Preliminary Exam 2017
Solutions to Afternoon Exam

Part I.

Solve four of the following five problems.

Problem 1. Find a basis for the solution space of the system of equations
\[
\begin{align*}
 w + 5x + y + 2z &= 0 \\
 3w + 15x + 4y - 4z &= 0.
\end{align*}
\]

Solution: The matrix associated to this homogeneous system is
\[
\begin{pmatrix}
 1 & 5 & 1 & 2 \\
 3 & 15 & 4 & -4
\end{pmatrix}.
\]
Subtracting 3 times the first row from the second, and then the second from the first, we obtain
\[
\begin{pmatrix}
 1 & 5 & 0 & 12 \\
 0 & 0 & 1 & -10
\end{pmatrix},
\]
a matrix in row-reduced upper-echelon form. Hence a basis for the solution space is \{\((-5, 1, 0, 0), (-12, 0, 10, 1)\).

Problem 2. Let
\[
A = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}.
\]
Find an invertible 2×2 matrix \(U\) with coefficients in \(\mathbb{C}\) such that \(U^{-1}AU\) is diagonal.

Solution: The characteristic polynomial of \(A\) is \(x^2 - 6x + 25\). Thus the eigenvalues of \(A\) are
\[
\lambda_{\pm} = \frac{6 \pm \sqrt{36 - 100}}{2} = 3 \pm 4i.
\]
The corresponding eigenvectors span the null space of
\[
A - \lambda_{\pm} I = \begin{pmatrix} 3+4i & -4 \\ 4 & 3+4i \end{pmatrix}
\]
By a row reduction – or simply by inspection – we see that the vectors \((\pm i, 1)\) span the null space. Thus putting
\[
U = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix},
\]
we see that \(U^{-1}AU\) is diagonal.

Problem 3. Find an orthonormal basis (relative to the dot product) for the subspace of \(\mathbb{R}^4\) spanned by the vectors \((-1/2, 1/2, 1/2, 1/2), (1/2, 1/2, -1/2, 1/2),\) and \((1, 1, 2, 2)\).

Solution: Put \(v_1 = (-1/2, 1/2, 1/2, 1/2), v_2 = (1/2, 1/2, -1/2, 1/2),\) and \(v_3 = (1, 1, 2, 2)\). Apply the Gram-Schmidt process to the vectors \(v_1, v_2, v_3\). The vectors \(v_1\) and \(v_2\) are already orthonormal, so put \(u_1 = v_1\) and \(u_2 = v_2\). So the vector
\[
w = v_3 - (v_3 \cdot u_1)u_1 - (v_3 \cdot u_2)u_2
\]
is orthogonal to both \(u_1\) and \(u_2\). A calculation shows that \(w = (3/2, -1/2, 3/2, 1/2)\). Putting

\[
u_3 = \frac{1}{\sqrt{5}}(3/2, -1/2, 3/2, 1/2),
\]

we conclude that \(\{u_1, u_2, u_3\}\) is the desired orthonormal set.

Problem 4. If \(A\) and \(B\) are \(3 \times 3\) matrices with coefficients in \(\mathbb{C}\), then \(A\) and \(B\) are *similar* if there is an invertible matrix \(U\) such that \(UBU^{-1} = A\). Are the matrices

\[
A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
\]

similar? Why or why not?

Solution: No, \(A\) and \(B\) are not similar. For suppose on the contrary that \(UBU^{-1} = A\) with an invertible matrix \(U\). Then \(U(B - I)U^{-1} = A - I\), so

\[
(A - I)^2 = U(B - I)^2U^{-1} = UOU^{-1} = O,
\]

where \(I\) and \(O\) are the \(3 \times 3\) identity matrix and zero matrix respectively. But \((A - I)^2 \neq 0\), a contradiction.

Alternatively, the fact that \(A\) has characteristic polynomial \((x - 1)^3\) but \((A - I)^2 \neq 0\) means that the Jordan normal form of \(A\) is a single \(3 \times 3\) Jordan block with eigenvalue 1, whereas the fact \(B\) has characteristic polynomial \((x - 1)^3\) but \((B - I)^2 = O\) means that the Jordan normal form of \(B\) consists of a \(1 \times 1\) Jordan block and a \(2 \times 2\) Jordan block, both with eigenvalue 1. Since the Jordan normal forms of \(A\) and \(B\) differ, \(A\) and \(B\) are not similar.

Problem 5. Let \(I\) be the ideal of \(\mathbb{Z}\) generated by 6670 and 14007. Find the positive integer \(c\) such that \(I\) is the principal ideal generated by \(c\).

Solution: We use the Euclidean algorithm to determine \(c = \gcd(6670, 14007)\). Multiplying 6670 by 2 and subtracting from 14007, we obtain 667, so that

\[c = \gcd(6670, 14007) = \gcd(6670, 667) = 667.\]

Part II.

Solve three of the following six problems.

Problem 6. Let \(L\) be the subgroup of \(\mathbb{Z}^3\) generated by \((1, 0, 1)\), \((6, 2, 0)\), and \((7, 2, 5)\). Find a direct sum of cyclic groups isomorphic to \(\mathbb{Z}^3/L\).

