Part I. Solve 4 of the following 5 problems.

1. Let $t \in \mathbb{R}$ and let

 $$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}.$$

 Express e^{tA} as a 2×2 matrix whose entries are functions from \mathbb{R} into \mathbb{R}.

2. Find a polynomial of degree three whose graph goes through the points $(-2, -5)$, $(-1, 1)$, $(1, 1)$, and $(3, 25)$.

3. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be given by

 $$T(x, y, z, w) = (a, b, c)$$

 where

 $$\begin{bmatrix} 1 & -1 & 1 & -3 \\ -1 & 2 & 1 & 2 \\ 1 & 0 & 4 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

 Find the dimension of the kernel (null space) of T and of the image (range) of T.

4. Let V be the real, inner product space of continuous functions on the closed interval $[0, \pi]$ with inner product

 $$(f, g) = f \cdot g = \int_0^\pi f(x)g(x)dx.$$

 Let $W \subseteq V$ be the subspace of V spanned by the functions 1, $\sin(x)$, and $\cos(x)$. Find an orthonormal basis of W.

5. How many elements are there in the group of invertible 2×2 matrices over the field of seven elements?

Part II. Solve 3 of the following 6 problems.

6. Let U and V be two subspaces of a finite-dimensional vector space. Show that

 $$\dim(U + V) + \dim(U \cap V) = \dim(U) + \dim(V).$$

7. Consider the 3×3 matrix

 $$A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}.$$

 a. Show $X \cdot AX = 0$ for all $X \in \mathbb{R}^3$, where $X \cdot Y$ is the usual dot product.
 b. Find a non-zero vector Y so that $AY = 0$.
 c. For Y as in part (b), show that $AX \cdot Y = 0$ for all $X \in \mathbb{R}^3$.
 d. For Y as in part (b), show that there is a real number λ so that if X is any vector orthogonal to Y (i.e., $X \cdot Y = 0$) then $A^2X = \lambda X$. Determine λ.

8. a. Let $G = \text{GL}(n, \mathbb{R})$ and $H = \{A \in \text{GL}(n, \mathbb{R}) : \det A > 0\}$ where $n > 1$. Is H a subgroup of G? If so, is it a normal subgroup?
 b. Answer the same questions with H replaced by $\{A \in \text{GL}(n, \mathbb{R}) : AA^t = I\}$, where A^t denotes the transpose of A.

1
9. **a.** Let G be any group. Show that a normal subgroup of order 2 must be contained in the center of G.

b. Consider the permutation group S_n of n objects. Find the center of S_n.

10. Is there a non-abelian group of order $n = 49$? Either find one or explain why none exists. Do the same for $n = 50$ and $n = 51$.

11. Suppose A is a real, symmetric, $n \times n$ matrix with eigenvalues $1, 2, \ldots, n-1, n$. Compute $\|A\|$, the norm of A, where

$$\|A\| = \sup\{|Ax| \text{ for all vectors } x \in \mathbb{R}^n \text{ with norm } \|x\| = 1\},$$

where $\|x\|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ for $x = (x_1, \ldots, x_n)$. Justify your conclusion.

Part III. Solve 1 of the remaining 4 problems.

12. Which of the following rings is an integral domain? Which is a field? Justify your assertions.

a. $\mathbb{Z}[x]/(x^2 + 7)$

b. $\mathbb{R}[x]/(x^4 + 3x^2 + 2)$

c. $\mathbb{Q}[x]/(x^3 - 2)$

13. What are all of the possible degrees for irreducible polynomials over the following fields, F?

a. $F = \mathbb{C}$, the field of complex numbers.

b. $F = \mathbb{Z}/p\mathbb{Z}$, where p is any prime.

c. $F = \mathbb{R}$.

14. The three matrices A, B, and C satisfy

$$A^2 = B^2 = C^2 = Id, \quad \text{and} \quad BC - CB = iA.$$

a. What are $AB + BA$ and $AC + CA$?

b. Derive a set of explicit forms of A, B, and C in the case of 2×2 matrices.

15. **a.** Suppose $p, n \in \mathbb{Z}$, where p is prime and p does not divide n. Must there exist integers a and b such that $ap + bn = 1$?

b. Suppose that $f, g \in \mathbb{Q}[x]$, where f is irreducible and f does not divide g. Must there exist $h, k \in \mathbb{Q}[x]$ such that $hf + kg = 1$?

c. Repeat part (b) with $\mathbb{Q}[x]$ replaced by $\mathbb{Q}[x, y]$. Justify your assertions.