Cardiorespiratory Fitness Is Associated With Cognitive Performance in Older But Not Younger Adults

Scott M. Hayes,1,2 Daniel E. Forman,3,4 and Mieke Verfaellie1

1Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Massachusetts.
2Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Massachusetts.
4Geriatric Cardiology Section, University of Pittsburgh Medical Center, Pennsylvania.

Objectives. Aging is associated with declines in executive function and episodic memory. Cardiorespiratory fitness (CRF) has been associated with enhanced executive function in older adults (OA), but the relationship with episodic memory remains unclear. The purpose of the study was to examine the relationship between CRF and cognition in young and OA and whether CRF mitigates age-related cognitive decline.

Methods. Participants completed exercise testing to evaluate CRF (peak VO2) and neuropsychological testing to assess cognition.

Results. In OA, peak VO2 was positively related to executive function, as well as to accuracy on an experimental face–name memory task and visual episodic memory. In young adults (YA), a relationship between peak VO2 and cognition was not evident. High-fit OA performed as well as YA on executive function measures. On episodic memory measures, YA performed better than high-fit OA, who in turn performed better than low-fit OA.

Conclusions. CRF is positively associated with executive function and episodic memory in OA and attenuates age-related cognitive decline. We provide preliminary support for the age-dependence hypothesis, which posits that cognition and CRF relationships may be most readily observed during lifetime periods of significant neurocognitive development.

Key Words: Cognition—Executive function—Memory—Physical activity—Physical fitness—Successful aging.

BACKGROUND

There is extensive evidence for age-related cognitive decline in executive function, including inhibition, task switching, maintenance, and manipulation of information in one’s mind (Goh, An, & Resnick, 2012), as well as in episodic memory (Naveh-Benjamin, 2000). At the same time, there is substantial performance variability among older adults (OA), and individual difference approaches have highlighted the fact that some OA maintain performance in the cognitive domains most often associated with age-related decline (Glisky, Rubin, & Davidson, 2001), in some instances to the same level as young adults (YA).

One individual difference factor that may attenuate age-related cognitive decline is cardiorespiratory fitness (CRF), an indicator of one’s ability to perform moderate to vigorous physical activity. CRF has been linked to structural and functional changes in the human brain (Hayes, Hayes, Cadden, & Verfaellie, 2013), and as such, may modulate cognitive performance. Yet, evidence for a contribution of CRF to the preservation of cognition in aging varies across cognitive domains. For example, CRF has been positively associated with executive function but not with episodic memory in a sample of obese OA (Bugg, Shah, Villareal, & Head, 2012). Others have observed larger effects for executive function relative to episodic memory (Barnes, Yaffe, Satariano, & Tager, 2003).

The lack of a consistent link between CRF and episodic memory is surprising in light of the animal literature, which has consistently shown an association between wheel running and hippocampally mediated, episodic-like, memory tasks (Cotman, Berchtold, & Christie, 2007). For instance, aged mice demonstrated enhanced performance on the Morris water maze as well as increased hippocampal neurogenesis in response to wheel running (van Praag, Shubert, Zhao, & Gage, 2005). In another study, voluntary wheel running in mice with the Apolipoprotein (ApoE) ε4 allele, a genetic risk factor for AD in humans, was associated with increased performance on the radial-arm water maze (Nichol, Deeny, Seif, Camacang, & Cotman, 2009).

One reason for the discrepancy in animal and human studies may lie in the fact that animal studies have consistently used memory tasks known to be hippocampally mediated, whereas human studies have used a variety of neuropsychological tests assessing recall or recognition, tests that may differentially draw on the hippocampus and surrounding subhippocampal cortices (Aggleton & Brown, 1999) as well as on frontal regions (Johnson, Hashtroudi, & Lindsay, 1993). It is known that the hippocampus is particularly
engaged in relational memory tasks that require that different informational elements be bound in memory [e.g., remembering a name that goes with a face; (Giovanelli, Verfaellie, & Keane, 2003; Hayes, Buchler, Stokes, Kragel, & Cabeza, 2011)]. Moreover, aging has a greater detrimental impact on relational memory relative to memory for single items [e.g., name alone or face alone; (Old & Naveh-Benjamin, 2008)]. Thus, relational memory tests might be more sensitive to effects of CRF on age-related memory decline.

