Persistent Homology

Miguel Lopez

February 1, 2019

Miguel Lopez	Mi	gue	l Lo	pez
--------------	----	-----	------	-----

э.

3

э

Topics:

Simplicies

・ロト ・四ト ・ヨト ・ヨト

Topics:

- Simplicies
- Filtrations

3

<ロ> (日) (日) (日) (日) (日)

Topics:

- Simplicies
- Filtrations
- Homology

3

<ロ> (日) (日) (日) (日) (日)

Topics:

- Simplicies
- Filtrations
- Homology
- Persistence

3

<ロ> (日) (日) (日) (日) (日)

Topics:

- Simplicies
- Filtrations
- Homology
- Persistence

Applications:

- Singh, Gurjeet et al. Topological analysis of population activity in visual cortex *Journal of vision* vol. 8,8 11.1-18. 30 Jun. 2008
- Lockwood, Svetlana and Krishnamoorthy, B. (2015). Topological Features in Cancer Gene Expression Data. Biocomputing 2015. November 2014, 108-119
- Silva, Vin and Ghrist, Robert. (2007). Coverage in sensor networks via persistent homology. Algebraic and Geometric Topology. 7. 10.2140/agt.2007.7.339

3

Simplices

Definition

A *k*-simplex is the convex hull of k + 1 affinely independent points in \mathbb{R}^d .

A simplicial complex is a finite collection of simplices K such that $\sigma \in K$ and $\tau \leq \sigma$ implies $\tau \in K$, and $\sigma, \sigma_0 \in K$ implies $\sigma \cap \sigma_0$ is either empty or a face of both.

Vietoris-Rips Complex

Definition

A *filtration* is a sequence of simplicial complexes $\{K_i\}$ such that $\sigma \in K_i$ only if each face of σ is in some K_j for $j \leq i$.

For each point in a finite set S the *Vietoris-Rips Complex* for a fixed r is the simplicial complex

 $\{\sigma \in S \mid \operatorname{diam}(\sigma) \leq 2r\}.$

Vietoris-Rips Complex

Definition

A *filtration* is a sequence of simplicial complexes $\{K_i\}$ such that $\sigma \in K_i$ only if each face of σ is in some K_j for $j \leq i$.

For each point in a finite set S the *Vietoris-Rips Complex* for a fixed r is the simplicial complex

 $\{\sigma \in S \mid \operatorname{diam}(\sigma) \leq 2r\}.$

Definition

Given a simplicial complex *K*, a *p*-chain over $\mathbb{Z}/2\mathbb{Z}$ is a formal sum of *p*-dimensional simplices

$$\sum_{i=1}^n a_i \sigma_i$$

where $a_i \in \{0, 1\}$ and σ_i is a *p*-dimensional simplex in *K*.

Definition

The boundary operator ∂ is a linear operator that sends a *p*-dimensional simplex to the formal sum of its (p-1)-dimensional faces.

イロト イヨト イヨト イヨ

A p-cycle is a p-chain σ such that ∂(σ) = 0. We define Z_p as the group of all p-cycles.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- A p-cycle is a p-chain σ such that ∂(σ) = 0. We define Z_p as the group of all p-cycles.
- The boundary group B_p consists of all *p*-chains σ such that there exists some (p+1)-chain τ with $\partial(\tau) = \sigma$.

- 4 同 6 4 日 6 4 日 6

- A p-cycle is a p-chain σ such that ∂(σ) = 0. We define Z_p as the group of all p-cycles.
- The boundary group B_p consists of all *p*-chains σ such that there exists some (p+1)-chain τ with $\partial(\tau) = \sigma$.
- We define the *p*-th homology group as $H_p(K) = Z_p(K)/B_p(K)$.

Persistence

For a filtration $\{F_i\}$, the inclusion maps $f^{i,j}: F_i \to F_j$ are simplicial maps so they induce homomorphisms $f_p^{i,j}: H_p(F_i) \to H_p(F_j)$ for each dimension p. This produces a sequence

$$H_p(F_1) \to H_p(F_2) \to \cdots \to H_p(F_n) = H_p(F).$$

- The *p*-th persistent homology groups are the images of the $f_p^{i,j}$ i.e. $H_p^{i,j} = im f_p^{i,j}$.
- A class of *p*-cycles $c \in H_p(F_i)$ is born at F_i if $c \notin H_p^{i-1,i}$.
- If a class *c* is born entering *F_i* then it *dies entering F_j* if f it merges with an older class as we go from *F_{j-1}* to *F_j*.
- If c is born at F_i and dies entering F_j then we define the persistence of c as pers(c) = j − i.
- We define the *Betti Number* of $H_p^{i,j}$ as $\beta_p^{i,j} = \operatorname{rank} H_p^{i,j}$.

(日) (周) (三) (三)

Persistence

Example

• A cycle is born at *F*₃ and at *F*₄ and one of them dies entering *F*₅.

•
$$H_0(F_1) = (\mathbb{Z}/2\mathbb{Z})^5$$

•
$$H_1(F_3) = H_1(F_5) = \mathbb{Z}/2\mathbb{Z}$$

•
$$H_1(F_4) = (\mathbb{Z}/2\mathbb{Z})^2$$

•
$$H_1^{3,4} = H_1^{4,3} = \mathbb{Z}/2\mathbb{Z}$$

•
$$H_1^{3,5} = H_1^{2,\prime} = 0$$

•
$$H_0^{1,2} = (\mathbb{Z}/2\mathbb{Z})^4$$
.

•
$$\beta_1^{3,1} = \beta_1^{1,3} = 1$$

• $\beta_1^{3,5} = 0$

Miguel Lopez

Sampling Points From A Circle

Below are set of data points uniformly sampled points from a wedge sum of circles with uniform noise added. The persistence diagrams are computed using the 'Statistical Tools for Topological Data Analysis' R package.

Sampling Points From A Circle

Below are set of data points uniformly sampled points from a wedge sum of circles with uniform noise added. The persistence diagrams are computed using the 'Statistical Tools for Topological Data Analysis' R package.

Sampling From A Torus

Rips Complex

Rips complex from points sampled from torus with added noise.

• • • • • • • • • • • •

3. 3

Sampling From A Torus

Rips Complex

Rips complex from points sampled from torus with added noise.

Sampling From A Torus

Persistence Diagram

 ▲ 書 ▶ ▲ 書 ∽ 𝔅 𝔅

 February 1, 2019
 11 / 12

< 🗇 🕨

Barcode diagrams display the lifetime of each homology generator. Here 1-cycles are shown in red and 2-cycles are shown in blue.

