
Recursion

Suppose You Are Waiting in

Line…

HI

YOU!

… A Very Long Line

You want to determine how many

people are in front of you, but you

cannot see and you’re not

allowed to move. You are only

allowed to speak to the person in

front of you and behind you. How

do you do it?

Recursion

 A programming technique that breaks

down a complex problem into smaller,

manageable pieces

 Recursive solutions solve a problem by

applying the same algorithm to each

piece and then combining the results.

The General Formula

#people in front of person in front of you +

person in front of you =

people in front of you

The Solution

1. Tap the shoulder of the person in front of

you and ask how many people are in

front of him/her

2. Wait for his/her response and add 1

1. If someone asked, tell them how many

people are in front of you

A Diagram

 Ask and wait

 Ask and wait

Ask and wait….

 …. Reached first in line. Tell person behind it is 0.

 Tell person behind it is 0+1

 Tell person behind it is 1+1…

 Tell Person behind it is x +1

Recursive Algorithms

 There are two main components to

recursive algorithms

 1) Base Case

 2) The Recursive Case

Recursive Algorithms

 There are two main components to

recursive algorithms

 1) Base Case: The point where you stop

applying the recursive case

 2) Recursive Case: The set of instructions that

will be used over and over

In the Queue Problem…

 Recursive case is

 Tap person in front of you. Ask #people in
front of him. Wait for his answer and add 1.

 Base case is

 person 0. You do not do execute the above.

Recursion and Programming

 A recursive function is a function that calls
itself

numberOfPeopleInFront(person){
If (there is no one to tap)

return 0

Else

tap person in front of you (F)

#ppl in front of F = numberOfPeopleInFront(F)

return #ppl in front of F + 1

 }

Pseudo-code diagram

 Ask and wait

 Ask and wait

Ask and wait….

 …. Reached first in line. Return 0.

 Return 0+1

 Return 1+1…

 Return x +1

Towers of Hanoi

 A prominent recursive problem

 Starting Configuration:

Goal: Move tower from A to B

Rules

 Move one disk at a time

 A larger disk cannot be placed on top of

a smaller disk

We can use some needles as temporary

storage

Subgoals

Get top x-1 disks from A to C

Get bottom disk from A to B

Move top x-1 disks from C to B

Recursion Behind Towers
 Base Case: Moving the Largest Disk to Needle

B

 Recursive Case: Do same for the x – 1 disk
above it

 http://www.mazeworks.com/hanoi/

 Fun Fact: It takes at least 2n-1 moves to solve
the puzzle

http://www.mazeworks.com/hanoi/
http://www.mazeworks.com/hanoi/

Fractals

 A rough or fragmented geometric shape

that can be split into parts, each of which

is (at least an approx. of) a reduced copy

of the whole

 Base case: Starting shape

 Recursive case: Repeating shape in

different sizes

Koch Snowflake

