Master of Science in Telecommunication focus area in Security

CNSS - Logo

Students in the Master of Science in Telecommunication program may pursue a concentration in Security, which provides in-depth knowledge of emerging security threats and solutions to prepare technical leaders to identify, develop, and implement highly secure networks that support organizational goals.

Students who complete the Telecommunication master’s degree concentration in Security will be able to demonstrate:

  • Advanced knowledge of data communication protocols and networks, including, but not limited to, error control and flow control, distributed synchronization, error detection and correction, forwarding and techniques to implement it, performance analysis of networks, and management of large networks.
  • Competence sufficient to design, specify, and develop data transfer protocols for specific purposes; design, specify, plan, and define networks of any size; and analyze, evaluate, and select network technologies.
  • Advanced knowledge of information security concepts, governance, biometric systems, and database systems security, as well as network security and cryptography.
  • Proficiency in risk management, such as asset assessments, architectural solutions, modeling, and design.
  • Competence in security policies, processes, technology, and operations.

A total of 40 credits is required. Students must complete both the Core Curriculum and the Concentration Requirements.

Core Curriculum

Core Curriculum

(Six courses/24 credits)

MET CS 535 Computer Networks
Fall ‘15

Overview of data communication and computer networks, including network hardware and software, as well as reference models, example networks, data communication services and network standardization. The OSI and the Internet (TCP/IP) network models are discussed. The course covers each network layer in details, starting from the Physical layer to towards the Application layer, and includes an overview of network security topics. Other topics covered include encoding digital and analog signals, transmission media, protocols. circuit, packet, message, switching techniques, internetworking devices, topologies. LANs/WANs, Ethernet, IP, TCP, UDP, and Web applications. Labs on network analysis. Prereq: MET CS 575 and MET CS 201 or MET CS 231 or MET CS 232. Or instructor's consent. Restrictions: This course may not be taken in conjunction with MET CS 625 or MET CS 425 (undergraduate). Only one of these courses can be counted towards degree requirements.  [ 4 cr. ]

Section Type Instructor Location Days Times
A1 IND Day CAS 428 M 6:00 pm – 9:00 pm
MET CS 575 Operating Systems
Fall ‘15

Overview of operating system characteristics, design objectives, and structures. Topics include concurrent processes, coordination of asynchronous events, file systems, resource sharing, memory management, security, scheduling and deadlock problems.   [ 4 cr. ]

Section Type Instructor Location Days Times
D1 IND Nourai EPC 205 R 6:00 pm – 9:00 pm
EX IND Nourai EPC 205 R 6:00 pm – 9:00 pm
MET CS 635 Network Design and Implementation

This course presents the concepts and fundamental design principles of computer networks and Internet that have contributed to the modern networks technologies. It will also present an overview of new trends in networks and Internet/Intranet with design of real campus networks. Topics include design principles for network topology and optimization of network elements. Design of network architecture is also covered, including the fundamentals of Internet applications (HTTP, FTP, DNS), TCP and UDP protocols and implementations, congestion control and traffic engineering, multimedia networking, and security in computer networks. Prereq: MET CS 231 or MET CS 232 and either MET CS 625 or MET CS 535; or instructor's consent.   [ 4 cr. ]

MET CS 685 Network Design and Management
Fall ‘15

. This course will cover contemporary integrated network management based on FCAPS (Fault, Configuration, Administration, Performance, and Security management) model. The introduction to the course will be an overview of data transmission techniques and networking technologies. The middle part of the course will be on Network Management Model, SNMP versions 1, 2 and 3, and MIBs. In the second part of the course, particular focus and emphasis will be given to current network management issues: various wireless networks technologies (WLAN, WiFi, WiMax), Voice-over-IP, Peer-to-Peer Networks, networking services, Identity Management, and Services Oriented Architecture Management. Prereq: MET CS 535 or MET CS 625. or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
A1 IND Soulhi FLR 133 M 6:00 pm – 9:00 pm
MET CS 690 Network Security
Fall ‘15