This study examined the relationship between CRF and cognition in OA using a direct measure of peak VO\textsubscript{2} obtained during a treadmill-based maximal exercise protocol. In addition to standardized neuropsychological tasks of executive function and episodic memory, we used a relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper relational memory task in which participants were asked to learn face-name associations. This task is known to rely on hippocampal function and relates closely to the most common cognitive complaint among OA, forgetting proper

To ensure recruitment of participants with a wide range of CRF levels, participants were recruited from general participant pools (Boston University for YA and the Boston University Memory Disorders Research Center at VA Boston, Boston University Alzheimer’s Disease Center, the Massachusetts Alzheimer’s Disease Research Center, and the Alzheimer’s Association Trial for OA) as well as through local track meets. Exclusion criteria were current alcohol or substance dependence, current DSM-IV Axis I disorders, history of serious mental illness (e.g., schizophrenia), serious health issue (e.g., heart attack), serious neurological condition (e.g., stroke), or education less than grade 12. Further, all participants were screened for contraindications to cardiopulmonary exercise testing and Magnetic Resonance Imaging (data not reported here) prior to study participation. Mental status was assessed using the Montreal Cognitive Assessment (MOCA; http://www.mocatest.org/), and participants with scores ≤23 were excluded. Participants were also screened for depression using a cut-off score of 16 on the Center for Epidemiologic Studies Depression Scale (CES-D) 20-item version. All participants gave written informed consent and received financial compensation. The VA Boston Healthcare System institutional review board approved all experimental procedures.

Participant characteristics are presented in Table 1. For each group, peak VO\textsubscript{2} values are presented both in absolute terms (ml/kg/min) and as percentile scores relative to age- and gender-specific normative values established by the American College of Sports Medicine (2010; see Table 1). The mean, min, and maximum percentile scores presented in Table 1 highlight the wide range of aerobic capacity within each age group, as well as the distinct levels of aerobic capacity within the OA sample. There were no differences in YA and OA on measures of mental status (MOCA), premorbid intellectual function (WTAR), or depression (CES-D). The difference in years of education between YA and OA was significant, \(t(59) = 3.42, p = .001 \). Given that the YA were Boston University undergraduates in the process of earning a bachelor’s degree (education = 16 years), a

METHOD

Participants

Thirty-four YA (age 18–31 years) and 33 OA (age 55–82 years) participated in the study. Five OA were excluded from data analysis (four due to incidental findings on the MRI and one due to failure to meet criteria for valid peak VO\textsubscript{2} as well as one YA (statistical outlier based on high peak VO\textsubscript{2} value). The final sample included in the analyses consisted of 33 YA (24 Caucasian, seven Asian, two African-American) and 28 OA (26 Caucasian, two African-American). Four OA reported a diagnosis of hypertension, one of whom also reported diabetes.

Table 1. Characteristics of Young and Older Adults, as well as Subgroups of Older Adults Based on Median Split of Peak VO\textsubscript{2} (Mean and Standard Deviation)

