
COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

ARTICLE

THE FETTERED LIBERTY TO INTEGRATE: LEGAL
IMPLICATIONS OF SOFTWARE ENGINEERING

BRUCE D. ABRAMSON* AND DMITRI L. MEHLHORN**

TABLE OF CONTENTS
 I. INTRODUCTION.. 1
 II. ENGINEERING VS. STRATEGY .. 3
 III. THE LEGAL ANALYSIS OF INTEGRATION... 9
 IV. MICROSOFT’S INTEGRATION STRATEGY ... 11
 V. THE OPEN QUESTION... 14
 VI. CONCLUSION ... 15

I. INTRODUCTION
Microsoft does not monopolize the market for personal computing software.

It does, however, monopolize the market for personal computing platform
software. That position gives Microsoft the ability to leverage its way into
adjacent software markets, often by either bundling or integrating its own
products into Windows. This strategy can both protect and extend the original
platform monopoly, and thus raises a critical question: Under what
circumstances should antitrust laws prohibit a software monopolist from
integrating new technologies into its monopoly product?

While this query currently focuses predominantly on Microsoft, its scope is
likely to grow. Monopolists also dominate a number of niche software
markets,1 and debates remain about the appropriate legal definitions of both

* Law Clerk to the Hon. Arthur Gajarsa, United States Court of Appeals for the Federal

Circuit. bda9@columbia.edu. Ph.D. (Computer Science), Columbia University; J.D.,
Georgetown University. Dr. Abramson worked as a consultant to parties involved in the
European Commission proceedings against Microsoft before assuming his current position.
The views expressed in this article are his alone.

** Director, Gerson Lehrman Group, 927 15th Street NW, Suite 900, Washington, DC,
20005. Dmitri@stanfordalumni.org. MPP, Harvard University; JD, Yale University. Mr.
Mehlhorn worked as an attorney for one of the parties involved in the European
Commission proceedings against Microsoft. The views expressed in this article are his
alone.

1 Leveraging claims against niche software monopolists, though different in many
respects from the claims against Microsoft, have arisen in a number of “copyright misuse”
cases. See e.g., Lasercomb Am., Inc. v. Reynolds, 911 F.2d 970 (4th Cir. 1990) (regarding
CAD/CAM); Alcatel USA, Inc. v. DGI Techs., Inc., 166 F.3d 772 (5th Cir. 1999) (regarding

mailto:bda9@columbia.edu
mailto:Dmitri@stanfordalumni.org

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

“platform” and “integration.”2 Microsoft’s unique position virtually
guarantees that its decisions, actions, and assertions will play a central role in
shaping both these debates and their ultimate resolution.

Microsoft has long argued that public authorities are not competent to police
software design decisions, and that it should have “unfettered liberty” to
integrate new technologies into its operating system so as to deliver exciting
new products to eager consumers.3 Though both Judge Jackson4 and the D.C.
Court of Appeals5 challenged the extremes to which Microsoft pushed this
view, Judge Kollar-Kotelly’s November 2002 ruling did little to curtail either
Microsoft’s abilities or its incentives.6 That omission was intentional.7 Judge
Kollar-Kotelly emphasized that she was crafting a “specific remedy for the
limited ground of [Microsoft’s] liability”8 pending before her, (i.e., Microsoft’s
illegal maintenance of its Windows platform monopoly9), that should not
“curtail the ability of a [future] court to determine that Microsoft has illegally
tied two products which are separate under the antitrust laws,”10 and that anti-
integration remedies would be “more appropriately addressed as separate
claims, in a separate suit”11 She thus left open many critical questions
about both the general and the specific propriety of leveraging-by-integration.

Some economists have asserted that no further inquiries are necessary—at
least for the specific case of Microsoft.12 In their view, Judge Kollar-Kotelly’s
ruling should address all outstanding issues that antitrust authorities currently

diagnostic equipment).

2 Even the D.C. Circuit’s announcement that tying claims involving platform software
were subject to rule-of-reason analysis implied that the issue was far from resolved: “While
our reasoning may at times appear to have broader force, we do not have the confidence to
speak to facts outside the record, which contains scant discussion of software integration
generally.” United States v. Microsoft Corp., 253 F.3d 34, 95 (D.C. Cir. 2001).