This course will cover advanced network security issues and solutions. The main focus on the first part of the course will be on Security basics, i.e. security services, access controls, vulnerabilities, threats and risk, network architectures and attacks. In the second part of the course, particular focus and emphasis will be given to network security capabilities and mechanisms (Access Control on wire-line and wireless networks), IPsec, Firewalls, Deep Packet Inspection and Transport security. The final portion of the course will address Network Application security (Email, Ad-hoc, XML/SAML and Services Oriented Architecture security. As part of our course review we will explore a number of Network Use Cases. Prereq: MET CS 535 or MET CS 625; Familiarity with OSI and TCP/IP protocol stack; Background-familiarity with binary numbers, prime numbers, binary- hexadecimal-decimal conversions, etc; Familiarity with computer programming concepts; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
C1 IND Skorupka SMG 326 W 6:00 pm – 9:00 pm
MET CS 775 Advanced Networking
Fall ‘15

In-depth coverage of the architecture, interfaces, protocols, and technologies of high- speed broadband networks. Topics include broadband wide-area network (WAN) technologies such as gigabit routers with IP switching, MPLS, ATM and Frame Relay; broadband LAN technologies: Fast Ethernet and Ethernet Switching, Gigabit Ethernet, and FDDI; broadband access technologies: DSL and Cable modems, as well as discussion of network performance, congestion control and traffic management, provision of different levels of quality of service (QoS),resource reservation, unicast and multicast routing, and multimedia compression and security in broadband networks. Students are required to complete a research project in one of the advanced Internet technologies. Labs on network performance analysis. Prereq: MET CS 535; or instructor's consent.   [ 4 cr. ]

Section Type Instructor Location Days Times
B1 IND Day KCB 102 T 6:00 pm – 9:00 pm

Students who have completed courses on core curriculum subjects as part of their undergraduate degree program must replace the corresponding core courses with electives. It is recommended that each replacement course be in the same technical area. Students who have work-related experience in any of the core curriculum courses may apply for a waiver by submitting appropriate documentation. When a course waiver is granted the student must substitute a graduate-level computer science course for the core course.

Concentration Requirements

In addition to the MS in Telecommunication core curriculum (24 credits), students pursuing a concentration in Security must take the following four required and elective courses:

Required Security Courses

(Two courses/8 credits)

MET CS 703 Network Forensics
Fall ‘15

This course provides a comprehensive understanding of network forensic analysis principles. Within the context of forensics security, network infrastructures, topologies, and protocols are introduced. Students understand the relationship between network forensic analysis and network security technologies. Students will learn to identify network security incidents and potential sources of digital evidence and demonstrate the ability to perform basic network data acquisition and analysis using computer based applications and utilities. Students will also identify potential applications for the integration of network forensic technologies and demonstrate the ability to accurately document network forensic processes and analysis. Prereq: MET CS 625 and MET CS 695; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
EL IND Jacobs FLR 266 S 1:00 pm – 4:00 pm
MET CS 789 Cryptography
Fall ‘15

The course covers the main concepts and principles of cryptography with the main emphasis put on public key cryptography. It begins with the review of integers and a thorough coverage of the fundamentals of finite group theory followed by the RSA and ElGamal ciphers. Primitive roots in cyclic groups and the discrete log problem are discussed. Baby-step Giant-step and the Index Calculus probabilistic algorithms to compute discrete logs in cyclic groups are presented. Naor -- Reingold and Blum -- Blum -- Shub Random Number Generators as well as Fermat, Euler and Miller-Rabin primality tests are thoroughly covered. Pollard's Rho, Pollard's and Quadratic Sieve factorization algorithms are presented. The course ends with the coverage of some oblivious transfer protocols and zero-knowledge proofs. There are numerous programming assignments in the course. Prereq: MET CS 248 and MET CS 566; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
B1 IND Temkin CGS 515 T 6:00 pm – 9:00 pm

Electives

(Two courses/8 credits)

Two courses selected from the following:

MET CS 674 Database Security
Fall ‘15

The course provides a strong foundation in database security and auditing. This course utilizes Oracle scenarios and step-by-step examples. The following topics are covered: security, profiles, password policies, privileges and roles, Virtual Private Databases, and auditing. The course also covers advanced topics such as SQL injection, database management security issues such as securing the DBMS, enforcing access controls, and related issues. Prereq: MET CS 579 or MET CS 669; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
B1 IND Staff FLR 264 T 6:00 pm – 9:00 pm
EL IND Staff FLR 264 T 6:00 pm – 9:00 pm
OL IND Carroll ARR
MET CS 684 IT Security Policies and Procedures
Fall ‘15