<table>
<thead>
<tr>
<th></th>
<th>YA</th>
<th>OA</th>
<th>LFOA</th>
<th>HFOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>33 (18 F)</td>
<td>28 (16 F)</td>
<td>14 (8 F)</td>
<td>14 (8 F)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>21.0 (3.1)</td>
<td>64.1 (7.2)</td>
<td>64.9 (8.4)</td>
<td>63.3 (5.9)</td>
</tr>
<tr>
<td>Education (years)</td>
<td>14.5 (1.7)</td>
<td>16.3 (2.5)</td>
<td>15.6 (2.6)</td>
<td>17.1 (2.5)</td>
</tr>
<tr>
<td>WTAR</td>
<td>42.9 (4.3)</td>
<td>43.0 (5.6)</td>
<td>40.6 (5.5)</td>
<td>45.4 (4.7)</td>
</tr>
<tr>
<td>CES-D</td>
<td>6.2 (4.0)</td>
<td>5.6 (4.2)</td>
<td>5.8 (3.8)</td>
<td>5.4 (4.6)</td>
</tr>
<tr>
<td>MOCA</td>
<td>28.6 (1.5)</td>
<td>27.8 (1.9)</td>
<td>27.1 (2.3)</td>
<td>28.4 (0.9)</td>
</tr>
<tr>
<td>BMI</td>
<td>23.1 (2.9)</td>
<td>25.7 (4.8)</td>
<td>27.8 (5.8)</td>
<td>23.6 (2.3)</td>
</tr>
<tr>
<td>Peak VO\textsubscript{2} (ml/kg/min)</td>
<td>38.5 (11.6)</td>
<td>30.0 (8.5)</td>
<td>23.9 (6.4)</td>
<td>36.0 (5.4)</td>
</tr>
<tr>
<td>Peak VO\textsubscript{2} ACSM percentile score, min–max percentile score</td>
<td>40.9 (25.9) 10–90</td>
<td>45.5 (29.9) 10–90</td>
<td>20.0 (14.7) 10–50</td>
<td>71.1 (13.9) 50–90</td>
</tr>
</tbody>
</table>

Notes. ACSM = American College of Sports Medicine; BMI = body mass index; CES-D = Center for Epidemiologic Studies Depression Scale; F = number of females; HFOA = high-fit older adults; LFOA = low-fit older adults; MOCA = Montreal Cognitive Assessment; OA = older adults; WTAR = Wechsler Test of Adult Reading; YA = young adults.
premorbid estimate of intellectual function (WTAR), rather than years of education, is likely a more valid indicator of intellectual abilities of the two groups. Therefore, WTAR scores, rather than education, were entered into the regression models. YA compared to OA, had a lower mean body mass index (BMI), \(t(59) = 2.58, p < .05 \).

A subset of participants, 30 YA and 23 OA, completed the face–name memory task, and these groups also differed in years of education and BMI \(r's (59) > 3.0, p < .05 \). No differences were observed in WTAR, CES-D, or MOCA scores.

Cardiopulmonary Exercise Testing

Graded maximal exercise testing in association with air–gas exchange was conducted using a 2-min Bruce protocol on a motor driven Woodway Barimill treadmill. Peak volume of oxygen consumption (VO\(_2\), ml/kg/min) and respiratory exchange ratio were measured. Self-reported ratings of perceived exertion were collected at 1-min intervals using the 20-item Borg Scale. Peak VO\(_2\) was considered valid if at least two of the following criteria were met: (a) respiratory exchange ratio \(\geq 1.0 \), (b) maximum heart rate equivalent to 85% of their age-predicted maximum (220 – age), (c) ratings of perceived exertion \(\geq 17 \), which corresponds to an exertion level of “very hard” (a rating of 20 represents “maximal exertion”).

Neurocognitive Testing

All participants completed neurocognitive testing prior to completion of cardiopulmonary exercise testing. Premorbid intellectual abilities were assessed with the Wechsler Test of Adult Reading (WTAR).

Executive function.—The following standardized tests of executive function were administered: Trail Making and Verbal Fluency from the Delis Kaplan Executive Function System (D-KEFS), Mental Arithmetic and Digit Span (backwards) from the Wechsler Adult Intelligence Scale Third Edition (WAIS-III), and the computerized version of the Wisconsin Card Sorting Test (WCST).

