Preliminary Exam 2014
Morning Exam (3 hours)

Part I

Solve four of five problems.

Problem 1 Determine whether the sequence \{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots\} converges, and if so, find the limit.

Problem 2. Consider the vector field \(\mathbf{F}(x, y) = y \mathbf{i} + (x + 2y) \mathbf{j} \).

Compute the line integral \(\int_C \mathbf{F} \cdot ds \), where \(C \) is the curve \(C(t) = (t^4, 2t^6), 0 \leq t \leq 1 \).

Problem 3 Show that the system of equations

\[
2 \sin(x) + 3 \sin(y) = a \\
x + 5y^3 = b
\]

has a solution for \((a, b)\) sufficiently close to \((0, 0)\), and that there is a neighborhood of \((0, 0)\) in which this solution is unique.

Problem 4 Determine for which real numbers \(x\) the infinite series

\[
\sum_{n=1}^{\infty} \frac{\sqrt{n + 1} - \sqrt{n}}{n^x}
\]

converges.

Problem 5 Consider the initial value problem

\[
y' + \tan(x)y = \cos^2(x), \quad y(0) = C
\]

For what values of \(C\) does the solution remain bounded for all values of \(x\)?

Part 2

Solve three of the following six problems.

Problem 6. Suppose that \(f : \mathbb{R} \to \mathbb{R}\) is a differentiable function with bounded derivative (i.e. there exists an \(M \geq 0\) such that \(|f(x)| \leq M\) for all \(x\)). Prove that \(f\) is uniformly continuous.

Problem 7 Consider the system

\[
\frac{dx}{dt} = 8x - 11y \\
\frac{dy}{dt} = 6x - 9y
\]
(a) Find the general solution of the system.
(b) Sketch a phase portrait of the system.

Problem 8. Let \(a_1, a_2, \cdots, a_n \) be positive real numbers, and \(m \) a positive even integer. For a real number \(b \), let \(S_b \) denote the set of solutions to the equation
\[
a_1x_1^m + a_2x_2^m + \cdots + a_nx_n^m = b
\]
Prove that \(S_b \) is a compact subset of \(\mathbb{R}^n \). Is the conclusion true if the condition that \(m \) be even is relaxed?

Problem 9. Let \(n \) be an integer greater than 1. Is there a differentiable function on \([0, \infty)\) which satisfies \(y' = y^n \) and \(y(0) > 0 \)?

Problem 10 Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is a twice continuously differentiable function such that \(f''(x) \leq 0 \).
Prove that
\[
 tf(x) + (1-t)f(y) \leq f(tx + (1-t)y)
\]
for any two points \(x, y \in \mathbb{R} \) and \(0 \leq t \leq 1 \).

Problem 11 Let \(f : [0, 1] \to \mathbb{R} \) be continuously differentiable with \(f(0) = 0 \). Prove that
\[
\sup_{0 \leq x \leq 1} |f(x)| \leq \left(\int_0^1 (f'(x))^2 \, dx \right)^{1/2}
\]

Part 3

Solve one of the remaining three problems.

Problem 12 Let \(F(x, y, z) = xz\mathbf{i} + yz\mathbf{j} + xy\mathbf{k} \). Compute
\[
\int \int_S (\nabla \times F) \cdot dS
\]
where \(S \) is the part of the sphere \(x^2 + y^2 + z^2 = 4 \) that lies inside the cylinder \(x^2 + y^2 = 1 \) and above the \(xy \)-plane, oriented by the outside normal.

Problem 13 Consider the series
\[
\sum_{k=0}^{\infty} a_k x^k, \quad a_0 = 1, \quad a_k = \alpha a_{k-1} + \beta, \quad k \geq 1,
\]
where \(\alpha, \beta \geq 0 \). Determine the interval of convergence of the series (which will depend on the values of \(\alpha \) and \(\beta \)).

Problem 14 Show that there is an \(\epsilon > 0 \) such that if \(A \) is a real \(2 \times 2 \) matrix satisfying \(|a_{ij}| < \epsilon \), then there is a real \(2 \times 2 \) matrix \(X \) such that \(X^2 + X^T = A \) (here \(X^T \) denotes the transpose of \(X \)). Is \(X \) unique? explain.