
CAS LX 522 Syntax I Pat must not have been sending flowers to Chris

Suppose that you were faced with the task of generating a structure for Pat must not have been sending flowers to Chris.

First, assemble your numeration. What are the elements in this sentence?

T [T, uN*, tense:past] There is always a T in a sentence. T always (in English) has [uN*] (the “EPP feature”).
 Must is past tense (cf. may), so we know there is [tense:past].
v [v, uInfl:, uN*, uV*] There is always a v in a sentence. v always has [uV*] (causes V to raise to v).
 give is agentive, so this v assigns the Agent θ-role; hence it has a [uN*] feature.
Not [Neg] not is of category Neg.
must [M, uInfl:, Aux] We have the modal must, which is M. M always has a [uInfl:] feature, and all modals
 except the infinitive marker to have the [Aux] feature.
Perf [Perf, uInfl:, Aux] We have perfective have, which is Perf. Perf always has [uInfl:] and [Aux] features.
Prog [Prog, uInfl:, Aux] We have progressive be, which is Prog. Prog always has a [uInfl:] and [Aux] features.
send [V, uN*, uP*] send is a ditransitive (that is, between V and v there are three θ-roles to give out.
 v is responsible for Agent, and V is responsible for the other two.
 Hence, we have [uP*] corresponding to the Goal θ-role and
 [uN*] corresponding to the Theme θ-role).
to [P, uN*] We have the preposition to. Prepositions always have [uN*] for their object.
Chris [N]
Pat [N]
flowers [N]

Then, start at the bottom (generally the right edge of the sentence in an SVO language like English), and work your way up.

Step 1. Merge to and Chris.
 This puts the [uN*] feature of to in close proximity to the [N] of Chris:
 [uN*] is checked (it was strong, but the locality condition is satisfied).
 Since to had its feature checked (it motivated the Merge), the features of to project.
 Since Chris does not project further and had no strong features to check, it is a maximal projection (NP).
 Since there are no further uninterpretable strong features on to, the object we just formed is a maximal projection (PP).

 PP
 3
 P NP
 [P, uN*] [N]
 to Chris

Step 2. Merge send and the PP.
 This puts the [uP*] feature of send in close proximity to the [P] of the PP. [uP*] is checked.
 Since send had its feature checked, the features of give project.
 Since there is still a strong uninterpretable feature on send, this is an intermediate projection (V′).
 The UTAH tells us that to Chris is the Goal (PP daughter of V′).

 V′
 qp
 V PP
 [V, uN*, uP*] 3
 send P NP
 [P, uN*] [N]
 to Chris

Step 3. Merge flowers and the V′ .
 This puts the remaining [uN*] feature of send close to the [N] feature of flowers. [uN*] is checked.
 Since give had its feature checked, the features of send project.
 Since there are no more strong uninterpretable features on send, this is a maximal projection (VP).
 Since flowers does not project further and had no strong features to check, it is a maximal projection (NP).
 UTAH tells us that flowers is the Theme (NP daughter of VP).

 VP
 qp
 NP V′
 [N] qp
 flowers V PP
 [V, uN*, uP*] 3
 send P NP
 [P, uN*] [N]
 to Chris

Step 4. Merge v and VP.
 We are finished with V now, and v is the next step up on the Hierarchy of Projections.
 No features are checked in this step.
 Because v is higher than V on the hierarchy of projections, the features of v project.
 Since v still has a strong uninterpretable feature to check, this is an intermediate projection (v′).

 v′
 qp
 v VP
 [v, uN*, qp
 uV*, uInfl:] NP V′
 [N] qp
 flowers V PP
 [V, uN*, uP*] 3
 send P NP
 [P, uN*] [N]
 to Chris