3 See, e.g., United States v. Microsoft Corp., 980 F. Supp. 537, 543 (D.D.C. 1997).
4 See id.
5 See Microsoft, 253 F.3d. at 63 (D.C. Cir. 2001).
6 See New York v. Microsoft Corp., 224 F. Supp. 2d 76 (D.D.C. 2002).
7 See id. at 97.
8 See id. Judge Kollar-Kotelly viewed activities on which no final judgment had been

entered—notably the tying of the Internet Explorer (IE) browser to Windows—as outside
the scope of a proper remedy.

9 See id.
10 United States v. Microsoft Corp., 231 F. Supp. 2d 144, 166 (D.D.C. 2002).
11 New York v. Microsoft, 224 F. Supp. 2d. at 134. The government dropped the tying

claim before the court reassigned the case to Judge Kollar-Kotelly.
12 See, e.g., David S. Evans and A. Jorge Padilla, Tying Machiavelli: The U.S. Microsoft

Consent Decree, NERA, 2002, available at
http://www.nera.com/wwt/newsletter_issues/5664.pdf, (last visited December 12, 2002).
Evans, Padilla, and NERA have all served as consultants to Microsoft.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

investigating Microsoft may consider.13 Because many of these same
economists have also argued that Microsoft’s past behavior (including the
actions that the courts ruled anticompetitive) did not harm consumers, though,
it is hardly surprising that they see little need for future protection.14 We
disagree with both their assessment of the past and their prescriptions for the
future. In this brief article, we explain the importance of basic software
engineering principles to the legal treatment of software integration, and apply
our analysis to assess Microsoft’s technological argument that its integration of
cutting-edge functions into Windows are due the legal deference that courts
normally accord to companies’ product-design decisions. We establish three
key points:

1. Basic software engineering principles indicate that stable, well-
understood technology is a practical prerequisite for safe product
integration. Premature integration inhibits innovation without
improving product quality.
2. Software monopolists can neutralize nascent middleware threats and
competitive applications through strategic, and often premature,
“integration.”
3. Judges and regulators are understandably hesitant about second-
guessing a company’s product development processes and decisions.
However, strategic leveraging falls squarely within the purview of the
authorities, and is thus due no special deference.

These three points combine to recommend a remedial rule, well within the
competence of adjudicatory bodies, that would protect innovation, competition,
and consumers: Courts should prohibit software monopolists from integrating
application technologies sold in competitive markets into their monopoly
products at least until those technologies mature. As long as important new
features continue to emerge from the competitive race for product quality,
integration of that product into a monopoly platform is likely to squelch
innovation and reduce consumer choice without providing any concomitant
benefit. In a competitive market, market forces may attenuate such premature
integration, but in a monopoly situation only public policy can protect
innovation.

II. ENGINEERING VS. STRATEGY
The fundamental challenge of computer science is that people who speak

13 See id.
14 See, e.g., David S. Evans et al., Did Microsoft Harm Consumers? Two Opposing

Views, AEI-Brookings Joint Center for Regulatory Studies, 2000. (Dr. Evans and Dr.
Schmalensee argue that Microsoft’s behavior did not harm consumers, while Dr. Fisher and
Dr. Rubinfeld provide the opposing view.)

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

natural languages such as English need to communicate with hardware that
recognizes only the difference between high and low voltage levels.15 This
communication requires a series of translators that successively convert the
human input “downward” into increasingly formalized “languages” or logic
systems, eventually to voltage levels, and then back “upward” into natural
language.16 All software tackles some part of this translation chain.17

These translations define two distinct tasks that must meet at a common
language somewhere in the middle.18 The first is for the human user to learn
how to communicate with a user interface.19 The second is to connect that
interface to the underlying hardware.20 Computer scientists begin this second
task by coding high and low voltage levels as 1s and 0s, respectively, to
translate from voltage into binary digits (bits).21 They then group the bits
together to generate more complex number sets, numeric codings of the
alphabet, and eventually “high level” programming languages.22 Software
engineers can then program in these high-level languages to move the upward
translation chain all the way to the user interface.23

This user interface thus marks the “translation frontier” between human and
computer.24 Though its language is alien both to natural language speakers and
to voltage readers, it can be translated into either language.25 While people
always needed a full translation chain to use computers, the distance between
the user interface and English has narrowed considerably in recent years.26 In
the 1960s, virtually all computer users were technically trained professionals
who were personally proficient in a specialized computer language.27 By the
1990s, computer scientists had moved the frontier so far upward that many
accomplished computer users today speak no language more technical than

15 See Bruce Abramson, Promoting Innovation in the Software Industry: A First

Principles Approach to Intellectual Property Reform, 8 B.U. J. SCI. & TECH. L. 75, 114-115
(2001).

