

Languages

• Solve problems using a computer, give the
computer instructions.

• Remember our diaper-changing exercise?

Talk the talk

• Speak its language
– High-level: Python, C++, Java

– Low-level: machine language, computers can only
execute these

– High-level languages have to be processed into
low-level before the computer can run them

– But high-level languages can run on different kinds
of computers and are easier for humans to write
and read, so most programs are written in high-
level

Translation

• How does high-level get translated into low-
level?

– Interpreters and compilers!

– Interpreter processes the program a little bit at a
time and runs it

– Compiler translates everything before running it

What is ?

Python is a programming language that
lets you work more quickly and integrate

your systems more effectively.

(in other words, magic!)

http://www.python.org/

http://www.python.org/

Python Vocab

• Program – A larger file of code that may contain one or
more functions.

• Variable - names that you can assign values to, allowing
you to reuse them later on.
E.g.: x = 1 or msg = “Hi, I’m a message!”

• Comments – These are notes ignored by the computer. In
Python, comments start with a hash mark (#) and end at
the end of the line.
E.g.: >>> x + y #both variables store user
input

• Operators – Mathematical symbols, like +, -, *, and /, but
also ** (for exponents).

Python Vocab

• Keyword – Words with meaning/purpose in
Python. E.g. “and”, “print”, and “if”.

• Function – A chunk of code that performs an
action. Functions have names and are reusable.
Kinds: built-in ones, and “user-defined” ones.

• Expression – Statements that produce values.
Examples include 3 + 5, "Hello world!“.

• Error – When your program has a problem, the
command area will provide an error message.

What is JES?

Jython Environment for Students allows you to
program and experiment with python.

The top part (the white window with the tiny
number 1, which tells you that that’s line
number 1), or the “program area”, works like
any text editor would, where you can type
stuff and save it under some file name so you
can close it and pull it back up later.

The bottom part (in black), the “command
area”, is the brains of the operation.

After you are done writing a program here

Click Load Program to compile the program

Writing Your Program

Header Comments:

file name: circ.py

author: Durrah Almansour

description: a program to

calculate the area of a circle.

Indentation

• Not an Option, but a Requirement!

• In Python, indenting specifies the “scope” of
different chunks of your code.
def main():

print "Hello world!"

The print line will be executed when you invoke
main().

Writing Your Program

• Always plan what you want your program to
do (pseudocode).

• Divide it into parts, it will make it easier to
debug and update later.

Writing Your Program

Defining Functions:

def main():

print "Hello world!"

- Name the function for the purpose you wrote
it for.

- Don’t forget to indent the instructions that go
inside the function.

Argument

A value passed to a function or method,
assigned to a named local variable in the
function body.

Ex. def addUp(a,b):
print(“this is a+b: “, a+b)

#a and b are the parameters, 1 and 3 are the
arguments we passed in.

#The function outputs : this is 1+3: 4

http://docs.python.org/glossary.html#glossary

http://docs.python.org/glossary.html

Calling Functions

main()

will give the output
Hello world!

- There is no colon when calling a function!

- Use colons with “def”.

:

• Try this yourself

Output

E.g. Print:

print "Hello world!"

will give the output
Hello world!

Similar formatting, different output

• print "Hello", "world", "!"

will output
Hello world !

• print "Hello" + "world" + "!"

will output
Helloworld!

Similar formatting, different output

• print "Hello"

print "world"

print "!“

• will give the output
Hello
world
!

• print "Hello“,

print "world“,

print "!“

• will give the output
Hello world !

Data Types

The data type of an object determines the values it can
hold, and the operations which can be performed on
it.

• Numeric Data

Numeric data comes in 2 main flavors:

– Integers (whole numbers) 2, 5, -7, etc.

– Floating Point Numbers (non-integers) 0.2, 5.125, etc.

(CS108 Notes, Prof. Aaron Stevens)

Data Types

• Non-numeric Data Types:

Those include strings (text), lists, dictionaries,
etc..

Basically anything you can not add up using a
simple plus sign (+).

Not a String? Not a Problem!

You can also format outputting variables you’ve
defined:

• x = 42

print“ The value of x is", x, ".“

• will give the output
The value of x is 42 .

http://www.cs.bu.edu/courses/cs101b1/jes/

Not a String? Not a Problem!

• x = 42

print "$" + x

causes an error.

• So what do we do?

x = 42

print "$" + str(x)

will give the output
$42

Defining Variables

Rules for naming variables:

• Have to start with a letter or underscore (_)

• Can contain letters, numbers, and underscores

• Can’t contain spaces, punctuation, etc.

• Can’t be Python keywords

• Are case sensitive

Defining Variables

Things that aren’t rules, but are worth considering:

• You should give your variables sensible names
(“price”, “pixelColor, or “samplingRate” instead of
“x”)

• Just because you technically can start your
variable names with underscores doesn’t mean
you should.

Defining Variables

• For multi-word variable names, two options:

– start capitalizing each word after the first “myCar”

– separate words with underscores. For instance, a
variable for “Ford Focus” could be “my_car”.

