Persistent Homology

Miguel Lopez

February 1, 2019
Overview

Topics:

- Simplicies
Overview

Topics:
- Simplicies
- Filtrations
Overview

Topics:

- Simplicies
- Filtrations
- Homology
Overview

Topics:
- Simplicies
- Filtrations
- Homology
- Persistence

Applications:
Overview

Topics:
- Simplicies
- Filtrations
- Homology
- Persistence

Applications:
Simplices

Definition

A \(k \)-simplex is the convex hull of \(k + 1 \) affinely independent points in \(\mathbb{R}^d \).

A simplicial complex is a finite collection of simplices \(K \) such that \(\sigma \in K \) and \(\tau \leq \sigma \) implies \(\tau \in K \), and \(\sigma, \sigma_0 \in K \) implies \(\sigma \cap \sigma_0 \) is either empty or a face of both.
Definition

A \textit{filtration} is a sequence of simplicial complexes \(\{K_i\} \) such that \(\sigma \in K_i \) only if each face of \(\sigma \) is in some \(K_j \) for \(j \leq i \).

For each point in a finite set \(S \) the \textit{Vietoris-Rips Complex} for a fixed \(r \) is the simplicial complex

\[
\{ \sigma \in S \mid \text{diam}(\sigma) \leq 2r \}.
\]
Vietoris-Rips Complex

Definition

A *filtration* is a sequence of simplicial complexes \(\{K_i\} \) such that \(\sigma \in K_i \) only if each face of \(\sigma \) is in some \(K_j \) for \(j \leq i \).

For each point in a finite set \(S \) the *Vietoris-Rips Complex* for a fixed \(r \) is the simplicial complex

\[
\{ \sigma \in S \mid \text{diam}(\sigma) \leq 2r \}.
\]
Simplicial Homology

Chains

Definition
Given a simplicial complex K, a p-chain over $\mathbb{Z}/2\mathbb{Z}$ is a formal sum of p-dimensional simplices

$$
\sum_{i=1}^{n} a_i \sigma_i
$$

where $a_i \in \{0, 1\}$ and σ_i is a p-dimensional simplex in K.

Definition
The boundary operator ∂ is a linear operator that sends a p-dimensional simplex to the formal sum of its $(p-1)$-dimensional faces.
Simplicial Homology

A p-cycle is a p-chain σ such that $\partial(\sigma) = 0$. We define Z_p as the group of all p-cycles.

\[
\partial(\tau) = \sigma_1 + \sigma_2 + \sigma_3 \\
\partial(\sigma_1 + \sigma_2 + \sigma_3) = \\
\partial(\sigma_1) + \partial(\sigma_2) + \partial(\sigma_3) = \\
(\nu_1 + \nu_3) + (\nu_2 + \nu_3) + (\nu_1 + \nu_2) = 0
\]
A p-cycle is a p-chain σ such that $\partial(\sigma) = 0$. We define Z_p as the group of all p-cycles.

The boundary group B_p consists of all p-chains σ such that there exists some $(p+1)$-chain τ with $\partial(\tau) = \sigma$.

$$
\partial(\tau) = \sigma_1 + \sigma_2 + \sigma_3
$$

$$
\partial(\sigma_1 + \sigma_2 + \sigma_3) =
\partial(\sigma_1) + \partial(\sigma_2) + \partial(\sigma_3)
$$

$$
(v_1 + v_3) + (v_2 + v_3) + (v_1 + v_2) = 0
$$
A p-cycle is a p-chain σ such that $\partial(\sigma) = 0$. We define Z_p as the group of all p-cycles.

The boundary group B_p consists of all p-chains σ such that there exists some $(p+1)$-chain τ with $\partial(\tau) = \sigma$.

We define the p-th homology group as $H_p(K) = Z_p(K)/B_p(K)$.

\[\partial(\tau) = \sigma_1 + \sigma_2 + \sigma_3 \]
\[\partial(\sigma_1 + \sigma_2 + \sigma_3) = \]
\[\partial(\sigma_1) + \partial(\sigma_2) + \partial(\sigma_3) = \]
\[(v_1 + v_3) + (v_2 + v_3) + (v_1 + v_2) = 0 \]
Persistence

For a filtration \(\{F_i\} \), the inclusion maps \(f^{i,j} : F_i \rightarrow F_j \) are simplicial maps so they induce homomorphisms \(f_{p}^{i,j} : H_p(F_i) \rightarrow H_p(F_j) \) for each dimension \(p \). This produces a sequence

\[
H_p(F_1) \rightarrow H_p(F_2) \rightarrow \cdots \rightarrow H_p(F_n) = H_p(F).
\]

- The \(p \)-th persistent homology groups are the images of the \(f_{p}^{i,j} \) i.e. \(H_{p}^{i,j} = \text{im} f_{p}^{i,j} \).
- A class of \(p \)-cycles \(c \in H_p(F_i) \) is born at \(F_i \) if \(c \notin H_{p}^{i-1,i} \).
- If a class \(c \) is born entering \(F_i \) then it dies entering \(F_j \) if it merges with an older class as we go from \(F_{j-1} \) to \(F_j \).
- If \(c \) is born at \(F_i \) and dies entering \(F_j \) then we define the persistence of \(c \) as \(\text{pers}(c) = j - i \).
- We define the Betti Number of \(H_{p}^{i,j} \) as \(\beta_{p}^{i,j} = \text{rank} H_{p}^{i,j} \).
A cycle is born at F_3 and at F_4 and one of them dies entering F_5.

- $H_0(F_1) = (\mathbb{Z}/2\mathbb{Z})^5$
- $H_1(F_3) = H_1(F_5) = \mathbb{Z}/2\mathbb{Z}$
- $H_1(F_4) = (\mathbb{Z}/2\mathbb{Z})^2$
- $H_1^{3,4} = H_1^{4,5} = \mathbb{Z}/2\mathbb{Z}$
- $H_1^{3,5} = H_1^{2,i} = 0$
- $H_0^{1,2} = (\mathbb{Z}/2\mathbb{Z})^4$
- $\beta_1^{3,4} = \beta_1^{4,5} = 1$
- $\beta_1^{3,5} = 0$
Sampling Points From A Circle

Below are set of data points uniformly sampled points from a wedge sum of circles with uniform noise added. The persistence diagrams are computed using the ‘Statistical Tools for Topological Data Analysis’ R package.
Sampling Points From A Circle

Below are set of data points uniformly sampled points from a wedge sum of circles with uniform noise added. The persistence diagrams are computed using the ‘Statistical Tools for Topological Data Analysis’ R package.

Representative loop of data points

rips Diagram
Rips complex from points sampled from torus with added noise.
Sampling From A Torus
Rips Complex

Rips complex from points sampled from torus with added noise.
Sampling From A Torus

Persistence Diagram

[Image of a persistence diagram with axes labeled Birth and Death, showing red and blue data points with a diagonal line indicating persistence intervals.]

Miguel Lopez
Persistent Homology
February 1, 2019
Barcode diagrams display the lifetime of each homology generator. Here 1-cycles are shown in red and 2-cycles are shown in blue.