
create your own visual novel

Ren'Py is a visual novel engine that helps you use
words, images, and sounds to tell stories with the
computer. These can be both visual novels and life
simulation games.

http://www.youtube.com/watch?v=YZ1Kwu0kGMc

http://www.youtube.com/watch?v=YZ1Kwu0kGMc

 Go to the folder renpy-6.12.1
and click the RenPy icon.

 Choose “New Project”.

 Choose your folder.

 Choose "template".

 Choose a color theme
(don’t worry, you can
change it later)

 Click on “Edit Script”

 Your script and images
should all be in the same
folder as your script. To
see where your script is
saved, click on File, Save
As and look at the Path.

 Instead of functions, we have “labels” in RenPy.

 You still need to indent.
Ex.

label start :

“First msg”

“Second msg”

 Start by deleting everything in the script editor

 When entering text, remember to encapsulate it in
double quotes. If you want double quotes to appear in
the visual novel, you should put a forward slash before
each one.
“Hi, \”The Phantom of the Artemis\”” will be displayed
as:
Hi “The Phantom of the Artemis”

 Go to RenPy
and click
“Launch” to
see what your
game looks
like! (click to
make the
game go
forward)

 You don’t want you keeps typing the name of the
character (in our example, “Me”) whenever they speak.

 You can also choose a color for the name.

 BEFORE “label start,” you can define characters like
this:

define m = Character(‘me’, color = “#c8ffc8)

label start:

m “blah blah haha”

Define a character for ‘Me’ and ‘Durrah’ and place
them at their respective locations (use m and d)

Don’t forget the single quotes for the name!

Don’t worry about the color, there are reference tables
online (you don’t have to memorize the values :D)

 Your code should look like this: (note the alignment)

 And this is what you should see when you launch your
game again:

 What kind of visual novel would this be without any
“visuals?”

 If you store the images in your “game” directory inside
your project’s folder , you will just need to write the
name and extension (like HTML) BEFORE label start:
 image bg bu = “bu.jpg“

 Image bg outerSpace = “space.jpg”

 You can use that in the background as a “scene” AFTER
label start:
 Scene bg bu= “bu.jpg”

 The first part of an image name is the image tag. If an
image is being shown, and another image with the
same tag is on the screen, then the image that's on the
screen is replaced with the one being shown.

 You are allowed to use spaces!

 For the background: .jpg or .jpeg

 For the foreground: .gif

 Saving the character in GIF format allows you to better
integrate it with its surroundings, because GIF
supports transparency.

 You want to be able to see the characters, because that
makes it more engaging! (And it’s simple to
implement)

 Declare the image like you did with the scene
(BEFORE label start) and then make it “show”.
 image d happy = "durhappy.gif“

 Show d happy

 Just like the scene can change from BU to outer space,
the characters can go from happy to any other
emotion.

 If you type a different “show x yy” a second time, It will
overwrite the current one, and show you the new
picture!

 You can also “hide” pictures (good practice) if you’re
making another picture show in the same location, or
if the character is leaving.

Add an at-clause to a show statement. Simply say:

show d happy at right

Or:

show d happy at left

 Most games play music in the background. In Ren'Py,
music files automatically loop until they are stopped
by the user.
 play music "illurock.ogg“

 When changing music, one can supply a fadeout
clause, which is used to fade out the old music when
new music is played.
 play music "illurock.ogg" fadeout 1.0

 Music can be stopped with the stop music statement,
which can also optionally take a fadeout clause.
 stop music

 Sound effects can be played with the play sound
statement
 play sound "effect.ogg"

 Ren’Py supports formats other than .ogg for sound and
music e.g. mp3, but make sure you check the copy
rights before using the music.

 Like functions/methods (chunks of code you can call
from anywhere in your program).

 “label” is a keyword for functions (like def).

 You must have noticed that we had a “label start”
before the game code. It is a keyword that signals
where the program begins. If you want a function to
run, you will need to call it (or call a function that calls
it).

To call a label, you
“jump” to it.

Keep your “start”
label at the top,
that is good
coding style and
makes it easier to
see how things
flow.

 Remember to jump
back to where you were
if you want to continue
executing the code that
is after the jump.

 Ren’Py will NOT
automatically jump
back to the label you
jumped from.

 The menu statement introduces an in-game-menu.

 It takes a block of lines, each consisting of a string

followed by a colon. These are the menu choices

which are presented to the user.

 Each menu choice should be followed by a block of
one or more Ren'Py statements. When a choice is
chosen, the statements following it are run.

Let’s see what the play with the visual
novel that now has a simple menu.
(Code on next slide)

 After a point it becomes necessary to store the user's
choices in variables, and access them again later.

 Based on the user’s choices, the value stored in the
variable changes, for example:
 The number of answers you get right

 True or False flags

 You can end the game by running the return
statement, without having called anything.

 it's best to put something in the game that indicates
that the game is ending, and perhaps giving the user
an ending number or ending name.

Design a game that has:

Three Characters.

Four backgrounds.

Three menus.

Five labels

Three different ending