• Abbreviating is common for longer words. So, a
variable for “average price” could be “avgPrice”
or even “avg”.

Variables

• Variables can hold all kinds of values, including
strings, different types of numbers, and user
input.

• To assign a string value to a variable, you have to
wrap the string in quotes (like usual).
firstName = "John"
lastName = "Doe"
mathProblem = "5 + 5"
print lastName, ",", firstName, ";",
mathProblem

will give the output
Doe , John ; 5 + 5

Variables

• Variables can also be assigned new values that
are relative to their old values. For example:

total = 10

print "Original total:", total

total = total + 4

print "New total:", total

will give the output
Original total: 10
New total: 14

Variables

• Remember: A variable has to have been
defined on a previous line before it can be
used on the right-hand side of an equation,
so:

• total = total + 4

print "Total:", total

causes an error, since there was no mention of
the value of “total” before the line trying to
redefine it.

Numeric Operators

• Python built-in numeric operators:

• + addition

• - subtraction

• * multiplication

• / division

• ** exponentiation

• % remainder (modulo)

(CS108 Notes, Prof. Aaron Stevens)

Python Arithmetic
• Try writing the following code in your program area and see what it

outputs
Def main():

a = 12
b = 2
c = 16
d = 3
e = 2.5

print "the value of a is", a
print (a / b) * 5
print a + b * d
print (a + b) * d
print b ** d
print c - e
a = a + b
print "the value of a is", a

Python Arithmetic

• Is this what you got?
the value of a is 12
30
18
42
8
13.5
the value of a is 14

Exercise Time!

• Write a program that takes in a birthday (dd,
mm, yy) and returns:

– The age

– Number of days until next birthday

Taking User Input

Sometimes, instead of passing in arguments,
you can ask for them after calling the function.

Taking User Input

• requestNumber()

• requestInteger()

• requestIntegerInRange()

• requestString()

Taking User Input

name = requestString("Enter your name:")

print name

first pops up a dialog box (where you can enter a name, say
‘John Doe’):

then outputs
John Doe

Ex. Try it with Numbers!

num = requestNumber("Enter a number:")

print "Your number:", num

print "Your number squared:", num*num

This is where you put the message
you want to appear with your
input box!

Ex. Try Inputting a String

• Make JES print “<input> is awesome!”

name = requestString("Enter your name:")
print name, “is awesome!”

The For Loop

• Also known as the “definite loop”.

• Allows you to specify a list of items (numbers,
words, letters, etc.), and specify action(s) to
be performed on each one.

• The official form for the for loop is this:

for <var> in <sequence>:
<body>

(Note that the body is indented to in the loop)

The Kittens Need Your Help!

You are working at an animals shelter, you are
asked to take a group of kittens, bathe, dry,
and feed each one individually.

The Kittens Need a Loop!

Using a for-loop type notation, your instructions
would look like this:

Kittens = [kitty #1, kitty#2,

kitty#3, ...]

for kitty in Kittens:

bathe kitty

dry kitty

feed kitty

Ex. For Loop

• phrase = "Hello world!"
for letter in phrase:
print "the next letter is:", letter
will give the output
the next letter is: H
the next letter is: e
the next letter is: l
the next letter is: l
the next letter is: o
the next letter is:
the next letter is: w
the next letter is: o
the next letter is: r
the next letter is: l
the next letter is: d
the next letter is: !

What Just Happened?

• What Python did was that it went through the
line one character at a time, treating the line
like a sequence.

• That means that the line can be split into its
components (the characters).

split()

Want to work with units of a phrase that aren’t
characters?

Put something in the <sequence> position that
isn’t just a string.

The result is a list of all the items in the phrase
that are separated by spaces.

split()

phrase = "Hello beautiful world!"

for word in phrase.split():

print "the next word is:", word

will give the output
the next word is: Hello
the next word is: beautiful
the next word is: world!

split()

In fact, if you printed phrase.split() to see
what it looked like, you’d get *'Hello',
'beautiful', 'world!'], a list containing each
“word”

(You will learn about lists tomorrow )

Accumulator Variables

When you’re using a for loop, sometimes you
want to keep a running total of numbers
you’re calculating, or re-combine bits of a
string.

Accumulator Variables

Steps:
1. Define it for the first time before the for loop starts.

2. Redefine it as itself plus some operation in the body of
the for loop.

total = 0

for num in [1,2,4,10,20]:

total = total + num

print "Total:", total

will give the output
Total: 37

Accumulator Variables

What is the point of accumulator variables?

-Counting.

-keeping score (affects program does).

-debugging.

Conditional Statements

Equals: ==

Does not equal: !=

Try this:

x = 1

If(x != 2)

print “Artemis rocks”

Pictures

File Functions

- pictures live within files.

- You must get your program to go find and
read a file that’s somewhere else on your
computer.

Steps:

1. Store the “address” for the file you want as a
variable

2. Use functions to read, display, or modify the
file at that location.

File Functions

myFile = pickAFile()

This function notes the ‘path name’ (as a string) of your
file, i.e. the “address” of that file on your computer.

