kr ¼
ScSeR

2

Sc�Se
: ð13Þ

We obtain values for the Metal (L) Slinky of Ka ¼ 69:9 N m�1 and
Kr ¼ 0:047 N m. The value of Ka obtained from the vertically
hanging Slinky is smaller than the Ka obtained from force–
displacement experiments by 9%. This error may be attributed to
a variation in pretension along the Slinky's length. The values
obtained from the force–displacement experiments for the Metal
(L) Slinky are used in the analysis below.

4. Experimental results

We first explored the various symmetric equilibrium shapes
that exist when the ends of a Slinky are held at a fixed angle with
φ1 ¼ θ and φn ¼ π�θ, and their centers are separated by a finite

Table 1
Slinky metrics.

Slinky n (#) L0
(mm)

R
(mm)

h
(mm)

b
(mm)

m (g) EA
(N)

EI
(10�6 N m2)

Metal (L) 82.75 54.82 34.18 0.67 2.74 2.49 0.046 3.153
Metal (S) 79.50 34.45 20.16 0.49 1.87 0.61 0.023 3.241
Plastic

(XL)
45.50 148.13 78.50 2.88 7.40 14.44 0.099 582.2

Plastic (L) 41.00 77.58 47.47 1.39 7.77 3.02 0.019 47.16
Plastic

(M1)
34.00 60.27 37.31 1.78 3.18 1.59 0.027 23.71

Plastic
(M2)

38.25 65.40 40.33 1.62 7.27 2.42 0.021 41.22

Plastic
(M3)

37.00 61.42 38.26 1.66 3.41 1.65 0.022 19.41

Plastic (S) 31.50 46.97 31.21 0.93 6.18 1.20 0.016 11.27
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distance (span) X ¼ xn�x1. We measured the downward deflection
�yð0Þ of the center of the Slinky cross section at midspan as the
ends were separated horizontally. For comparison to the theore-
tical models presented above, the simplest configuration to con-
sider at first is when the ends are held at θ¼ 1801, as shown in
Fig. 4A. In this case, there is only contact between coils at the
Slinky's center (if at all), and the effects of shear between coils are
minimal. In Fig. 4B, we plot a graph of the vertical displacement of
the Slinky's midpoint normalized by its radius R vs. the separation
of the end coils normalized by the Slinky's unextended length L0.
Even this fairly trivial configuration of a hanging Slinky leads to
non-linearities in its deflection as it is extended horizontally.
These geometric non-linearities emerge from both the contact
between the Slinky's coils and the non-linear terms due to the
large slopes that appear in Eqs. (1a) and (1b). The discrete model
without consideration of contact between coils (Eq. (2)) does not
overestimate the central displacement for large values of X=L0. It
appears that maximal coil contact induces a significant non-
linearity in the Slinky's central displacement. Fig. 4C shows a
corresponding graph of the number of coils in contact as a

function of X=L0 for the same experiment. The contactless discrete
model is able to accurately predict yð0Þ=R when the number of
coils in contact is approximately less than 11 (Fig. 4C-I.). As coil
contact increases, a small degree of non-linearity emerges in the
experimental data. This non-linearity is accurately captured when
the discrete model allows for coil contact, but prevents the
interpenetration of coils, as presented in Eq. (3). We note that
additional non-linearity is observed, and captured by our model,
once the number of coils in contact reaches a fixed value, as shown
by Fig. 4B-II. and C.

The lateral displacement experiment was repeated for different
angles θ, which ranged from θ¼ 01 to θ¼ 1801 in increments of
θ¼ 151. Images of a horizontally extended Metal (L) Slinky for
three different values of θ are shown in Fig. 5A. We measured the
midpoint deflection as we varied the end-to-end displacement
from X=L0 ¼ 1 to X=L0 ¼ 9 for each angle (Fig. 5B). Three distinct
deformation behaviors emerged. In the first case, which was
observed for θ≲151, the Slinky's arch is initially concave (viz.
concave down) with its midpoint above the origin, and there
is a continuous, reversible, non-linear decrease in the Slinky's

Fig. 4. (A) Images of the Metal (L) Slinky held by its ends at an angle of 1801 and separated by (i) X=L0 ¼ 2, (ii) X=L0 ¼ 5, and (iii) X=L0 ¼ 7. (B) A graph of the central
displacement of a Slinky yð0Þ normalized by its radius R as a function of end-to-end separation X normalized by the Slinky's unextended length L0. Along with the
experimental data, two theoretical curves are plotted – the discrete model with and without coil contact. (C) A graph of the number of coils in contact as a function of end-to-
end separation.

