Part I. Solve four of the following five problems.

1. Let \(P_3 \) denote the subspace of \(\mathbb{R}[x] \) of polynomials of degree at most 3. Find a basis for the subspace of \(P_3 \) of polynomials \(f(x) \) such that
 \[f(0) = f(1) \quad \text{and} \quad f'(1) = f''(2). \]

2. Let \(A \) be a 2\(\times \)2 matrix over \(\mathbb{R} \) such that \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is an eigenvector for \(A \) with eigenvalue 1, and \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \) is an eigenvector with eigenvalue 1/2.
 (a) Compute \(A^3 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \).
 (b) Compute \(\lim_{n \to \infty} A^n \begin{pmatrix} 3 \\ 4 \end{pmatrix} \).

3. Let \(P \) be the subspace of \(\mathbb{R}^3 \) spanned by \(\begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix} \) and \(\begin{pmatrix} -1 \\ -5 \\ 4 \end{pmatrix} \), and let \(Q \) be the span of the vectors \(\begin{pmatrix} 2 \\ 0 \\ 13 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \). Find a basis for \(P \cap Q \).

4. Let \(A \) be a 3\(\times \)5 matrix over \(\mathbb{R} \) and let \(T_A \) be the associated linear transformation. If the dimension of \(\ker(T_A) \) is two, does the equation
 \[Ax = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]
 have infinitely many solutions \(x \) in \(\mathbb{R}^5 \)? Justify your answer.

5. Consider the space \(M_{2\times2}(\mathbb{C}) \) of 2\(\times \)2 matrices with complex entries. If \(A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \) in \(M_{2\times2}(\mathbb{C}) \), let \(\overline{A} \) denote \(\begin{pmatrix} \overline{\alpha} & \overline{\beta} \\ \overline{\gamma} & \overline{\delta} \end{pmatrix} \), where \(\overline{z} \) is the complex conjugate of \(z \in \mathbb{C} \), and let
 \[V = \{ A \in M_{2\times2}(\mathbb{C}) \mid \text{tr}(A) = 0 \quad \text{and} \quad A^T = -\overline{A} \} \]
 Note that \(V \) is a vector space over \(\mathbb{R} \), the real numbers, with an inner product given by
 \[\langle A, B \rangle = -\text{tr}(AB). \]
 Find an orthonormal basis for \(V \) over \(\mathbb{R} \) with respect to this inner product.
Part II. Solve three of the following six problems.

6. Let $G = S_8$ be the group of permutations of the set \{1, 2, 3, 4, 5, 6, 7, 8\}. In each part, indicate whether the statement is true or false and justify your answer:

 (a) G has a cyclic subgroup of order 15.

 (b) G has a cyclic subgroup of order 14.

 (c) If H is any abelian group of order 8, then H is isomorphic to a subgroup of G.

7. Let R and S be commutative rings with identity, and let $\varphi : R \to S$ be a ring homomorphism such that $\varphi(1_R) = 1_S$. In each part, indicate whether the statement is true or false and justify your answer:

 (a) If P is a prime ideal of S, then $\varphi^{-1}(P)$ is a prime ideal of R.

 (b) If P is a maximal ideal of S, then $\varphi^{-1}(P)$ is a maximal ideal of R.

 (c) If P is a principal ideal of S, then $\varphi^{-1}(P)$ is a principal ideal of R.

8. Suppose that G is a finite group with exactly two conjugacy classes. Show that $|G| = 2$.

9. Let $(2, x^4 + x + 1)$ denote the ideal in $\mathbb{Z}[x]$ generated by the elements 2 and $x^4 + x + 1$. Is the quotient ring $\mathbb{Z}[x]/(2, x^4 + x + 1)$ a field? Why or why not?

10. Prove that the trace of a 2×2 matrix over \mathbb{R} is 0 if and only if it is a linear combination of matrices of the form $XY - YX$, where X and Y denote arbitrary 2×2 matrices over \mathbb{R}.

11. Let $GL(2, \mathbb{C})$ act on itself by conjugation. Classify the orbits of this action.
Part III. Solve one of the remaining three problems.

12. (a) Let $F = \mathbb{Q}(\sqrt{2})$, and let β be an element of F that is not in \mathbb{Q}. Show that $\mathbb{Q}(\beta) = F$.

(b) Is the question in part (a) true if F is replaced with $\mathbb{Q}(e^{\frac{2\pi i}{5}})$?

(c) Is the question in part (a) true if F is replaced with $\mathbb{Q}(\sin(\frac{2\pi}{11}))$?

13. Let $\mathbb{Z}[x]$ be the ring of polynomials in one variable over the integers, and let M be a maximal ideal of $\mathbb{Z}[x]$.

 (a) Show that M is not a principal ideal.

 (b) Show that M can be generated by two elements of $\mathbb{Z}[x]$.

14. Let V be a finite-dimensional vector space over \mathbb{C}, and let $T : V \to V$ be a linear transformation. If $W = \ker(T)$, let

$$\overline{T} : V/W \to V/W$$

denote the natural map given by

$$\overline{T}(v + W) = T(v) + W.$$

Prove that \overline{T} is injective if x^2 does not divide $f(x)$, where $f(x)$ denotes the minimal polynomial of T.