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How often does ‘#@$%!’ 
appear in the internal chat logs 
of these companies?
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Sounds like a job for 
We’re talking Terabytes of data ⇒ a Python script won’t cut it.

Mode of operation: distribute data across many machines, process in parallel.

Programming paradigm: specify data analytics tasks in high-level language.

Backend infrastructure: cluster of machines.
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Gimme all your data!

#@$
%!

#@$
%!

#@$
%!
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Multiparty computation (MPC) is a crypto 
tool for privacy preserving computation.

a b

f

c

MPC f(a, b, c)
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So much MPC!
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So our data analyst should use MPC right?

count(#@$%) MPC 9001!

logs_blogs_a logs_c
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Great in theory but...
Accessibility. MPC frameworks have a steep learning curve and don’t provide the 
high-level representations that data analysts use.

Scalability. MPC is slow.

Bottom line:

Our analyst probably doesn’t know MPC, or how to use it.

Any MPC framework is far too slow to process GBs of data.
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What about a hybrid approach?

sum() MPC 9001!

count_a count_b count_c

count(#@$%) count(#@$%) count(#@$%)

logs_a logs_b logs_c
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A lot of work and expert knowledge required

sum() MPC 9001!

count_a count_b count_c

count(#@$%) count(#@$%) count(#@$%)

logs_a logs_b logs_c
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#@$%!
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Good news!
We have just the system for you:

● Relational front-end language to specify workflow
● Automatic detection of which part of the workflow requires MPC
● Automatic code generation and execution
● Directive: “Do as much locally as possible.”
● Leverages existing frameworks as backends
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The main components of our system
SQL-like programming language to specify analytics using standard relational 
operators.

Compiler that converts programs to jobs that are executable in existing data 
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the 
available backends.
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Let’s explore top-down
SQL-like programming language to specify analytics using standard relational 
operators.

Compiler that converts programs to jobs that are executable in existing data 
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the 
available backends.
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This is what the analyst writes

select count(log_message) 
   from logs 
 where log_message like'#@$%';
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I’ll pretend I 
have all the 

data.
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The main components of our system
SQL-like programming language to specify analytics using standard relational 
operators.

Compiler that converts programs to jobs that are executable in existing data 
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the 
available backends.
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Relational

select count(msg) 
   from logs 
 where msg like '#@$%';
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Relational ⇒ IR

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count
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Relational ⇒ IR ⇒ MPC-IR

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

MPC
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We don’t need MPC for selections

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

MPC
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But what about aggregations?

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count MPC
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count(whole) = sum(count(parts))

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

SumMPC
MPC
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Relational ⇒ IR ⇒ MPC-IR

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

SumMPC
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Relational ⇒ IR ⇒ MPC-IR ⇒ Partitions

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

SumMPC

Select

Count

SumMPC
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Relational ⇒ IR ⇒ MPC-IR ⇒ Partitions ⇒ 
Backends

Hadoop

Apache Spark

Mindi

[...]

VIFF

select count(msg) 
   from logs 
 where msg like '#@$%';

Select

Count

SumMPC

Select

Count

SumMPC
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The main components of our system
SQL-like programming language to specify analytics using standard relational 
operators.

Compiler that converts programs to jobs that are executable in existing data 
processing frameworks and MPC frameworks.

Dispatcher to execute the generated jobs automatically and seamlessly on the 
available backends.
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The baseline

SQL SQL SQL

VIFF 27
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VIFF

Spark

Our system compiles programs into jobs

VIFF

Hadoop

VIFF

VIFF

Hadoop
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VIFF

Spark

The subtasks are dispatched to the available backends and 
executed there

VIFF

Hadoop

VIFF

VIFF

Hadoop
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Spark

The MPC step involves delivering data to the MPC service

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF
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Spark

Executing the analytics on the secret data

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF
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Spark

And finally retrieving the results

Hadoop

VIFF

Hadoop

VIFFVIFF VIFF
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Okay, but did you actually count swear words?
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Herfindahl-Hirschman Index
A measure of market concentration.

The sum of squares of a market shares.
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Market concentration of NYC cab trip data
Setup Data Volume Runtime

Insecure, trusted Hadoop
(8 nodes)

156 GB 16 min 10 s
(970s)

Our system with MPC
(5 parties,
1+1+1+1+4 nodes)

{16,16,16,28,80} GB 17 min 31 s 
(1,051s)

MPC framework only
(VIFF, 5 parties, 5 nodes)

156 GB >2 hours
(>7,200s)
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Implementation
We extended Musketeer, a big data workflow manager, to incorporate MPC.
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● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions
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Select

Project

Sum

Project
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Join

Max
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● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions
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● Ownership provenance
● More MPC backends!
● Multiple MPC backends in single workflow
● Repeated MPC (iterative/separate cliques)

Future directions
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Summary
SQL-like programming language to specify analytics using relational operators. 
⇒ No MPC experience required!

Compiler detects MPC boundaries, converts programs to parallel data processing 
and MPC jobs, and generates code for individual jobs.
⇒ No manual implementation required.

Dispatcher executes the generated jobs automatically on the 
available backends, choosing the best strategy.
⇒ No new infrastructure or “glue scripts” required.
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