Preliminary Exams 2021
Algebra Exam (3.5 hours)

Part I.

Solve four of the following five problems.

Problem 1. Find the general solution in \mathbb{R}^4 to the system of equations

\[
\begin{align*}
 w + 2x - y + 3z &= 4 \\
 2w + 4x - y + 4z &= 0.
\end{align*}
\]

Your answer should have the form $(w, x, y, z) = v + rv' + sv''$, where v, v', and v'' are vectors and r and s denote arbitrary scalars.

Problem 2. Let V be the vector space over \mathbb{R} with basis $\cos^2 x$, $\sin^2 x$, and $\cos x \sin x$, and let $T : V \to V$ be the linear map $T(f) = 3f - f'$, where $f' = df/dx$.

Find the determinant of T.

Problem 3. Consider the matrix $A = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$.

Find an invertible matrix C and a diagonal matrix D such that $A^{100} = CDC^{-1}$.

Problem 4. Let V be the subspace of \mathbb{R}^4 spanned by $v_1 = (1, 1, 1, 1)$ and $v_2 = (1, -1, -1, 1)$.

(a) Find an orthonormal basis u_1, u_2 for V relative to the dot product.

(b) Put $w = (1, 2, 2, 5)$. Find scalars a_1, a_2 such that $(w - a_1u_1 - a_2u_2) \cdot v = 0$ for all $v \in V$.

Problem 5. Let M be the subgroup of \mathbb{Z} generated by 101010 and 111111.

Find the order of \mathbb{Z}/M.

Part II.

Solve three of the following six problems.

Problem 6. Show that the ring $A = \mathbb{R}[x]/(x^2)$ has exactly 3 ideals.

Problem 7. Give 3 different examples of 6×6 matrices J in Jordan canonical form with characteristic polynomial X^6 and minimal polynomial X^3. (Here two examples J and J' are understood to be “different” if there does not exist an invertible 6×6 matrix U such that $J' = UJU^{-1}$.)

Problem 8. Let $SL_2(\mathbb{R})$ be the group of 2×2 matrices with real coefficients and determinant 1, and put

$\sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Write $t g$ for the transpose of an element $g \in SL_2(\mathbb{R})$.

(a) Show that $\sigma g \sigma^{-1} = t g^{-1}$ for $g \in SL_2(\mathbb{R})$.

(b) Explain why there is no element $\tau \in SL_2(\mathbb{R})$ such that $\tau g \tau^{-1} = t g$ for all $g \in SL_2(\mathbb{R})$. Is there an element τ such that $\tau g \tau^{-1} = g^{-1}$? Why or why not?

Problem 9. Let S_n be the group of permutations of the set $\{1, 2, 3, \ldots, n\}$. In each case, give an example of an element of S_n of order d, or explain why none exists: (i) $n = 10$, $d = 30$, (ii) $n = 11$, $d = 33$.

Problem 10. Let A be an $n \times n$ symmetric matrix with real coefficients and n distinct eigenvalues. Suppose that $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ are eigenvectors of A satisfying $x_j > 0$ and $y_j > 0$ for $1 \leq j \leq n$. Prove that x is a scalar multiple of y.

Problem 11. Let L be the subgroup of \mathbb{Z}^3 generated by $(3, 2, 9)$, $(2, 2, 2)$, and $(3, 2, 3)$. Find a direct sum of cyclic groups isomorphic to \mathbb{Z}^3/L.

Part III.

Solve one of the following three problems.

Problem 12. Let A and B be $n \times n$ matrices over \mathbb{R} with minimal polynomial $(x - 1)^2x$ and trace 2. Prove that $A = UBU^{-1}$ for some invertible $n \times n$ matrix U.

(a) Prove that the set $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G.

(b) Give an example to show that if H is not normal then the set HK need not be a subgroup of G.

Problem 14. In each case determine the degree $[F(\alpha) : F]$, where $\alpha^4 = -1$ and F is the field (i) \mathbb{R}, (ii) \mathbb{Q}, (iii) \mathbb{F}_3 (the field with 3 elements), and (iv) \mathbb{F}_{17} (the field with 17 elements).