Solution: By row and column operations over \(\mathbb{Z}\) we find that \(UAV = B\), where

\[
A = \begin{pmatrix} 1 & 6 & 7 \\ 0 & 2 & 2 \\ 1 & 0 & 5 \end{pmatrix},
\]

\[
B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix},
\]

and \(U\) and \(V\) are invertible matrices over \(\mathbb{Z}\). Therefore \(\mathbb{Z}^3/L \cong (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/4\mathbb{Z})\).
Problem 7. Let A_n be the $n \times n$ matrix with the integers 1, 2, 3, ..., n along the first row and column, 1’s down the diagonal, and 0’s elsewhere, so that

$$A_n = \begin{pmatrix}
1 & 2 & 3 & 4 & \cdots & n \\
2 & 1 & 0 & 0 & \cdots & 0 \\
3 & 0 & 1 & 0 & \cdots & 0 \\
4 & 0 & 0 & 1 & \cdots & 0 \\
& & & & \ddots & \cdots & \cdots \\
n & 0 & 0 & 0 & \cdots & 1
\end{pmatrix}. $$

Prove that

$$\det(A_n) = 2 - \frac{n(n+1)(2n+1)}{6}. $$

Solution: By direct calculation, $\det(A_1) = 1$ and $\det(A_2) = -3$, proving the formula in these cases. Now suppose that the formula holds for some $n \geq 2$. Expanding $\det(A_{n+1})$ along the last column, we obtain

$$\det(A_{n+1}) = (-1)^{n+2}(n+1)\det(B) + \det(A_n), $$

where

$$B = \begin{pmatrix}
2 & 1 & 0 & 0 & \cdots & 0 \\
3 & 0 & 1 & 0 & \cdots & 0 \\
4 & 0 & 0 & 1 & \cdots & 0 \\
& & & & \ddots & \cdots & \cdots \\
n & 0 & 0 & 0 & \cdots & 1 \\
(n+1) & 0 & 0 & 0 & \cdots & 0
\end{pmatrix}. $$

By expansion along the bottom row, we see that $\det(B) = (-1)^{n+1}(n+1)$, so

$$\det(A_{n+1}) = -(n+1)^2 + \det(A_n) = 2 - \frac{n(n+1)(2n+1)}{6} - (n+1)^2 $$

by inductive hypothesis. Doing the arithmetic, we obtain

$$\det(A_{n+1}) = 2 - (n+1)(n+2)(2n+3)/6, $$

as desired.

Problem 8. Prove or give a counterexample: If A and B are $n \times n$ diagonalizable matrices over \mathbb{C} then AB is also diagonalizable.

Solution: Without the assumption that $AB = BA$ the statement is false. To get a counterexample, let

$$A = \begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix} $$

and

$$C = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}, $$

and put $B = A^{-1}C$. Then A is diagonal, hence diagonalizable, and B is diagonalizable because its eigenvalues 1 and 1/2 are distinct. But $AB = C$, which is not diagonalizable because it is a nondiagonal Jordan block.

Problem 9. Let A be an $n \times n$ matrix with coefficients in \mathbb{R}. If the minimal polynomial of A is $(x+1)^2$ then what is the minimal polynomial of $A^2 + A$? Why?
Solution: Write $A = UJU^{-1}$, where J is an $n \times n$ matrix in Jordan normal form and U is an $n \times n$ invertible matrix. Then the minimal polynomials of A and J are equal, and as
\[A^2 + A = U(J^2 + J)U^{-1}, \]
so are the minimal polynomials of $A^2 + A$ and $J^2 + J$. Now given that the minimal polynomial of A is $(x + 1)^2$, we see that J is a diagonal array of one or more 2×2 Jordan blocks of eigenvalue -1 and zero or more 1×1 Jordan blocks of eigenvalue -1. But if
\[B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}, \]
is one of the 2×2 blocks, then
\[B^2 + B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \]
which has minimal polynomial x^2, and if $B = (-1)$ is a 1×1 block then $B^2 + B = (0)$, which has minimal polynomial x. Since J has at least one 2×2 block, we conclude that the minimal polynomial of $J^2 + J$, and hence the minimal polynomial of $A^2 + A$, is x^2.

Problem 10. Let A be the $n \times n$ matrix over \mathbb{R} with 1’s on the diagonal and $1/n!$ everywhere else. Show that $\det(A) \neq 0$.

Solution: Let $a_{i,j}$ be the entry in the ith row and jth column of A. By definition,
\[\det(A) = \sum_{\sigma} \text{sign}(\sigma)a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}, \]
where σ runs over all permutations of $\{1, 2, \ldots, n\}$. Since $a_{i,i} = 1$ for all i,
\[\det(A) = 1 + \sum_{\sigma \neq 1} \text{sign}(\sigma)a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}, \]
where σ now runs over the nontrivial permutations. Each summand in the sum is a product of certain number of factors equal to 1 and a certain number of factors equal to $1/n!$, with at least one factor equal to $1/n!$. Since there are a total of $n! - 1$ summands in the sum, we get $\det(A) = 1 + c$, where $|c| \leq (n! - 1)/n!$. Therefore
\[\det(A) \geq 1 - |c| \geq 1 - ((n! - 1)/n!) \geq 1/n!, \]
whence $\det(A) > 0$.