Step 5. Move V to v.
 v has a strong uninterpretable [uV*] feature. It was not checked in Step 4 because
 it did not motivate that Merge (the Hierarchy of Projections did).
 Because the feature [uV*] is strong, it can only be checked if it is local to the
 [V] feature that checks it. Sisters are local. But send is not local to v.
 We move V to v by copying V and adjoining it to v.
 We represent that by putting <V> in the original location of the V, and replacing
 v with the complex head V+v as shown below (V adjoined to v).

 v′
 qp
 v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, uInfl:] flowers <V> PP
 3
 P NP
 [P, uN*] [N]
 to Chris

Step 6. Merge Pat and v′ .
 This puts the remaining [uN*] feature of v close to the [N] feature of Pat. [uN*] is checked.
 Since v had its feature checked, the features of v project.
 Since there are no more strong uninterpretable features on v, this is a maximal projection (vP).
 Since Pat does not project further and had no strong features to check, it is a maximal projection (NP).
 UTAH tells us that Pat is the Agent (NP daughter of vP).
 Sometimes NP daughter of vP is actually an Experiencer—if it is, we assume that it is
 a slightly different v (vEXPERIENCER) for which NP daughter of vP is an Experiencer. But with send here,
 we have vAGENT, not vEXPERIENCER.

 vP
 qp
 NP v′
 [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, uInfl:] flowers <V> PP
 3
 P NP
 [P, uN*] [N]
 to Chris

Step 7. Merge Prog and vP.
 We are finished with v now, and Prog is the next step up on the Hierarchy of Projections.
 Because Prog is higher than v on the hierarchy of projections, features of Prog project.
 Since Prog has no strong uninterpretable features to check, this is a maximal projection (ProgP).
 The category feature of Prog ([prog]) can value an uninterpretable [uInfl:] feature.
 Prog now c-commands v, which has a [uInfl:] feature still unvalued.
 [prog] matches and values [uInfl:] on v resulting in [uInfl:prog] on v.
 (This will ultimately sound like “-ing”—that is, V+v = “sending” when v has [uInfl:prog])
 Because the feature is weak (Prog values the feature on v), the [uInfl:prog] feature is checked: [uInfl:prog].

 ProgP
 qp
 Prog vP
 [prog, Aux, qp
 uInfl:] NP v′
 [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

Step 8. Merge Perf and ProgP.
 We are finished with Prog now, and Perf is the next step up on the HoP.
 Because Perf is higher than Prog on the hierarchy of projections, features of Perf project.
 Since Perf has no strong uninterpretable features to check, this is a maximal projection (PerfP).
 The category feature of Perf ([perf]) can value an uninterpretable [uInfl:] feature.
 Perf now c-commands Prog, which has a [uInfl:] feature still unvalued.
 [perf] matches and values [uInfl:] on Prog resulting in [uInfl:perf] on Prog.
 (This will ultimately sound like “-en”—that is, Prog = “been” when Prog has [uInfl:perf])
 Because the feature is weak (Perf values the feature on Prog), the [uInfl:perf] feature is checked: [uInfl:perf].

 PerfP
 qp
 Perf ProgP
 [perf, Aux, qp
 uInfl:] Prog vP
 have [prog, Aux, qp
 uInfl:perf] NP v′
 be [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

Step 9. Merge M and PerfP.
 We are finished with Perf now, and M is the next step up on the HoP.
 Because M is higher than Perf on the hierarchy of projections, features of M project.
 Since M has no strong uninterpretable features to check, this is a maximal projection (MP).
 The category feature of M ([M]) can value an uninterpretable [uInfl:] feature.
 M now c-commands Perf, which has a [uInfl:] feature still unvalued.
 [M] matches and values [uInfl:] on Perf resulting in [uInfl:M] on Perf.
 (This will ultimately sound like “-Ø”—that is, Perf= “have” when Perf has [uInfl:M])
 Because the feature is weak (M values the feature on Perf), the [uInfl:M] feature is checked: [uInfl:M].