Episodic memory.—A face–name memory task (Figure 1) for 180 face–name pairs was administered (5 lists, each comprised 36 trials). During encoding, participants were instructed to remember each face–name pair and were asked to rate on a four-point scale how well the name fit with the face. During retrieval for each list, they were asked to select on each trial the name with which a face had previously been presented and to indicate their confidence in the selected choice (definite or probable). Between each encoding and retrieval block, participants completed a 20-s filler task. Presentation duration for each encoding and retrieval trial was 3.5 s, with an intertrial interval varying between 0.5 and 6.5 s. The task was administered while participants underwent functional MRI (data not reported here). Overall accuracy for novel face–name trials was used as the dependent measure.

![Example of experimental stimuli used during the face–name relational memory task.](http://psychsocgerontology.oxfordjournals.org/)

Standardized tests of visual memory consisted of the Brief Visuospatial Memory Test Revised (BVMTR) and the Faces subtests from the Wechsler Memory Scale Third Edition (WMS-III). Verbal Memory was assessed using the California Verbal Learning Test Edition II (CVLT-II) and the Logical Memory subtest from the WMS-III.

Statistical Approach

All neurocognitive scores were expressed as z-scores based on the mean and standard deviation from the YA sample. For data reduction purposes, z-scores on standardized neuropsychological tests within a given cognitive domain were averaged to generate composite measures of executive function, visual memory, and verbal memory. Dependent variables included in the composite scores are listed in Table 2.

The alpha level for all tests was set at \(p < .05 \). To examine the nature of the relationship between cognition and CRF, separate four-step hierarchical regression models were implemented for the executive function composite score, face–name retrieval accuracy, visual memory composite score, and verbal memory composite score. In Step 1 of each model, WTAR-scores, CES-D scores, and gender were entered as predictors for the dependent variable of interest. In Step 2, age group was entered into the model to assess performance differences between YA and OA. In Step 3, peak VO\(_2\) was entered into the model to examine the contribution of CRF to cognitive function. Finally, in Step 4, the age group × peak VO\(_2\) interaction was entered into the model. Significant age group × peak VO\(_2\) interactions were followed up with regression models to examine whether peak VO\(_2\) predicts cognitive performance in YA or OA. Because Step 1 of the regression models was not significant for any of the dependent variables, all F’s < 1.59,
all \(p \)'s > .20, more parsimonious models were subsequently re-run with three steps and results are reported below.

Finally, to directly assess the degree to which CRF attenuates age-related cognitive decline, OA were assigned peak VO\(_2\) percentile scores based on age- and gender-specific normative values (American College of Sports Medicine, 2010), and median-split into low-fit OA and high-fit OA based on the ACSM percentile scores (see Table 1 for ACSM mean, minimum, and maximum percentile scores within each group). Relative to published normative data (Heyward & Gibson, 2014), the mean peak VO\(_2\) value of the low-fit OA group fell within the poor range whereas the mean peak VO\(_2\) value of the high-fit OA group fell within the excellent range, further highlighting the distinct levels of aerobic capacity within the OA sample. One-way analysis of variance (ANOVAs) were performed to compare cognitive performance among YA, high-fit OA, and low-fit OA, with significant \(F \)-values followed-up with least significant difference tests.

Results

The composite scores for executive function and visual memory were significantly lower in OA than in YA, \(r \)'s (59) > 3.29, \(p \)'s < .005, and a trend was observed for verbal memory, \(t \) (59) = 1.86, \(p = .068 \) (Table 2). Face–name memory retrieval was also significantly lower in OA relative to YA, \(t \) (31.7) = 4.62, \(p < .001 \). Raw scores on each test comprising the respective composite measures are listed for YA, OA, and OA median-split by CRF in Table 2.