Fig. 5. (A) Images of the Metal (L) Slinky separated by a fixed distance X ¼ 240 mm (X=L0 ¼ 4:38) and held by its ends at angles of (i) 01, (ii) 901, and (iii) 1801. (B) A graph of
the normalized vertical midspan displacement vs. normalized horizontal span of a Slinky held at angles ranging from θ¼ 01 to θ¼ 1801. The solid lines correspond to
numerical results from the discrete model allowing for coil contact, and the dots denote experimental results.
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midpoint as the ends are separated horizontally. The significant
geometric non-linearities in this regime are due to both the
amount of coil contact and the distribution of this contact along
the Slinky's centerline. Fig. 5A-i shows coil contact at three
different locations along the centerline, occurring at the midspan
and the ends as well as at both the lower and upper halves of the
coils. In the second case, when 301≲θ≲1201, there is a discontin-
uous jump in the Slinky's midpoint as it reaches a deflection of
yð0Þ=R� �2, corresponding to an irreversible snap-through
between two Slinky configurations which resembles a saddle-
node bifurcation. Preceding the bifurcation, the majority of coil
contact is concentrated around the Slinky's midpoint, and this
non-uniform distribution of mass along the centerline is a factor in
activating the snap-through. In the third case, when θ41201, the
Slinky hangs with an initially convex (viz. concave up) shape, and
there is very little deflection in the Slinky's midpoint as it is
horizontally extended. The subtle non-linearities in this regime
were described above for the specific case of θ¼ 1801. Theoretical
predictions are plotted as solid lines along with the experimental
results in Fig. 5B. These curves come from minimizing the
augmented total potential energy given by Eq. (3) using the
stiffness values in Table 1. We note a very good qualitative
agreement between our experimental and theoretical results over
all displacements and edge orientations. In particular, we note that
the model captures the three deformation behaviors, including the
snap-through phenomenon.

The snap-through described above is the first example we will
encounter of a large change in equilibrium shape for a small
rearrangement of the Slinky's position. Multiple bifurcations
between stable equilibrium shapes occur depending on the
geometrical variation in the Slinky's shape. For instance, consider
hanging nH coils of a Slinky upward off the edge of a surface
oriented at an angle θ, as shown in Fig. 6. The pretension within
the Slinky and the shearing between coils will allow this config-
uration to be stable up to a critical number of overhanging coils,
n0. The discrete model is analyzed. The stability will be determined
from a balance of the moment acting on the cantilevered bars due
to their weight, and the moment that resists elongation from the
shear stiffness and the compressive force due to pretensioning
within the Slinky. The moment at the edge of the surface is the
sum of these two contributions, and stability is lost when this total

moment is zero. The counterclockwise moment due to the weight
of the coils is simply M1 ¼mg∑nH

i ¼ 1xi, where coil 1 is the furthest
to the left, coil nH is the first overhanging one, the origin of the
coordinate system is at the edge of the surface, the x-axis is
positive to the left, and the y-axis is positive upward. This
summation requires us to know the coordinates of the centers of
mass of the overhanging bars. With zi denoting the distance
(positive if upward) along overhanging bar i from a leftward
extension of the surface (at angle θ with the x-axis) to the bar's
center of mass, equilibrium along bar i yields Ksð�zi�1þ2zi
�ziþ1Þ ¼ �mg cos θ for i¼ 2;3;…;nH where znH þ1 ¼ R, and
Ksðz1�z2Þ ¼ �mg cos θ. Then, from geometry, one can show that
the locations of the centers of mass of the overhanging bars are

zi ¼ R�mg cos θ
2Ks

ðnHþ iÞðnHþ1� iÞ ð14aÞ

xi ¼
h cos θ

2
ð1þ2nH�2iÞ�zi sin θ ð14bÞ

yi ¼
h sin θ

2
ð1þ2nH�2iÞþzi cos θ ð14cÞ

Since the pretension Pp¼mgnp acts through the center of bar nH,
we can write the competing moment as M2 ¼ �mgnpznH , positive
if counterclockwise about the edge. Using Eqs. 14a–c, we find that

