Combinatorial Game Theory

Cordelia Theseira and Nathan Josephs

Boston University

1/31/19

Let's Play a Game

Rules of the Game:

- On your turn, you can take any number of coins provided they all come from the same heap
- The person who takes the last coin from all the heaps, wins. i.e. there are no coins left

Cordelia Theseira and Nathan Josephs

Outline

What is a Game?

- 2 Games which are numbers
 - Winning Strategies
 - Simplicity Rule

Nim Addition

What is a Game?

8 rules for Combinatorial Games:

- Two players, Left and Right
- Inite many positions, including a starting position
- Olearly defined rules for players to move from the current position to its options
- Left and Right alternate in turns
- Somplete information
- O No chance moves
- In the normal play convention the player unable to move loses
- There exists an ending condition, i.e. game ends when either player is unable to move

Which Games are numbers?

 $G = \{a, b, c, ... | d, e, f, ...\}$

Where G is the current position of the game and is determined by the options of the Left and Right players.

 $G = \{a, b, c, ... | d, e, f, ...\}$

Where G is the current position of the game and is determined by the options of the Left and Right players.

G is a number when $a, b, c, ... \leq d, e, f, ...$

If G > 0, there is a winning strategy for Left.

If G < 0, there is a winning strategy for Right.

If G = 0, there is a winning strategy for the second player.

G||0, there is a winning strategy for the first player.

Common Games

$$0=\{|\}$$

which is the ending condition

$$n+1=\{n|\}$$

which is a Left player win

$$-n+1 = \{|-n\}$$

which is a Right player win

$$* = \{0|0\}$$

which is a first player win

To simplify a game, we eliminate dominated options

To simplify a game, we eliminate dominated options

If Left has options $\{-3, \frac{1}{2}, 7\}$, options -3 and $\frac{1}{2}$ would be dominated by 7.

If Right had options {-6, -2, 0}, options 0 and 2 would be dominated by -6.

Simplicity Rule

Definition

If all the options for both players of some game G are **numbers**, and every Left option is **less than or equal** to every Right option, then G itself is a number, namely the **simplest number greater than** every Left option and **less than** every Right option.

$$G = \frac{2p+1}{2^{n+1}} = \left\{\frac{2p}{2^{n+1}} | \frac{2p+2}{2^{n+1}}\right\} = \left\{\frac{p}{2^n} | \frac{p+1}{2^n}\right\}$$

Definition

If all the options for both players of some game G are **numbers**, and every Left option is **less than or equal** to every Right option, then G itself is a number, namely the **simplest number greater than** every Left option and **less than** every Right option.

$$G = \frac{2p+1}{2^{n+1}} = \left\{\frac{2p}{2^{n+1}} | \frac{2p+2}{2^{n+1}}\right\} = \left\{\frac{p}{2^n} | \frac{p+1}{2^n}\right\}$$

A whole number is simpler than $\frac{a}{2}$. $\frac{a}{2}$ is simpler than $\frac{a}{4}$ and so on. The smallest number that satisfies the above is the simplest number.

If
$$G = \{2|3\}$$

If
$$G = \{2|3\}$$
, then $G = \frac{5}{2}$.

If
$$G = \{2|3\}$$
, then $G = \frac{5}{2}$.
If $G = \{-2|2\}$

If
$$G = \{2|3\}$$
, then $G = \frac{5}{2}$.
If $G = \{-2|2\}$, then $G = -1$.

If
$$G = \{2|3\}$$
, then $G = \frac{5}{2}$.
If $G = \{-2|2\}$, then $G = -1$.
If $G = \{\frac{5}{4}|2\}$

If
$$G = \{2|3\}$$
, then $G = \frac{5}{2}$.
If $G = \{-2|2\}$, then $G = -1$.
If $G = \{\frac{5}{4}|2\}$, then $G = \frac{3}{2}$.

Game of Nim

Nim is an **impartial** game. i.e. At every position, both players have the same legal moves.

