PART I. Solve 4 out of the next 5 problems.

1. Find a polynomial of degree 4 whose graph goes through the points (1, 1), (2, −1), (3, −59), (−1, 5), (−2, −29).

2. What are the eigenvalues of the matrix A which represents the rotation of \mathbb{R}^3 by θ around an axis v?

3. Compute the inverse of the following matrix

$$
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{pmatrix}.
$$

4. Find an orthonormal basis for the vector space V of the polynomials over \mathbb{R} of degree less than or equal to 2, with the inner product

$$
(f, g) = \int_0^1 f(x)g(x)dx.
$$

5. Find the greatest common divisor of $2003^4 + 1$ and $2003^3 + 1$.

PART II. Solve 3 out of the next 6 problems.

6. Let A be a 3×3 orthogonal matrix whose determinant is $−1$. Prove that $−1$ is an eigenvalue of A.

7. Classify up to similarity all 3×3 complex matrices A such that $A^3 = I$.

8. Let $f(x)$ be a polynomial of degree n that takes integer values at all integer points. Prove that f can be written as a linear combination with integer coefficients of the polynomials $P_k = \frac{x(x-1)\ldots(x-k+1)}{k!}$, $0 \leq k \leq n$ (where $P_0 = 1$).

9. Assume that every nontrivial element g of a group G has order 2. Prove that G is commutative.

10. Let $f(x) = x^n − nx + 1$ and let A be an $n \times n$ matrix with characteristic polynomial f.
 (a) Prove that if $n > 2$ then A is diagonalizable over the complex numbers. (Hint: Prove that f has no common zeros with f'.)
 (b) Is the assertion in (a) true if $n = 2$? Either prove it or give a counterexample.

11. Let $A = \begin{pmatrix} 1/2 & 1/2 \\ 1 & 0 \end{pmatrix}$. Find $\lim_{n \to \infty} A^n$.

PART III. Solve 1 out of the next 3 problems.

12. Let G be the dihedral group defined as the set of all formal symbols x^iy^j, with $i = 0, 1$ and $j = 0, 1, \ldots, n-1$, and where $x^2 = e$, $y^n = e$ for $n > 2$, and $xy = y^{-1}x$.
 (a) Prove that the subgroup $N = \{e, y, y^2, \ldots, y^{n-1}\}$ is normal in G.
 (b) Prove that $G/N \cong W$, where $W = \{1, -1\}$ is the group under the multiplication of the real numbers.

13. For which values of n does the number of conjugacy classes in S_n (the group of permutations of n letters) equal n?

14. Let $f(x)$ and $g(x)$ be a pair of polynomials in one variable. Prove that there exists a nonzero polynomial $F(x, y)$ such that $F(f(x), g(x)) \equiv 0$. [Hint: consider the linear transformation $F \mapsto F(f, g)$ from the space of polynomials in two variables of degree $\leq n$ to the space of polynomials in one variable.]