M1 ¼mg �nHR sin θþh
2
n2
H cos θþmg

6Ks
nHð2n2

Hþ3nHþ1Þ sin θ cos θ
� �

ð15aÞ

M2 ¼ �npmg R�mg
Ks

nH cos θ
� �

ð15bÞ

The critical number of cantilevered coils is found by setting
M1þM2 ¼ 0, which leads to a cubic equation for nH. The closest
integer greater than the lowest real solution nH yields the critical
value n0, and failure is expected (see lowest photograph in Fig. 6) if
n0 Slinky coils overhang the edge, according to the discrete model.
In Fig. 6, we show a cantilevered Slinky, along with a plot of the
critical number of cantilevered coils n0 as a function of angle θ. The
equation for the critical number of cantilevered coils is plotted in
Fig. 6 for the Metal (L) Slinky, i.e. m¼ 0:00249 kg, h¼ 0:00067 m,
np¼5, and R¼ 0:03418 m. This Slinky has a shear stiffness of

Fig. 6. Images of a Slinky cantilevered at an angle θ. We plot n0 vs. cantilever angle θ. The dashed curve is obtained from the discrete model (Eqs. (15a) and (15b)), and the
dots represent experimental results.
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Ks ¼ 1320 N m�1. There is a good agreement between our model
and experimental results denoted by dots.

With a strong correlation between our model using the Slinky's
mechanical properties and the equilibrium shapes of the Slinky,
we can generalize this model to a spring of any material or size by
non-dimensionalizing the relevant parameters. We normalize the
total effective energy as V ¼ 2V=nmgR, and the axial deformation
Δξi and vertical displacement yi by the coil thickness h, such that
Δξi ¼Δξi=h and yi ¼ yi=h. Due to the large separation of scales
between shear and either bending or axial deformation, in which
the shear terms in Eq. (2) contribute much less than the other
terms, we neglect the shear stiffness and pretension, and write the
dimensionless form of Eq. (2) as

V ¼ EAh
nmgR

∑
n�1

i ¼ 1
Δξ2

i þ
EI

nmgRh
∑
n�1

i ¼ 1
Δφ2

i þ
2h
nR

∑
n

i ¼ 1
yi; ð16Þ

where the barred quantities EA and EI represent effective axial and
bending stiffnesses of the helical spring, respectively. These
quantities are directly related to spring stiffnesses described in
Section 3, with EA ¼ Kah and EI ¼ Krh. Eq. (16) provides several
non-dimensional quantities that we can use to describe the
various stability criteria of the Slinky. For instance, the prefactor
to the first summation in Eq. (16) represents a balance between
axial extension and gravity, i.e. a spring with n� EAh=mgR will
extend beyond L0 if held vertically from its top in a gravitational
field. The second summation represents a balance between bend-
ing stiffness and gravity, which provides a scaling of the number
of coils in a spring required for the structure to bend into a
stable arch,

nr � EI
mgRh

ð17Þ

We tested the validity of this scaling on a variety of flexible springs
that were initially stable as both arches and cylinders. Individual
coils, or fractions of coils, were removed until the Slinky was
unable to form a stable arch. We note that between the arch and
the cylinder configurations, a stable, intermediate state occurs in
which one arch base rotates and only contacts the surface at a
point. We measured the critical number of coils nc required to
form a stable arch with both bases in axial contact with a
horizontal surface (θ¼ 0) for a variety of commercially available
flexible springs (Fig. 7). Values of EA for each Slinky were obtained

as described in Section 3, while EI values were obtained using
Castigliano's method [52]. We plot nc vs. nr, given by Eq. (17), as
the horizontal axis. The dots denote experimental results corre-
sponding to the Slinky examples listed in Table 1, and the dashed
line represents nc¼nr. The scaling in Eq. (17) is in a good
agreement with the experimental results.

