Integrating Multi-Party Computation in Big Data Workflows

Nikolaj Volgushev, Malte Schwarzkopf, Andrei Lapets, Mayank Varia, Azer Bestavros

We're talking Terabytes of data \Rightarrow a Python script won't cut it.

Mode of operation: distribute data across many machines, process in parallel.

Programming paradigm: specify data analytics tasks in high-level language.

Backend infrastructure: cluster of machines.

Multiparty computation (MPC) is a crypto tool for privacy preserving computation.

MACS September 2016 workshop

So much MPC!

So our data analyst should use MPC right?

Great in theory **but**...

Accessibility. MPC frameworks have a steep learning curve and don't provide the high-level representations that data analysts use.

Scalability. MPC is slow.

Bottom line:

Our analyst probably doesn't know MPC, or how to use it.

Any MPC framework is **far** too slow to process GBs of data.

What about a *hybrid* approach?

MACS September 2016 workshop

A lot of work and expert knowledge required

MACS September 2016 workshop

Good news!

We have just the system for you:

- Relational front-end language to specify workflow
- Automatic detection of which part of the workflow requires MPC
- Automatic code generation and execution
- Directive: "Do as much locally as possible."
- Leverages existing frameworks as backends

The main components of our system

SQL-like programming language to specify analytics using standard relational operators.

Compiler that converts programs to jobs that are executable in existing data processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the available backends.

Let's explore top-down

SQL-like programming language to specify analytics using standard relational operators.

Compiler that converts programs to jobs that are executable in existing data processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the available backends.

This is what the analyst writes

select count(log_message)
 from logs
 where log_message like'#@\$%';

The main components of our system

SQL-like programming language to specify analytics using standard relational operators.

Compiler that converts programs to jobs that are executable in existing data processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the available backends.

Relational

select count(msg)
from logs
where msg like '#@\$%';

Relational \Rightarrow IR

Relational \Rightarrow IR \Rightarrow MPC-IR

We don't need MPC for selections

But what about aggregations?

count(whole) = sum(count(parts))

Relational \Rightarrow IR \Rightarrow MPC-IR

Relational \Rightarrow IR \Rightarrow MPC-IR \Rightarrow Partitions

Relational \Rightarrow IR \Rightarrow MPC-IR \Rightarrow Partitions \Rightarrow Backends

select count(msg)
from logs
where msg like '#@\$%';

The main components of our system

SQL-like programming language to specify analytics using standard relational operators.

Compiler that converts programs to jobs that are executable in existing data processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the available backends.

The baseline

Our system compiles programs into jobs

The subtasks are dispatched to the available backends and executed there

The MPC step involves delivering data to the MPC service

Executing the analytics on the secret data

MACS September 2016 workshop

And finally retrieving the results

Okay, but did you actually count swear words?

Herfindahl-Hirschman Index

A measure of market concentration.

The sum of squares of a market shares.

Market concentration of NYC cab trip data

Setup	Data Volume	Runtime
Insecure, trusted Hadoop (8 nodes)	156 GB	16 min 10 s (970s)
Our system with MPC (5 parties, 1+1+1+1+4 nodes)	{16,16,16,28,80} GB	17 min 31 s (1,051s)
MPC framework only (VIFF, 5 parties, 5 nodes)	156 GB	>2 hours (>7,200s)

Implementation

We extended *Musketeer*, a big data workflow manager, to incorporate MPC.

Future directions

- Ownership provenance
- More MPC backends!
- Multiple MPC backends in single workflow
- Repeated MPC (iterative/separate cliques)

MACS September 2016 workshop

Future directions

- Ownership provenance
- More MPC backends!
- Multiple MPC backends in single workflow
- Repeated MPC (iterative/separate cliques)

Future directions

- Ownership provenance
- More MPC backends!
- Multiple MPC backends in single workflow
- Repeated MPC (iterative/separate cliques)

Summary

SQL-like programming language to specify analytics using relational operators. ⇒ No MPC experience required!

Compiler detects MPC boundaries, converts programs to parallel data processing and MPC jobs, and generates code for individual jobs.

 \Rightarrow No manual implementation required.

Dispatcher executes the generated jobs automatically on the available backends, choosing the best strategy.

⇒ No new infrastructure or "glue scripts" required.