Examination of Peak VO\(_2\) and Cognition by Age Group

Executive function.—Age group (Step 1) accounted for 15.5% of the variance (Table 3). Adding peak VO\(_2\) (Step 2) to the model accounted for an additional 7.8% of the variance. Including the age group \(\times \) peak VO\(_2\) interaction (Step 3) to the model did not account for additional significant variance. Nonetheless, we implemented follow-up regressions, given that aerobic fitness was shown to have the largest impact on executive function in OA in a landmark meta-analysis (Colcombe & Kramer, 2003). Peak VO\(_2\) did not predict the executive function score in YA, \(R^2 = .027 \), \(F \) (1, 32) < 1, but did in OA, \(R^2 = .174 \), model \(F \) (1, 27) = 5.48, \(p < .05 \) (Figure 2A).

Episodic memory.—For face–name memory (Table 3), age group (Step 1) accounted for 32.7% of the variance. Adding peak VO\(_2\) (Step 2) to the model accounted for an additional 5.2% of the variance, and adding the age group \(\times \) peak VO\(_2\) interaction (Step 3) term to the model accounted for an additional 4.7% of the variance. Follow-up analyses indicated that peak VO\(_2\) did not predict face–name memory in YA, \(F \) (1, 29) < 1, but did predict face–name memory in OA, \(R^2 = .205 \), \(F \) (1, 22) = 5.40, \(p < .05 \) (Figure 2B).

For the composite measure of visual memory (Table 3), age group (Step 1) accounted for 46.5% of the variance. Adding peak VO\(_2\) (Step 2) accounted for an additional 7.1% of the variance. Finally, inclusion of the age group \(\times \) peak VO\(_2\) interaction term (Step 3) accounted for an additional 7.6% of the variance. Follow-up analyses revealed that peak VO\(_2\) did not predict visual memory performance in YA, \(F < 1 \). In contrast, peak VO\(_2\) predicted visual memory performance in the OA, \(R^2 = .335 \), model \(F \) (1, 27) = 13.09, \(p < .005 \) (Figure 2C).

There was a trend for age group to account for significant variance in the composite measure of verbal memory, \(R^2 = .055 \), \(F = 3.45 \), \(p = .07 \). Inclusion of peak VO\(_2\) and the interaction term did not account for additional variance, \(F \) changes < 1.
Examination of Cognitive Performance of High- and Low-Fit OA Relative to YA

OA were divided into high and low-fit groups based on a median split of peak VO$_2$ percentile values (based on ACSM norms) and one way ANOVAs were implemented to compare the cognitive performance of high-fit OA, low-fit OA, and YA. Importantly, there was no difference in peak VO$_2$ and BMI between YA and high-fit OA (p’s > .25; Table 1). Verbal memory was not evaluated due to the lack of association with peak VO$_2$ in our previous analyses.

The composite measure of executive function differed across groups, $F(2, 60) = 10.56, p < .001$. Follow-up tests revealed that high-fit OA performed as well as YA, and both groups had higher scores than low-fit OA, p’s < .005 (Figure 3). Face–name memory also differed as a function of group, $F(2, 52) = 15.11, p < .001$. Follow-up tests showed that YA performed better than high-fit OA, $p < .05$, who in turn performed better than low-fit OA, $p = .052$. Visual memory performance followed the same pattern, $F(2, 60) = 41.09, p < .001$: YA performed significantly better than high-fit OA, who in turn performed better than low-fit OA (Figure 3), p’s < .001. These findings were replicated when the four OA with hypertension (two of whom were classified as high fit and two as low fit) were excluded from the analyses, with the exception of the face–name memory task, which did not reach significance likely due to the reduced sample size.

Discussion

This study yielded three main findings. First, CRF in OA was positively associated with performance on executive function tasks, an experimental face–name memory task, and standardized tests of visual memory. Second, while peak VO$_2$ accounted for a significant amount of performance-related variance in OA, no relationship between CRF and cognitive performance was observed in YA. Finally, a median split of OA based on peak VO$_2$ revealed that high-fit OA performed as well as YA on tests of executive function, suggesting that CRF can eliminate age-related differences in executive function. The same was not true for episodic memory, as YA scored higher than high-fit OA on the face–name memory task and standard neuropsychological measures of visual memory. Nevertheless, high-fit OA performed significantly better than low-fit OA on the face–name memory task and visual memory. These findings are discussed below.