16 See id. at 115.
17 Most of this description of software and computer science is common knowledge, of

the sort covered in any good elementary programming text. For a somewhat extended
treatment in terms accessible to a legal audience, see id. at 113-116 (2001).

18 See id. at 115.
19 See id.
20 See id. at 114.
21 See Abramson, supra note 15, at 115 n.152.
22 See id. at 115.
23 See id.
24 See id.
25 See id. at 115.
26 See id.
27 See Abramson, supra note 15.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

“point-and-click.”28

As user interfaces targeting the non-specialist became more powerful,
software engineers began to marry them to the underlying operating systems to
become “platforms” that disguise sophisticated translation chains as simple
instructions.29 These platforms also allow individual applications (such as
word processing programs and games) to communicate directly with the
underlying hardware. As a result, a software engineer developing a new game,
for example, need only design his program to communicate with the platform
through its through Application Programming Interfaces (APIs). The APIs
continue the series of translations further downward toward voltage levels. A
small subset of these applications qualifies as “middleware.”30 While most of
the programs visible to human users require inputs directly from those users,
middleware programs expose their own APIs and thus can also receive inputs
from yet other applications.31

Periodically, a new generation of the platform “evolves” the frontier upward
by incorporating selected middleware and applications into the pre-existing
platform.32 Each upward evolution affects the worlds of software and
computing in at least two significant ways: First, it enables a broader group of
people to become software developers and users by reducing the requisite
amount of specialized knowledge. Second, it unleashes a wave of competitive
innovation on the set of features that will define the next generation of
software development. In cases involving monopoly products, this evolution
can unleash a third important effect: it can reduce if not eliminate innovation
and competition with respect to the subsumed features.33 When the pre-
existing platform is a dominant product, all further innovation on the newly
subsumed feature must be compatible with the implementation that the
monopolist adopted; the platform monopolist thus controls innovation.34 In a

28 See id.
29 See id. at 115-16.
30 See id. at 116.
31 See id.
32 See id. at 143-44.
33 See, e.g., Giving the Invisible Hand a Helping Hand, THE ECONOMIST, Nov. 9, 2002 at

14. (“What is striking is how little innovation there has been in the bits of the market that
Microsoft dominates, and how much where it has little influence. Operating systems, web
browsers and word-processing software all look much as they did five years ago. But not
many people are using five-year-old mobile phones, handheld computers or music-sharing
software.”).

34 One general feature of a “standard” is that it forces all subsequent developments into
conformity. Products incompatible with the standard defining a network cannot work with
that network. When a standard defines the only existing network, products incompatible
with that standard will not work anywhere. When that dominant standard is proprietary, its
owner is a monopolist capable of forcing all potential innovators and product developers to

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

competitive environment, market forces attenuate the scope of this third effect
because developers can still introduce new features that run upon competing
platforms. If the evolution integrated features prematurely, the evolved
frontier will suffer, as innovation on its competitors will allow them to surpass
it in technological sophistication, in product quality, and likely in market
performance. In a monopolized platform market, no such constraint exists.
Premature integration will deter innovation.

The combination of these effects defines the direction that the software
industry will take following each new generation of platform development. It
also determines the dividing line between engineering and business strategy—
both of which can drive integration decisions. The basic principles of software
engineering, however, often make it easy to determine which motivator drove a
given decision. Many of these basic principles have changed little since the
early days of the computing; elementary programming classes have included
them in their curricula for decades. Fred Brooks’s The Mythical Man-Month,35
written in 1974 and generally regarded as “the” classic work on software
engineering, provides an excellent illustration of this stability.36 Brooks drew
upon practical lessons that he had learned in the 1960s in his roles as a project
manager first for the important IBM System/360 family of mainframes, and
then for the massive OS/360 operating system (the platform for these
machines).37 Twenty years later, his “Anniversary Edition” affirmed all of his
basic messages and most of his subsidiary lessons.38

