Scott Bunch, Ph.D.

Photo of Scott Bunch

Assistant Professor

Ph.D., Cornell University

phone: (617) 353-7706
office: 110 Cummington Mall, ENG 404


Research Interests

Experimental Nanomechanics of 2D Materials * Molecular Transport through Porous Graphene * Graphene Adhesion * Mechanical Properties of 2D Materials * Graphene Balloons and Atomic Drums

Our research focuses on the nanomechanical properties of a new class of 2D atomically thin materials such as graphene – single atomic layers of graphite. We are most interested in their remarkable mechanical properties such as high strength, extreme flexibility, and unprecedented barrier properties. We fabricate and characterize nanomechanical devices, our favorite of which is a graphene sealed microcavity formed from a single atomic sheet of graphene suspended over a micron sized etched wells on a silicon wafer. The suspended graphene forms an “atomic drum” which can be vibrated at MHz frequencies using lasers. In addition, we can apply pressure differences and stretch these drum skins. This unique geometry has allowed us to experimentally measure a number of physical properties of 2D materials such as their elastic constants, molecular transport and barrier properties, and adhesive interactions. These atomically thin membranes act as barriers for gases and liquids and represent the thinnest membrane possible (one layer of atoms) with the smallest potential pore sizes attainable (single atomic vacancies), and unprecedented mechanical stability. The applications that we are primarily interested in are semipermeable membranes for gas or liquid separations and nanomechanical sensors.

Selected Publications
  • L. Wang, L. W. Drahushuk, L. Cantley, S. P. Koenig, X. Liu, J. Pellegrino, M.S. Strano and J. S. Bunch, Molecular valves for controlling gas phase transport made from discrete angstrom-sized pores in graphene, to appear, Nature Nanotechnology, (2015).
  • X. Liu, J. W. Suk, N.G. Boddeti, L. Cantley, L. Wang, J. M. Gray, H. J. Hall, V. M. Bright, C. T. Rogers, M.L. Dunn, R. S. Ruoff and J. S. Bunch, Large Arrays and Properties of 3-Terminal Graphene Nanoelectromechanical Switches, Advanced Materials, 26, 1571-1576 (2014)
  • N.G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M.L. Dunn, Graphene Blisters with Switchable Shapes Controlled by Pressure and Adhesion, Nano Letters, 13, 6216-6221 (2013).
  • N.G. Boddeti, S. P. Koenig, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, Mechanics of Adhered, Pressurized Graphene Blisters, Journal of Applied Mechanics, 80, 040909 (2013).
  • X. Liu, N.G. Boddeti, M.R. Szpunar, L. Wang, M.A. Rodriguez, R. Long, J. Xiao, M.L. Dunn, and J. S. Bunch, Observation of Pull-in Instability in Graphene Membranes under Interfacial Forces, Nano Letters, 13, 2309-2313 (2013).
  • S.P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, Selective Molecular Sieving through Porous Graphene, Nature Nanotechnology 7, 728-732 (2012).
  • L. Wang, J.J. Travis, A.S. Cavanagh, X. Liu, S.P. Koenig, P.Y. Huang, S.M. George and J. S. Bunch, Ultrathin Oxide Films by Atomic Layer Deposition on Graphene, Nano Letters, 12, 3706-3710 (2012).
  • S.P. Koenig, N. G. Boddeti, M. L. Dunn, J. S. Bunch, Ultrastrong adhesion of graphene membranes, Nature Nanotechnology 6, 543-546 (2011).
  • J. S. Bunch, Putting a damper on nanoresonators (News and Views), Nature Nanotechnology 6, 331-332 (2011).