
MACS September 2016 workshop

Integrating Multi-Party Computation
in Big Data Workflows

Nikolaj Volgushev, Malte Schwarzkopf, Andrei Lapets,
Mayank Varia, Azer Bestavros

1

MACS September 2016 workshop

How often does ‘#@$%!’
appear in the internal chat logs
of these companies?

2

MACS September 2016 workshop

Sounds like a job for
We’re talking Terabytes of data ⇒ a Python script won’t cut it.

Mode of operation: distribute data across many machines, process in parallel.

Programming paradigm: specify data analytics tasks in high-level language.

Backend infrastructure: cluster of machines.

3

MACS September 2016 workshop

Gimme all your data!

#@$
%!

#@$
%!

#@$
%!

4

MACS September 2016 workshop

Multiparty computation (MPC) is a crypto
tool for privacy preserving computation.

a b

f

c

MPC f(a, b, c)

5

MACS September 2016 workshop

So much MPC!

6

MACS September 2016 workshop

So our data analyst should use MPC right?

count(#@$%) MPC 9001!

logs_blogs_a logs_c

7

MACS September 2016 workshop

Great in theory but...
Accessibility. MPC frameworks have a steep learning curve and don’t provide the
high-level representations that data analysts use.

Scalability. MPC is slow.

Bottom line:

Our analyst probably doesn’t know MPC, or how to use it.

Any MPC framework is far too slow to process GBs of data.

8

MACS September 2016 workshop

What about a hybrid approach?

sum() MPC 9001!

count_a count_b count_c

count(#@$%) count(#@$%) count(#@$%)

logs_a logs_b logs_c

9

MACS September 2016 workshop

A lot of work and expert knowledge required

sum() MPC 9001!

count_a count_b count_c

count(#@$%) count(#@$%) count(#@$%)

logs_a logs_b logs_c

10

MACS September 2016 workshop

#@$%!

11

MACS September 2016 workshop

Good news!
We have just the system for you:

● Relational front-end language to specify workflow
● Automatic detection of which part of the workflow requires MPC
● Automatic code generation and execution
● Directive: “Do as much locally as possible.”
● Leverages existing frameworks as backends

12

MACS September 2016 workshop

The main components of our system
SQL-like programming language to specify analytics using standard relational
operators.

Compiler that converts programs to jobs that are executable in existing data
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the
available backends.

13

MACS September 2016 workshop

Let’s explore top-down
SQL-like programming language to specify analytics using standard relational
operators.

Compiler that converts programs to jobs that are executable in existing data
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the
available backends.

14

MACS September 2016 workshop

This is what the analyst writes

select count(log_message)
 from logs
 where log_message like'#@$%';

15

I’ll pretend I
have all the

data.

MACS September 2016 workshop

The main components of our system
SQL-like programming language to specify analytics using standard relational
operators.

Compiler that converts programs to jobs that are executable in existing data
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the
available backends.

16

MACS September 2016 workshop

Relational

select count(msg)
 from logs
 where msg like '#@$%';

17

MACS September 2016 workshop

Relational ⇒ IR

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

18

MACS September 2016 workshop

Relational ⇒ IR ⇒ MPC-IR

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

MPC

19

MACS September 2016 workshop

We don’t need MPC for selections

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

MPC

20

MACS September 2016 workshop

But what about aggregations?

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count MPC

21

MACS September 2016 workshop

count(whole) = sum(count(parts))

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

SumMPC
MPC

22

MACS September 2016 workshop

Relational ⇒ IR ⇒ MPC-IR

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

SumMPC

23

MACS September 2016 workshop

Relational ⇒ IR ⇒ MPC-IR ⇒ Partitions

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

SumMPC

Select

Count

SumMPC

24

MACS September 2016 workshop

Relational ⇒ IR ⇒ MPC-IR ⇒ Partitions ⇒
Backends

Hadoop

Apache Spark

Mindi

[...]

VIFF

select count(msg)
 from logs
 where msg like '#@$%';

Select

Count

SumMPC

Select

Count

SumMPC

25

MACS September 2016 workshop

The main components of our system
SQL-like programming language to specify analytics using standard relational
operators.

Compiler that converts programs to jobs that are executable in existing data
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the
available backends.

26

MACS September 2016 workshop

The baseline

SQL SQL SQL

VIFF 27

MACS September 2016 workshop

VIFF

Spark

Our system compiles programs into jobs

VIFF

Hadoop

VIFF

VIFF

Hadoop

28

MACS September 2016 workshop

VIFF

Spark

The subtasks are dispatched to the available backends and
executed there

VIFF

Hadoop

VIFF

VIFF

Hadoop

29

MACS September 2016 workshop

Spark

The MPC step involves delivering data to the MPC service

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF

30

MACS September 2016 workshop

Spark

Executing the analytics on the secret data

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF

31

MACS September 2016 workshop

Spark

And finally retrieving the results

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF

32

MACS September 2016 workshop

Okay, but did you actually count swear words?

33

MACS September 2016 workshop

Herfindahl-Hirschman Index
A measure of market concentration.

The sum of squares of a market shares.

34

MACS September 2016 workshop

Market concentration of NYC cab trip data
Setup Data Volume Runtime

Insecure, trusted Hadoop
(8 nodes)

156 GB 16 min 10 s
(970s)

Our system with MPC
(5 parties,
1+1+1+1+4 nodes)

{16,16,16,28,80} GB 17 min 31 s
(1,051s)

MPC framework only
(VIFF, 5 parties, 5 nodes)

156 GB >2 hours
(>7,200s)

35

MACS September 2016 workshop

Implementation
We extended Musketeer, a big data workflow manager, to incorporate MPC.

36

MACS September 2016 workshop

● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions

37

MACS September 2016 workshop 38

Select

Project

Sum

Project

Min

Join

Max

MACS September 2016 workshop

● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions

39

Project

Sum

Max

SPDZ

Sharemind

VIFF

FastGarble

MACS September 2016 workshop

● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions

40

MACS September 2016 workshop

Summary
SQL-like programming language to specify analytics using relational operators.
⇒ No MPC experience required!

Compiler detects MPC boundaries, converts programs to parallel data processing
and MPC jobs, and generates code for individual jobs.
⇒ No manual implementation required.

Dispatcher executes the generated jobs automatically on the
available backends, choosing the best strategy.
⇒ No new infrastructure or “glue scripts” required.

41

