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Simplices

Definition

A k-simplex is the convex hull of k + 1 affinely independent points in Rd .

A simplicial complex is a finite collection of simplices K such that σ ∈ K
and τ ≤ σ implies τ ∈ K , and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a
face of both.
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Vietoris-Rips Complex

Definition

A filtration is a sequence of simplicial complexes {Ki} such that σ ∈ Ki

only if each face of σ is in some Kj for j ≤ i .

For each point in a finite set S the Vietoris-Rips Complex for a fixed r is the
simplicial complex

{σ ∈ S | diam(σ) ≤ 2r}.
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Simplicial Homology
Chains

Definition

Given a simpicial complex K , a p-chain over Z/2Z is a formal sum of
p-dimensional simplices

n∑
i=1

aiσi

where ai ∈ {0, 1} and σi is a p-dimensional simplex in K .

Definition

The boundary operator ∂ is a linear operator that sends a p-dimensional
simplex to the formal sum of its (p − 1)-dimensional faces.
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Simplicial Homology

∂(τ) = σ1 + σ2 + σ3
∂(σ1 + σ2 + σ3) =

∂(σ1) + ∂(σ2) + ∂(σ3) =
(v1 + v3) + (v2 + v3) + (v1 + v2) = 0

A p-cycle is a p-chain σ such that ∂(σ) = 0. We define Zp as the
group of all p-cycles.

The boundary group Bp consists of all p-chains σ such that there
exists some (p + 1)-chain τ with ∂(τ) = σ.

We define the p-th homology group as Hp(K ) = Zp(K )/Bp(K ).
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Persistence

For a filtration {Fi}, the inclusion maps f i ,j : Fi → Fj are simplicial maps so

they induce homomorphisms f i ,jp : Hp(Fi )→ Hp(Fj) for each dimension p.
This produces a sequence

Hp(F1)→ Hp(F2)→ · · · → Hp(Fn) = Hp(F ).

The p-th persistent homology groups are the images of the f i ,jp i.e.

Hi ,j
p = imf i ,jp .

A class of p-cycles c ∈ Hp(Fi ) is born at Fi if c /∈ Hi−1,i
p .

If a class c is born entering Fi then it dies entering Fj if f it merges
with an older class as we go from Fj−1 to Fj .

If c is born at Fi and dies entering Fj then we define the persistence of
c as pers(c) = j − i .

We define the Betti Number of Hi ,j
p as βi ,jp = rank Hi ,j

p .
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Persistence
Example

A cycle is born at F3 and at F4
and one of them dies entering
F5.

H0(F1) = (Z/2Z)5

H1(F3) = H1(F5) = Z/2Z
H1(F4) = (Z/2Z)2

H3,4
1 = H4,5

1 = Z/2Z
H3,5
1 = H2,i

1 = 0

H1,2
0 = (Z/2Z)4.

β3,41 = β4,51 = 1

β3,51 = 0
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Sampling Points From A Circle

Below are set of data points uniformly sampled points from a wedge sum of
circles with uniform noise added. The persistence diagrams are computed
using the ‘Statistical Tools for Topological Data Analysis’ R package.
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Sampling From A Torus
Rips Complex

Rips complex from points sampled from torus with added noise.
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Sampling From A Torus
Persistence Diagram
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Barcode diagrams display the lifetime of each homology generator. Here
1-cycles are shown in red and 2-cycles are shown in blue.
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