Once a Slinky is stable in the shape of an arch, stability loss can
occur if one end of the spring is lifted above a critical height,
which we refer to as the step instability. Experimentally, we
incrementally decreased yn relative to y1 in a quasi-static manner
(where the y-axis is upward), and measured the critical displace-
ment δc ¼ y1�yn as a function of the number of coils n (Fig. 8).
This vertical displacement instability is similar to the one
described above for the number of coils required to stably form
an arch. Decreasing the magnitude of yn by a height equivalent to a
coil's thickness, i.e. δ¼ h, relative to y1 is analogous to removing a
single coil from the Slinky. Therefore, the effective number of coils
in the Slinky is simply neff ¼ n�δ=h. This effective coil number is
similar to the scaling in Eq. (17), however there will be axial
resistance as one end of the Slinky is lowered in addition to the
Slinky's rotational stiffness. By observing that all the coils in Fig. 8
are in contact, we note that the Slinky satisfies the constraint
described by Eq. (5). If we neglect shear and assume that Δφi for
all i are small, we have

Δξi ¼ 2R sin
Δφi

2
þh cos

Δφi

2
� RΔφiþh ð18Þ

This approximation allows the non-dimensional potential energy
given in Eq. (16), leaving out terms that are constant or are linear
in Δφi, to be rewritten as

V ¼ EAh
nmgR

∑
n�1

i ¼ 1

RΔφi

h

� �2

þ EI
nmgRh

∑
n�1

i ¼ 1
Δφ2

i þ
2h
nR

∑
n

i ¼ 1
yi

¼ EAR2þEI
nmgRh

 !
∑
n�1

i ¼ 1
Δφ2

i þ
2h
nR

∑
n

i ¼ 1
yi: ð19Þ

The prefactor of the first summation on the right-hand side of
the equation essentially describes the dimensionless balance
between axial and rotational stiffness and gravity when there is
a contact between all the coils,

nar �
EAR2þEI
mgRh

ð20Þ

Fig. 7. Images of various Slinkys in an arch shape. When the number of coils in the Slinky is below a critical value nc, it is no longer able to form an arch. We plot this critical
parameter vs. nr from Eq. (17), with dots denoting experimental results.
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We set the effective coil number neff equal to nar to solve for the
critical vertical displacement, and obtain

δc � nh�EAR2þEI
mgR

ð21Þ

We see in Fig. 8 that, for the Metal (L) Slinky, Eq. (21) captures
the general trend of the data (denoted by dots). While contribu-
tions from shear and pretension are much smaller than those from
axial and rotational deformations in this configuration, the dis-
crepancy with the data is likely due to these terms, which are
neglected in the scaling presented in Eq. (20).

5. Conclusions

In this work, we present a discrete model to capture a Slinky's
static equilibria and unstable transitions. The model considers the
Slinky's axial, shear, and rotational stiffnesses, and calculates the
equilibrium shapes that result from a minimization of the struc-
ture's total potential energy augmented by penalty functions to
account for coil contact. We emphasize that modeling the contact
between coils is crucial for describing its equilibrium shapes and
quasi-static stability criteria. We determined the flexible spring's
stiffnesses by isolating specific static equilibrium shapes. Finally,
we provide a general description of highly flexible helical springs
by considering the non-dimensional potential energy of the
spring, enabling the formulation of parameters that may describe
and explain a Slinky's stability behavior under a variety of actions.
The scaling argument for the slinkiness of a given spring should be
valid until the spring is dominated by forces other than gravity, e.g.
electrostatics or magnetism. The focus of this work was on
configurations for which the locus of the centers of the coils is
planar. Relaxing this planar configuration would be a natural
extension of the current work.
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