One key principle of software engineering—and the one central to
understanding the harm latent in premature integration—is that good software
design develops “modules,” “components,” or “objects” that fit together like
pieces of a puzzle.39 Partitioning complex systems into modules helps tame
their complexity.40 It also minimizes the damage when a developer discards an

choose between conformity to the standard or exiting the market. For a good discussion of
strategic behavior in setting or conforming to standards, see CARL SHAPIRO & HAL R.
VARIAN, INFORMATION RULES, (Harvard Business School Press 1999) at ch. 3.

35 FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH (1st ed. 1975).
36 See id.
37 See id.
38 Id. at ch. 19.
39 See ED YOURDON ET AL., MAINSTREAM OBJECTS, (Prentice Hall, 1995) at 79-81

(delineating criteria for determining the quality of a model designed for implementation as
software and stating that modularity, in particular, plays a prominent role in determining
quality and improving maintainability).

40 “For every 25 percent increase in problem complexity, there is a 100 percent increase
in the software solution.” Consequently, partitioning the problem into simpler subtasks
reduces the complexity of the solution. ROBERT L. GLASS, FACTS AND FALLACIES OF
SOFTWARE ENGINEERING, (Addison-Wesley, 2003) at 58-60.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

existing bit of software and rewrites it in light of new discoveries.41 In other
words, “plug-and-play” modular systems are easier to update, modify or fix
than those integrated into a monolithic whole. As the software development
community gains a better understanding of challenges that it once considered
cutting-edge, and as the implementations of code addressing those tasks
become robust and stable, developers may choose to integrate two previously
independent functions in order to enhance some aspect of system performance.

The integration of ill-understood, immature code fragments likely to require
further modification and debugging is invariably a bad idea.42 From the
perspective of software engineering, features currently captured by either
middleware or applications may only be potentially “ripe” for integration into
the platform if they are robust, well understood, and unlikely to undergo
further change. In economic terms, these features have converged to a de facto
standard; few further innovations are likely.43 Even then, a platform developer
who chooses to integrate such features into a next-generation platform might
foreclose competition in the market for that feature, but at least such
integration would be unlikely to hamper broader software innovation.
Decisions of this sort may be consistent with some software engineering
practices—though even then, potential gains in the areas of up-front
programming time and application running speed will often need to be
substantial to compensate for these added costs.

Figure 1 on the following page illustrates the broad superiority of modular
programming and demonstrates that every design decision embodies a series of
performance tradeoffs. Actions that improve performance along one metric
invariably incur costs along some other dimension. When viewed from the
perspective of modern technology, Figure 1 illustrates four basic points: (i)
There are areas in which commingling, integration, or monolithic design might
make sense; (ii) These areas are likely to be quite rare; (iii) Their incidence
dwindles with each generation of software technology; and (iv) Modern
software economics suggests that the costs of commingling will invariably
exceed its benefits. Today, Microsoft’s legal team stands virtually alone in
favoring complex monolithic programming.44 Component-based programming

41 “It is possible to claim that maintenance is a more difficult task than development.”

Updating software in light of new discoveries is the quintessential maintenance task. It is
invariably more difficult to update existing code than it is to develop new plug and play
modules. Id. at 120.

42 See BROOKS, supra note 35 at 142-147 (describing top-down design and
componentwise debugging as critical elements in the design procedures long used by the
best programmers). See also Niklaus Wirth, Program Development by Stepwise Refinement,
14 COMMUNICATIONS OF THE ACM 221-227, 1971.

43 See generally Shapiro & Varian, supra note 34, at ch. 8.
44 It is difficult to find even a single contemporary technical reference extolling the

virtues of integrated programming. Statements explaining the importance of modularity

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

is the industry standard; college textbooks,45 as well as Microsoft’s own
publications46 and statements to developers,47 tout the advantages of plug-and-
play software components.