Problem 11. Let R and S be commutative rings, let $f : R \to S$ be a ring homomorphism, and let I be an ideal of R. Prove that if f is surjective (or “onto”) then $f(I)$ is an ideal of S.

Solution: First we show that $f(I)$ is an additive subgroup of S. Certainly $0 = f(0) \in f(I)$. Now suppose that $j, j' \in f(I)$, and write $j = f(i)$, $j' = f(i')$ with $i, i' \in I$. Then $j - j' = f(i) - f(i') = f(i - i')$, and since $i - i' \in I$ we deduce that $j - j' \in f(I)$.

To complete the proof that $f(I)$ is an ideal of S, suppose that $j \in f(I)$ and $s \in S$. As before we can write $j = f(i)$ with $i \in I$, and also, because f is surjective, $s = f(r)$ with $r \in R$. Since I is an ideal we have $ri \in I$; then $sj = f(r)f(i) = f(ri) \in f(I)$.

Part III.

Solve one of the following three problems.
Problem 12. Let p and q be primes. Show that a nonabelian group of order pq
has trivial center.

Solution: If the center $Z(G)$ of G is nontrivial then it has order p or q, because
if it has order pq then G is abelian. Thus the quotient $G/Z(G)$ is of prime order
and is therefore cyclic. Let $cZ(G)$ be a generator of $G/Z(G)$. We will show that G
is abelian and hence obtain a contradiction. Given $g, g' \in G$, we can write $g = c^i z$
and $g' = c^j z'$ with integers i and j and $z, z' \in Z(G)$. Since z and z' commute with
c and with each other, we get

$$gg' = (c^i z)(c^j z') = c^{i+j} zz' = c^{i+j} z' z = (c^i z')(c^j z) = g'g,$$

proving that G is abelian.

Problem 13. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear map and $A^t : \mathbb{R}^n \to \mathbb{R}^n$
the transpose or adjoint relative to the dot product. Put $B = A^t A$, let S be the unit
sphere in \mathbb{R}^n centered at the origin, and define $f : S \to S$ by $f(x) = B(x)/||B(x)||$,
where $||x|| = \sqrt{x \cdot x}$. Show that there are at least n points $u \in S$ such that $f(u) = u$.

Solution: Since $B = B^t$, we see that B is a symmetric (or self-adjoint) operator,
whence \mathbb{R}^n has an orthonormal basis u_1, u_2, \ldots, u_n consisting of eigenvectors of B.
Let $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ be the corresponding eigenvalues. For nonzero $x \in \mathbb{R}^n$ we
have $A(x) \neq 0$, because A is invertible. Consequently

$$B(x) \cdot x = A(x) \cdot A(x) > 0.$$

If $x = u_j$ then $B(x) \cdot x = \lambda_j$, so we deduce that $\lambda_j > 0$. So

$$f(u_j) = \frac{B(u_j)}{||B(u_j)||} = \frac{\lambda_j u_j}{||\lambda_j \cdot u_j||} = u_j.$$

Thus u_1, u_2, \ldots, u_n are the desired n fixed points.

Problem 14. Let $\alpha = \sqrt{1 + \sqrt{2}} \in \mathbb{R}$.

(a) Find the irreducible monic polynomial of α over \mathbb{Q}. Be sure to explain how
you know it is irreducible.

Solution: Let $f(x) = x^4 - 2x^2 - 1$. Then f is the irreducible monic polynomial
of $\mathbb{Q}(\alpha)$ over \mathbb{Q}. Indeed α^2 satisfies the equation $x^2 - 2x - 1 = 0$, so α satisfies
$f(x) = 0$. Thus it suffices to see that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$. Write

$$[\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}]$$

and observe that $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ because 2 is irrational. On the other hand,
let σ be the field embedding $\mathbb{Q}(\sqrt{2}) \to \mathbb{R}$ satisfying $\sigma(\sqrt{2}) = -\sqrt{2}$. Then σ
has an extension to an embedding (which we will also denote σ) of $\mathbb{Q}(\alpha)$ in \mathbb{C}, and
$\sigma(\alpha) \notin \mathbb{R}$ because $1 - \sqrt{2} < 0$. But $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$, so $[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})] = 2$. Hence
$[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ and f is irreducible.

(b) Is $\mathbb{Q}(\alpha)$ Galois over \mathbb{Q}? Why or why not?

Solution: No, $\mathbb{Q}(\alpha)$ is not Galois over \mathbb{Q}. For let σ be as above. Then $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$
but $\sigma(\mathbb{Q}(\alpha)) \not\subseteq \mathbb{R}$, so $\sigma(\mathbb{Q}(\alpha)) \neq \mathbb{Q}(\alpha)$. Hence $\mathbb{Q}(\alpha)$ is not normal over \mathbb{Q} and	herefore not Galois.