Preliminary Exam 2012
Afternoon Exam (3 hours)

Part I

Do four out of five problems.

Problem 1. Find all solutions \((w, x, y, z) \in \mathbb{R}^4\) to the system of equations

\[
\begin{align*}
 w - 2x + 0y - 4z &= 2 \\
 3w - 6x + 2y - 8z &= 12.
\end{align*}
\]

Problem 2. Let \(c_1, c_2, \ldots, c_n\) be \(n \geq 1\) distinct real numbers, and define polynomials \(f_i \in \mathbb{R}[x]\) \((1 \leq i \leq n)\) by

\[f_i(x) = \prod_{\substack{j=1 \atop j \neq i}}^{n} (x - c_j).\]

Prove that \(f_1, f_2, \ldots, f_n\) are linearly independent.

Problem 3. The cyclic group \(G\) is generated by \(x\). Show that together, \(x^{11553}\) and \(x^{11513}\) also generate \(G\).

Problem 4. For which values of the parameter \(a \in \mathbb{R}\) does the system

\[
\begin{align*}
 ax + 2y + 3az &= 0 \\
 3x + ay + 2z &= 0 \\
 3ax + 3y + 2az &= 0
\end{align*}
\]

have a nontrivial solution?

Problem 5. Let \(V\) be the real vector space of polynomials of degree at most two. Let \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}\) be the inner product defined by

\[\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx.\]

Find an orthonormal basis of \(V\).

Part II

Do three out of six problems.

Problem 6. Let \(L\) be a subgroup of \(\mathbb{Z}^3\) of index 16. What are the possibilities for \(\mathbb{Z}^3/L\)?

Problem 7. Suppose \(A\) is a 5 \times 5 matrix with nullspace of dimension 3. If \(A^2 = 0\) then what is the Jordan normal form of \(A\)?

Problem 8. Let \(U(n)\) denote the group of units of the ring \(\mathbb{Z}/n\mathbb{Z}\). In each case, determine whether the two groups are isomorphic or not, giving a reason for your answer:

(a) \(U(15), U(20)\).
(b) \(U(5), U(12)\).

Problem 9. Let \(G\) be a finite group and let \(H \subset G\) be a maximal proper subgroup. Assume that \(H\) is normal in \(G\). Show that \([G : H]\) is a prime number.
Problem 10. Let A be a 2×2 matrix with real coefficients. If $\text{tr}(A)=1$ and $\text{tr}(A^2)=5$ find $\text{tr}(A^5)$.

Problem 11. Let V be a vector space over \mathbb{R}, and let S and T be invertible linear transformations from V to itself. Suppose that there is a real number $c > 0$ such that $cST=TS$.

(a) Show that if $v \in V$ is a nonzero eigenvector of T with eigenvalue λ then $S(v)$ is a nonzero eigenvector of T with eigenvalue $c\lambda$.

(b) Show that if V is finite-dimensional then $c = 1$.

Part III

Do one out of four problems.

Problem 12. An automorphism of a finite group G is an isomorphism of G onto itself. A subgroup H of G is a characteristic subgroup if $\varphi(H) = H$ for every automorphism φ of G.

a) Prove that a characteristic subgroup is a normal subgroup.

b) Give a counterexample to show that a normal subgroup need not be a characteristic subgroup.

Problem 13. Let p be a prime number, let $f(x) = x^3 + px + p$, and let K be the splitting field of $f(x)$ over \mathbb{C}, so that if the factorization of $f(x)$ over \mathbb{C} is

$$f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$$

then $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. Show that $[K : \mathbb{Q}] = 6$.

Problem 14. Let R be a commutative ring, and let $x \in R$ be a nilpotent element, i.e., an element such that $x^n = 0$ for some integer $n \geq 1$. Show that for all $y \in R$, $1 + xy$ is a unit of R.

Problem 15. Let R be a commutative ring, let I be an ideal of R, and let \sqrt{I} be the set of all $x \in R$ such that $x^m \in I$ for some positive integer m.

a) Show that \sqrt{I} is an ideal of R.

b) If I and J are two ideals of R, prove that $\sqrt{I} + \sqrt{J} \subset \sqrt{I + J}$.

c) If $R = \mathbb{Z}$ and I is the ideal generated by a positive integer b, then what is a generator of \sqrt{I}?