Nim is an **impartial** game. i.e. At every position, both players have the same legal moves.

A nimber, i.e. $\star 1$, $\star 2$, $\star 3$..., represents the number of objects available to the players at every position of the game.

Nim is an **impartial** game. i.e. At every position, both players have the same legal moves.

A nimber, i.e. $\star 1$, $\star 2$, $\star 3$..., represents the number of objects available to the players at every position of the game.

E.g. The game we played was:

$$G = \{ \star 1, \star 2, \star 3, \star 4, \star 5, \star 6 | \star 1, \star 2, \star 3, \star 4, \star 5, \star 6 \}$$

Nim is an **impartial** game. i.e. At every position, both players have the same legal moves.

A nimber, i.e. $\star 1$, $\star 2$, $\star 3$..., represents the number of objects available to the players at every position of the game.

E.g. The game we played was:

$$G = \{ \star 1, \star 2, \star 3, \star 4, \star 5, \star 6 | \star 1, \star 2, \star 3, \star 4, \star 5, \star 6 \}$$

Nimbers are their own negatives. i.e. $\star 1 + \star 2 + \star 3 = 0$ is the same as $\star 1 + \star 3 = \star 2$ Facts:

- A single non-empty heap is fuzzy.
- Two equal-sized heaps is a zero game.
- Two unequal-sized heaps is fuzzy.

Facts:

- A single non-empty heap is fuzzy.
- Two equal-sized heaps is a zero game.
- Two unequal-sized heaps is fuzzy.

How to lose in a 3-heap game:

- Equalize two heaps
- Empty a heap

Nim Addition Table

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
2	2	3	0	i.	6	7	4	5	10	11	8	9	14	15	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
4	4	5	6	7	0	1	2	3	12	13	14	15	8	9	10	11
5	5	4	7	6	1	0	3	2	13	12	15	14	9	8	11	10
6	6	7	4	5	2	3	0	1	14	15	12	13	10	11	8	9
7	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8
8	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7
9	9	8	11	10	13	12	15	14	1	0	3	2	5	4	7	6
10	10	11	8	9	14	15	12	13	2	3	0	1	6	7	4	5
11	11	10	9	8	15	14	13	12	3	2	1	0	7	6	5	4
12	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
13	13	12	15	14	9	8	11	10	5	4	7	6	1	0	3	2
14	14	15	12	13	10	11	8	9	6	7	4	5	2.	3	0	1
15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	i	0

Nim Addition

 $\star 10 + \star 6 = 12$

 $\star 10 + \star 6 = 12$

Break each nimber into distinct parts whose sizes are powers of 2, beginning with the largest size.

 $\begin{aligned} \star 10 + \star 6 &= 12 \\ \text{Break each nimber into distinct parts whose sizes are powers of 2,} \\ \text{beginning with the largest size.} \\ \star 10 + \star 6 &= \star 8 + \star 2 + \star 4 + \star 2 \end{aligned}$

Conclusion

A game is a number if:

- all the options for both players are numbers
- every Left option is less than or equal to every Right option

G will be the simplest number greater than every Left option and less than every Right option.

Conclusion

A game is a number if:

- all the options for both players are numbers
- every Left option is less than or equal to every Right option

G will be the simplest number greater than every Left option and less than every Right option.

In the game of Nim:

- Nimbers are their own negatives
- In a 3-heap game, the player who equalizes two heaps or empties a heap loses
- To add nimbers, break each nimber into distinct parts whose sizes are powers of 2 and use arithmetic addition

- Berlekamp, Elwyn R, John H Conway, and Richard K Guy. *Winning Ways* for Your Mathematical Plays. AK Peters/CRC Press, 2018.
- Conway, John H. On numbers and games. AK Peters/CRC Press, 2000.
- Wikipedia contributors. Combinatorial game theory Wikipedia, The Free Encyclopedia. 2018. URL: https://en.wikipedia.org/w/ index.php?title=Combinatorial_game_theory&oldid=862965803.

Questions?