

Suppose You Are Waiting in
Line...

By

YOU!

... AVery Long Line

You want to determine how many
people are in front of you, but you I
cannot see and you're not

allowed to move. You are only

adllowed to speak to the person in

front of you and behind you. How

do you do ite

Recursion

o A programming technique that breaks
down a complex problem into smaller,
manageable pieces

o Recursive solutions solve a problem by
applying the same algorithm to each
piece and then combining the resulfs.

The General Formula

#people in front of person in front of you +

person in front of you

people in front of you

The Solution

. Tap the shoulder of the person in front of
you and ask how many people are in
front of him/her

2. Wait for his/her response and add 1

. If someone asked, tell them how many
people are in front of you

A Diagram

o Ask and wait

o Ask and wait
o Ask and wait....

oReached first in line. Tell person behind it is O.
o Tell person behind it is O+1

o Tell person behind itis 1+1...
o Tell Person behind itis x +1

Recursive Algorithms

o There are two main components to
recursive algorithms

o 1) Base Case

o 2) The Recursive Case

Recursive Algorithms

o There are two main components to
recursive algorithms

o 1) Base Case: The point where you stop
applying the recursive case

o 2) Recursive Case: The set of instructions that
will be used over and over

In the Queue Problem...

o Recursive case is

o Tap person in front of you. Ask #people in
front of him. Wait for his answer and add 1.

o Base case is
o person 0. You do not do execute the above.

Recursion and Programming

oA relfcursive function is a function that calls
ifse

numberOfPeoplelnFront(person){
If (there is no one to tap)
return O
Else
tap person in front of you (F)
#pplin front of F = numberOfPeoplelnFront(F)
return #pplin front of F + 1

o}

Pseudo-code diagram

o Ask and wait

o Ask and wait

o Ask and wait....
o Reached first in line. Return 0.

o Return 0+1
o Return 1+1...

o Return x +1

Towers of Hanoi

o A prominent recursive problem
o Starfing Configuration:

A B c

o Goal: Move tower from Ato B

Rules

o Move one disk at a time

o A larger disk cannot be placed on top of
a smaller disk

o We can use some needles as temporary
sforage

Subgoals

o Get top x-1 disks from A to C

A B C
o Get bottom disk from A 1o B
| =
A B [

o Move top x-1 disks from C to B

Recursion Behind Towers

o Base Case: Moving the Largest Disk to Needle
B

o Recursive Case: Do same for the x — 1 disk
above it

o hitp://www.mazeworks.com/hanoi/

o Fun Fact: It takes at least 2"-1 moves to solve
the puzzle

http://www.mazeworks.com/hanoi/
http://www.mazeworks.com/hanoi/

Fractals

o A rough or fragmented geometric shape
that can be split intfo parts, each of which
is (at least an approx. of) a reduced copy
of the whole

o Base case: Starting shape

o Recursive case: Repeating shape in
different sizes

Koch Snowflake

