Preliminary Exam 2017 Morning Exam (3 hours)

Part I.

Solve four of the following five problems.

Problem 1. Verify that

$$\int_0^{2\pi} \cos^2 x \, dx = 6 \sum_{n \ge 0} (-1)^n \frac{3^{-(2n+1)/2}}{2n+1}$$

by computing both sides.

Problem 2. Suppose that y = y(t) is a differentiable function on \mathbb{R} satisfying $y'(t) - \sin(2t)y(t) = e^{\sin^2 t}$. If y(0) = 0 what is $y(\pi)$?

Problem 3. Let *D* be the upper half of the standard unit ball in \mathbb{R}^3 , defined by the inequalities $x^2 + y^2 + z^2 \leq 1$ and $z \geq 0$. Assuming that *D* is of constant density, find the "centroid" or "center of mass" of *D*. You may use symmetry considerations and a standard volume formula to reduce the amount of calculation.

Problem 4. Let f be a continuous function on \mathbb{R} , define $F(x) = \int_0^x f(t) dt$, and suppose that a and b are real numbers with a < b. Apply the Mean Value Theorem to F on [a, b], simplifying your answer and expressing the result entirely in terms of f. Then interpret the result geometrically.

Problem 5. Let $\varepsilon(n)$ be the *n*th digit in the decimal expansion of π , so that $\varepsilon(1) = 3$, $\varepsilon(2) = 1$, $\varepsilon(3) = 4$, $\varepsilon(4) = 1$, $\varepsilon(5) = 5$, and so on. Does the infinite series $\sum_{n\geq 1}(-1)^{\varepsilon(n)}(\ln(1+1/n)-1/n)$ converge? Why or why not?

Part II.

Solve three of the following six problems.

Problem 6. Find the value of the line integral $\int_C (y+e^x)dx + (x^2-x+e^y)dy$, where C is the ellipse $x^2/4 + y^2/9 = 1$ in the xy-plane, oriented counterclockwise.

Problem 7. Let f and g be real-valued functions on \mathbb{R} . Assume $|f(x)| \leq M$ for some constant M > 0 and $\lim_{x \to 0} g(x) = 0$.

(a) Using the formal definition of "limit," prove that $\lim_{x\to 0} f(x)g(x) = 0$.

(b) Use (a) to show that the function

$$r(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable at 0.

Problem 8. Find the maximum and minimum values of f(x) = xz + yz on the sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\}.$

Problem 9. Let $\{x_n\}$ be the sequence of positive real numbers defined by $x_1 = 1$ and, for $n \ge 1$,

$$x_{n+1} = \frac{1}{x_n + x_n^{-1}}.$$

Show that $\{x_n\}$ converges. To what number does it converge?

Problem 10. Define functions $f_n : [0,1] \to \mathbb{R}$ for $n \ge 1$ by

$$f_n(x) = \begin{cases} x^n \ln x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

a) Is f_n is continuous at 0? Justify your answer.

b) Is $\{f_n\}$ a uniformly convergent sequence of functions? Justify your answer.

Problem 11. Find the value of the surface integral $\int \int_{S} \mathbf{F} \cdot \mathbf{dS}$, where the vector field \mathbf{F} is given by $\mathbf{F}(x, y, z) = (e^{y} + xz, e^{x} - yz, z)$, the surface S is the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), and the normal vector points outward.

Part III.

Solve one of the following three problems.

Problem 12. Let S be the set of finite sums of the form $\sum_{n=a}^{b} 1/n$, where $1 \leq a \leq b$. Prove that S is dense in the set of nonnegative real numbers.

Problem 13. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function $f(x, y) = (x^3 + e^y, y^5 - e^x)$. Prove that f is an open mapping. In other words, show that if U is an open subset of \mathbb{R}^2 then so is f(U).

Problem 14. Let X be a complete metric space with metric d satisfying the following condition: For every $\varepsilon > 0$ there is a collection of finitely many open balls of radius ε which covers X. Prove that X is compact.