It brings up the ‘file
selector dialog’.

File Functions

File Functions

If it is a picture, and you wish to treat it as such:
myPic = makePicture(myFile)

These functions will not make anything appear.
So far, things are just stored in the computer’s
memory, invisible to the user.

After modifying your sound/picture you may
want to save it as a new file, since ‘repainting’
a picture or ‘playing’ a sound will simply show
you your work, not save it anywhere.

Pictures

Pictures

How?

Use writePictureTo after you specify the path.

Try this in the command area
path ="/Users/Durrah/Documents/stuff/editedpic.jpg"

writePictureTo(pic,path)

Pictures

Try writing this simple function
This shows a
window
containing
the picture.

Pictures

- Find a small picture (use Google)

- Save it in Documents.

- Enter the following

Pictures

Your picture should appear

Pictures

Now enter explore(pic)

Click anywhere in
the picture that
just popped up
and you’ll see
the X & Y
coordinates of
the pixel.

Pictures

This function is useful when you are trying to
locate a certain pixel that you want to play
with. It gives you the Red, Green and Blue
values of that pixel. This is the stuff of which
Photoshop is made !

Pixel Functions

So how do you make changes to your picture?

- Target one pixel

- Target all pixel

Getting a Pixel

getPixel takes three parameters, the picture
to take the pixel info from, the x-value of the
desired pixel, and the y-value of the pixel, in
the form getPixel(pic, x, y)

Add this to your command area

Pixel Functions

aPixel = getPixel(pic, x, y) stores
the color information of the pixel located at
(5, 10) in the picture pic in the variable
aPixel.

But what if we want ALL the pixels?

Get Those Pixels!

getPixels(pic)

PIXELIZATION!

Now we want to change every single pixel… How
will we ever do that?

There are New
Pixels in Town

Don’t forget to indent!

Your picture has not changed yet? That is
because you haven’t applied the changes to it!

Enter:
repaint(pic)

Pictures

THE CHALLENGE

Can you write a program (in the program area)
that changes the color of the picture the way
we did?

You have all the functions in your command
area.

I will give you the pseudocode and you have to
code it however you see fit.

Remember to start with def main(): and to
indent everything to be inside it!

The program should have 9 lines of code. I will
show one line of code every TWO minutes

Can you beat the PowerPoint?

THE CHALLENGE

Pictures

Get the file

Make it a picture

Display it

Explore it

Get one pixel

Change the color
of the picture

Apply the changes

Negative

When creating a negative, we want the
opposite of each of the current values for red,
green, and blue. If we have a red component
of 0, we want 255 instead, If we have 255, we
want 0.

In other words, we are getting |255-current| for
every pixel in the picture.

Negative

Def negative():

file = pickAFile()

pic = makePicture(file)

for px in getPixels(pic):

red = getRed(px)

green = getGreen(px)

Blue = getBlue(px)

negColor = makeColor(255-red, 255-green, 255-blue)

setColor(px, negColor)

repaint(pic)

show(pic)

Mirror, Mirror on the Wall

• We can use Python to manipulate more than
the colors of the picture. We can do this:

#Starting with pseudocode

mirrorVertical():

Get a picture

Identify its middle.

in every row

replace each column with the at the same
distance from the middle until you reach the
middle

apply changes

show the picture

Code, Code on the Screen

def mirrorVertical():

file = pickAFile()

pic = makePicture(file)

mirrorpoint = getWidth(pic)/2

for y in range(1, getHeight(pic)):

for xOffset in range(1, mirrorpoint):

pright = getPixel(pic, mirrorpoint+xOffset, y)

pleft = getPixel(pic, mirrorpoint-xOffset,y)

c = getColor(pleft)

setColor(pright, c)

repaint(pic)

show(pic)

Code, Code on the Screen

Extra Challenge

• As you can see, the right side mirrored the left
side (and that’s why the creature has two
heads).

• Can you change your code

So it does the opposite?

(i.e. let the left side mirror

the right side)

Reversed Mirroring

• This is the result I got:

Are the soldiers, clouds, big creature
actually there?

The Green Screen

• Placing an object (foreground) in a
background of our choice.

The Green Screen

• Tell the computer look at each pixel, and see if
its red and blue values are less than its green
value.

• If (red+blue < green) then that pixel is likely to
belong to the green screen. Now tell the
computer to get the pixel at the same location
from the background and paint it on the green
screen.

The Green Screen

So in a way, you are actually placing the
background on the foreground, not the other
way around.

Also, it could be a blue screen. (How will the
code change?)

The Green Screen Code

• How do you think the code should look like?

The Green Screen Effect

You do not get perfect
results all the time…

Our Journey Ends Here

But yours doesn’t need to!

Want to learn more?

Go to:

wiki.python.org/moin/BeginnersGuide

This presentations was based on the CS101 Guide to Python and JES
(http://www.cs.bu.edu/courses/cs101b1/jes)

Questions?

http://www.cs.bu.edu/courses/cs101b1/jes