CRF Positively Linked to Cognition in OA But Not YA

Using a direct assessment of peak VO$_2$, we found that CRF was associated with a composite measure of executive function.
These results extend and strengthen the extant literature, which has often linked CRF and executive function using indirect fitness assessments (Eggermont, Milberg, Lipsitz, Scherder, & Leveille, 2009) or a single test of executive function (Hillman et al., 2006). The use of a composite measure generated from multiple indicators of executive function provides evidence that the relationship between CRF and executive function is not limited to particular tasks, but rather reflects an association with core processes shared across executive function tasks (see Table 2 where high-fit OA outperform low-fit OA on a variety of executive function tasks). The positive association between CRF and executive function is likely underpinned by the positive impact of CRF on frontalparietal regions that mediate task performance, as multiple imaging studies have linked CRF to positive functional and structural changes in frontalparietal regions in OA (Hayes et al., 2013).

More importantly, our findings demonstrate that the effect of CRF is not limited to executive function, but also extends to episodic memory (Wendell et al., 2014). Consistent with our prediction, we observed an effect of CRF on a hippocampally mediated face–name memory task in OA. The current results are consistent with animal findings showing a relationship between physical activity and hippocampally mediated memory tasks. Further, they shed new light on human studies that have demonstrated an association between physical activity and medial temporal lobe integrity (but not episodic memory) by demonstrating the importance of selecting memory tasks that are optimally sensitive to hippocampal function to identify cognitive correlates of CRF.

Our findings further indicate that an association can also be obtained with standard neuropsychological tests of episodic memory. The significant association between CRF and episodic memory observed in the current study highlights the importance of using an optimal measure of CRF. This is a critical difference between the current study and other studies that have used questionnaires or estimates of peak VO₂, which are less precise, and failed to observe a significant relationship with episodic memory (Newson & Kemps, 2006, 2008).

In YA, CRF was not associated with performance in any of the cognitive domains examined. There is limited evidence regarding the relationship between fitness and cognition in YA, and the few published studies vary widely in sample size and cognitive measures (Aberg et al., 2009; Baym et al., 2014). Relative to the aging literature, the dearth of evidence supporting a relationship between CRF and cognition in YA may be attributable to the fact that cognitive abilities are typically at their peak in young adulthood, and

Figure 3. Z-scores of young adults (YA), high-fit older adults (HFOA), and low-fit older adults (LFOA) on executive function tasks, face–name memory task, and visual memory tasks. Mean z-scores of YA are 0.00 but are graphed at –0.05 in order to visualize the bars. Error bars represent SD.
therefore, the influence of CRF on cognition may be more limited during this time period.

Our finding that CRF was associated with cognitive performance in OA, but not YA, is consistent with the age-dependence hypothesis (Hotting & Roder, 2013). According to the age-dependence hypothesis, CRF impacts cognitive and brain function during childhood, exerts minimal influence during young adulthood when indicators of neural structure and function are typically at their lifetime peak, but may again positively impact brain structure and function in OA as cognitive decline begins in later adulthood. Supporting this hypothesis are findings of a positive relationship between peak VO\textsubscript{2} and face-memory in pre-adolescent children (Chaddock et al., 2010), as well as data from the current study linking peak VO\textsubscript{2} and face-memory in OA, but not YA. The lack of a relationship between CRF and verbal memory observed in the current study is also consistent with the age-dependence hypothesis, in that one would not predict a relationship with CRF until significant age-related cognitive decline occurred. Additional studies examining CRF–cognition relationships across the life span are needed to further evaluate the age-dependence hypothesis.

Attenuation of Age-Related Cognitive Decline by CRF

The current results support the notion that CRF contributes to successful cognitive aging (Depp, Vahia, & Jeste, 2010). When OA were median split based on peak VO\textsubscript{2} values, age-related performance differences on executive function tasks were eliminated in high-fit OA. On the face-memory and the visual memory tasks, high-fit OA did not reach the same level of performance as YA, yet they performed better than low-fit OA, demonstrating again that CRF positively impacted episodic memory performance in OA.