This course enables IT professional leaders to identify emerging security risks and implement highly secure networks to support organizational goals. Discussion of methodologies for identifying, quantifying, mitigating and controlling risks. Students implement a comprehensive IT risk management plans (RMP) that identify alternate sites for processing mission-critical applications, and techniques to recover infrastructure, systems, networks, data and user access. The course also discusses related topics such as: disaster recovery, handling information security; protection of property, personnel and facilities; protection of sensitive and classified information, privacy issues, and criminal terrorist and hostile activities.  [ 4 cr. ]

Section Type Instructor Location Days Times
D1 IND Burgoyne FLR ARR R 6:00 pm – 9:00 pm
EL IND Burgoyne FLR ARR R 6:00 pm – 9:00 pm
OL IND Burgoyne ARR
BHA IND Staff S 8:30 am – 4:00 pm
MET CS 693 Digital Forensics and Investigations
Fall ‘15

Provides a comprehensive understanding of digital forensics and investigation tools and techniques. Learn what computer forensics and investigation is as a profession and gain an understanding of the overall investigative process. Operating system architectures and disk structures are discussed. Studies how to set up an investigator's office and laboratory, as well as what computer forensic hardware and software tools are available. Other topics covered include importance of digital evidence controls and how to process crime and incident scenes, details of data acquisition, computer forensic analysis, e-mail investigations, image file recovery, investigative report writing, and expert witness requirements. Provides a range of laboratory and hands-on assignments either in solo or in teams. With rapid growth of computer systems and digital data this area has grown in importance.  [ 4 cr. ]

Section Type Instructor Location Days Times
EL IND Arena FLR ARR S 9:00 am – 12:00 pm
OL IND Navarro ARR
MET CS 695 Enterprise Information Security
Fall ‘15

The course provides an in-depth presentation of security issues in computer systems, networks, and applications. Formal security models are presented and illustrated on operating system security aspects, more specifically memory protection, access control and authentication, file system security, backup and recovery management, intrusion and virus protection mechanisms. Application level security focuses on language level security and various security policies; conventional and public keys encryption, authentication, message digest and digital signatures. Internet and intranet topics include security in IP, routers, proxy servers, and firewalls, application- level gateways, Web servers, file and mail servers. Discussion of remote access issues, such as dial-up servers, modems, VPN gateways and clients. Prereq: MET CS 625; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
A1 IND Jacobs FLR 264 M 6:00 pm – 9:00 pm
EL IND Jacobs FLR 264 M 6:00 pm – 9:00 pm
MET CS 713 Advanced Digital Forensics

This course provides an introduction to the advanced digital forensic topic relating to malicious software (malware), which represents an increasing information security threat to computer systems and networks. Students will review software engineering design fundamentals and reverse engineering techniques utilized to conduct static and dynamic forensic analysis on computer systems and networks. Students will learn about the importance of forensic principles, legal considerations, digital evidence controls, and documentation of forensic procedures. This course will incorporate demonstrations and laboratory exercises to reinforce practical applications of course instruction and will require an independent research paper related to the course topic. Prereq: MET CS 693 and MET CS 703; or instructor's consent.  [ 4 cr. ]

MET CS 799 Advanced Cryptography

This course builds on the material covered in CS 789 Cryptography. It begins with the coverage of commutative rings, finite fields, rings of polynomials, and finding of the greatest common divisor in the ring of polynomials. Irreducible polynomials are discussed. Field extensions and fields Fᴩ [x]/P are thoroughly covered. The main emphasis is put on elliptic curves over Fᴩ and F₂ and the ElGamal cipher on elliptic curves is presented. Block ciphers DES and double and triple DES are introduced. AES and WHIRLPOOL block ciphers and modes of operation are covered. The course continues with the introduction of message integrity and message authentication. In the last part of the course cryptographic hash functions SHA-512 and WHIRLPOOL as well as various digital signatures are introduced. Finally, entity authentication and key management issues are discussed. Prereq: MET CS 789; or instructor's consent.  [ 4 cr. ]

View all Computer Science & IT graduate courses.