GLOBAL CROSS SECTIONS AND MINIMAL FLOWS

Let M be a closed n-dimensional manifold with a flow φ that has a global cross section Σ which is an (n-1)-dimensional disk, and let h be the (piecewise continuous) first return map for Σ . Our primary examples of such flows are minimal ones. We study how the return map captures topological properties of the flow and of the manifold. For a given map h if there exists an M, φ such that h is a first return map over some cross section then we call M, φ the suspension of h. As an application, we give several (piecewise continuous) maps of D^2 and a (piecewise continuous) map on D^3 which have suspensions. The suspension manifold of the map h_3 from figure 6 is homotopic to S^3 . Hence, if there exists a suspendable minimal map of D^2 which is cell conjugate to h_3 then it induces a minimal flow on this homotopy $-S^3$. We also discuss ways to test if the suspension manifold is the suspension of a map on a closed manifold, as in the case of an irrational flow on \mathbb{T} , and when it cannot, as in the case of any flow on S^3 .