CRF likely impacts cognitive function via multiple neurobiological mechanisms. Aerobic exercise and CRF have been linked to enhanced structural volume of the hippocampus and prefrontal cortex, increased gray matter density in frontal and parietal regions, enhanced white matter microstructure, reductions in white matter hyperintensities, enhanced functional connectivity within neural networks that underpin episodic memory and executive function, increased cerebral perfusion, and enhanced cerebral blood volume and hippocampal neurogenesis (Hayes et al., 2013). Animal studies have linked wheel-running to enhanced neurogenesis, synaptogenesis, and angiogenesis (formation of new neurons, synapses, and blood vessels, respectively), as well as growth factors that support these processes (e.g., brain-derived neurotrophic factor), often attenuating age-related reductions (Cotman et al., 2007).

Thus, there is a complex neurobiological cascade that underpins associations between CRF and cognition. The multilevel impact of CRF on the brain, ranging from the molecular level to the systems level, fosters substantial enthusiasm that enhanced CRF may attenuate age-related cognitive decline. Indeed, one of the advantages of exercise training to enhance CRF is that cognitive gains are unlikely to be task-specific, as neural changes that occur via enhanced CRF should impact multiple cognitive tasks mediated by the altered brain regions. Whereas a primary challenge for cognitive training studies is to demonstrate that enhanced performance subsequent to training generalizes to other stimuli and tasks, exercise interventions, by the very nature of the fitness-induced neurobiological changes impacting cognition, are unlikely to suffer from challenges related to stimulus or task-specificity.

Our findings that CRF may mitigate age-related cognitive decline is appealing for a variety of reasons, including that aerobic activities to enhance CRF (walking, jogging, etc.) are inexpensive, accessible, and could potentially improve quality of life by delaying cognitive decline and prolonging independent function. Although the current study focused on CRF, recent reports have indicated that resistance training may positively impact cognitive performance and brain function, and suggest that different types of exercise training may impact different cognitive functions and distinct brain regions (Hotting & Roder, 2013). Additional research is needed to clarify the impact of specific exercise programs (e.g., strength, aerobic, or combined training) or dose of exercise (frequency, intensity, and duration) on a range of cognitive functions.

Limitations

The current study was cross-sectional, and other cohort factors such as genetics, diet, or blood pressure could have influenced the results. The current study reports associations between CRF and cognition, and does not necessarily represent a causal relationship between CRF and cognition. In regards to our hypothesis about relational memory being particularly sensitive to CRF, it would have been interesting to include an experimental item recognition task (e.g., names alone or faces alone) to more directly compare relational versus item memory to further strengthen our conclusions. In this study, cardiopulmonary exercise testing occurred prior to neurocognitive testing, as the focus of this study was on the relationship between CRF and cognition. Additional research is needed to evaluate whether acute effects of physical activity impact age-related differences in cognition.

Funding

This work was supported by the Department of Veterans Affairs, Rehabilitation Research & Development Service (Career Development Award #I01RX00034 awarded to S.M.H.) and Clinical Science Research & Development Service (M.V.). Assistance with participant recruitment was provided by the Massachusetts Alzheimer’s Disease Research Center (P50-AG005134) and Boston University Alzheimer’s Disease Center (P30-AG13846).

Acknowledgments

The authors wish to thank Kelly Allsup, Kenneth Manning, Margaret Cadden, Huiting Liu, Kristina Peterson, and Rebecca Lysiak for assistance.
with data collection. The contents of this article do not represent the views of the U.S. Department of Veterans Affairs or the U.S. Government.

Correspondence

Correspondence should be addressed to Scott M. Hayes, PhD, Memory Disorders Research Center (151A), VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130. E-mail: scott.hayes@va.gov.

References