 MP
 qp
 M PerfP
 [M, Aux, qp
 uInfl:] Perf ProgP
 must [perf, Aux, qp
 uInfl:M] Prog vP
 have [prog, Aux, qp
 uInfl:perf] NP v′
 be [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

Step 10. Merge Neg and MP.
 We are finished with M now, and Neg is the next step up on the HoP.
 Because Neg is higher than M on the hierarchy of projections, features of Neg project.
 Since Neg has no strong uninterpretable features to check, this is a maximal projection (NegP).
 No features of Neg can value uninterpretable features, so nothing further to do in this step.

 NegP
 qp
 Neg MP
 [Neg] qp
 not M PerfP
 [M, Aux, qp
 uInfl:] Perf ProgP
 must [perf, Aux, qp
 uInfl:M] Prog vP
 have [prog, Aux, qp
 uInfl:perf] NP v′
 be [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

Step 11. Merge T and NegP.
 We are finished with NegP now, and T is the next step up on the HoP.
 Because T is higher than NegP on the hierarchy of projections, features of T project.
 Since T has a strong uninterpretable feature to check, this is an intermediate projection (T′).
 The [tense:past] feature of T can value an uninterpretable [uInfl:] feature.
 T now c-commands M, which has a [uInfl:] feature still unvalued.
 [tense:past] matches and values [uInfl:] on M resulting in [uInfl:past] on M.
 (This will ultimately sound like “must”—that is, M= “must” when M has [uInfl:past])
 This is the special case: when a [uInfl:] value on an auxiliary (M, Perf ,or Prog) is valued
 by T, the feature is strong, and can only be checked if it is local to T.
 Thus, M must move to T (same procedure as moving V to v). SEE STEP 11B.
 Once M has moved to T, the [uInfl:past] feature on M is checked: [uInfl:past].

 T′
 qp
 T NegP
 [T, uN*, qp
 tense:past] Neg MP STEP 11A
 [Neg] qp
 not M PerfP
 [M, Aux, qp
 uInfl:past*] Perf ProgP
 must [perf, Aux, qp
 uInfl:M] Prog vP
 have [prog, Aux, qp
 uInfl:perf] NP v′
 be [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

 STEP 11B:

 T′
 qp
 T NegP
 qu rp
 M T Neg MP
 [M, Aux, [T, uN*, [Neg] rp
 uInfl:past*] tense:past] not <M> PerfP
 must rp
 Perf ProgP
 [perf, Aux, qp
 uInfl:M] Prog vP
 have [prog, Aux, qp
 uInfl:perf] NP v′
 be [N] qp
 Pat v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

Step 12. Move Pat to the specifier of T.
 T still has a strong uninterpretable [uN*] feature to check.
 Nothing remains in the numeration that can check this feature.
 The [uN*] feature of T matches the [N] feature of Pat. (T c-commands Pat, and there is nothing
 closer to T with an [N] feature).
 Pat is moved (copied, and Merged with T′).
 This puts the remaining [uN*] feature of T close to the [N] feature of Pat. [uN*] is checked.
 Since T had its feature checked, the features of T project.
 Since there are no more strong uninterpretable features on T, this is a maximal projection (TP).

 TP
 qp
 NP T′
 [N] qp
 Pat T NegP
 qu rp
 M T Neg MP
 [M, Aux, [T, uN*, [Neg] rp
 uInfl:past*] tense:past] not <M> PerfP
 must rp
 Perf ProgP
 [perf, Aux, qp
 uInfl:M] Prog vP
 have [prog, Aux, qp
 uInfl:perf] <NP> v′
 be qp
 v VP
 qu rp
 V v NP V′
 send [v, uN*, [N] 3
 [V, uN*, uP*] uV*, flowers <V> PP
 uInfl:prog] 3
 P NP
 [P, uN*] [N]
 to Chris

The derivation is done. No uninterpretable features remain. Pronunciation: Pat must not have been sending flowers to Chris.