Vital to modern software
industry economics

Modular coding /
plug replaceability

Commingled /
monolithic coding

+- + + ++ ++

+++ -- --

(1
) U

p -
fro

nt
 ti

m
e

in
 p

ro
gr

am
m

in
g

(2
) A

pp
lic

at
io

n
ru

nn
in

g
sp

ee
d

(3
) S

ec
ur

ity

(4
) S

ta
bi

lit
y

(5
) P

ro
du

ct

de
ve

lo
pm

en
t /

up

gr
ad

es

(6
) M

ai
nt

en
an

ce

(7
) I

nt
er

op
er

ab
ili

ty

-- --

MODULAR VS. MONOLITHIC SOFTWARE DEVELOPMENT

++

--

Vital to modern software
industry economics

Non-commingled coding
(modular / plug replaceable)

Commingled coding

+- + + ++ ++

+++ -- --

(1
) U

p -
fro

nt
 ti

m
e

in
 p

ro
gr

am
m

in
g

(2
) A

pp
lic

at
io

n
ru

nn
in

g
sp

ee
d

(3
) S

ec
ur

ity

(4
) S

ta
bi

lit
y

(5
) P

ro
du

ct

de
ve

lo
pm

en
t /

up

gr
ad

es

(6
) M

ai
nt

en
an

ce

(7
) I

nt
er

op
er

ab
ili

ty

-- --

MODULAR VS. MONOLITHIC SOFTWARE ARCHITECTURE

++

--(traditionally integrated)

Vital to modern software
industry economics

Modular coding /
plug replaceability

Commingled /
monolithic coding

+- + + ++ ++

+++ -- --

(1
) U

p -
fro

nt
 ti

m
e

in
 p

ro
gr

am
m

in
g

(2
) A

pp
lic

at
io

n
ru

nn
in

g
sp

ee
d

(3
) S

ec
ur

ity

(4
) S

ta
bi

lit
y

(5
) P

ro
du

ct

de
ve

lo
pm

en
t /

up

gr
ad

es

(6
) M

ai
nt

en
an

ce

(7
) I

nt
er

op
er

ab
ili

ty

-- --

MODULAR VS. MONOLITHIC SOFTWARE DEVELOPMENT

++

--

Vital to modern software
industry economics

Non-commingled coding
(modular / plug replaceable)

Commingled coding

+- + + ++ ++

+++ -- --

(1
) U

p -
fro

nt
 ti

m
e

in
 p

ro
gr

am
m

in
g

(2
) A

pp
lic

at
io

n
ru

nn
in

g
sp

ee
d

(3
) S

ec
ur

ity

(4
) S

ta
bi

lit
y

(5
) P

ro
du

ct

de
ve

lo
pm

en
t /

up

gr
ad

es

(6
) M

ai
nt

en
an

ce

(7
) I

nt
er

op
er

ab
ili

ty

-- --

MODULAR VS. MONOLITHIC SOFTWARE ARCHITECTURE

++

--(traditionally integrated)

abound. See, e.g., Dwayne Phillips, Information Hiding in C via Modular Programming,
C/C++ USERS JOURNAL, Jan. 1998, at 57 (“Modular programming requires a little extra work
from the programmer, but pays for itself time and again during maintenance . . . “); Alan
Radding, Application Servers Fuel E-business, INFORMATIONWEEK, June 19, 2000, at 111,
available at http://www.informationweek.com/791/eai.htm (Building business logic “as
reusable components,” and thus automating low-level processing functions into
components, helps developers eliminate “as much as 70 percent of the coding in an
application”); Eric Sanchez and Joe Fenner, EAI Users Go With The Flow,
INFORMATIONWEEK, Mar. 26, 2001, available at
http://www.informationweek.com/830/eai.htm (In some areas of software engineering
relating to enterprise application integration, “modular pieces of code eliminate 75 percent
of the work associated with performing such integration through custom programming.”).

45 See generally GEORGE T. HEINEMAN & WILLIAM T. COUNCILL, COMPONENT-BASED
SOFTWARE ENGINEERING (Addison-Wesley 2001).

46 See generally STEVE MAGUIRE, WRITING SOLID CODE 87-109 (Microsoft Press 1993)
(emphasizing the importance of single-purpose components and interfaces to reduce
programming errors).

47 See, e.g., Michael Vizard and Karen Moser, Plug and Play is Years Away, PC WEEK,
Apr. 11, 1994, at 45 (“Microsoft Corp. is painting a rosy future for developers, based on
plug-and-play software components using object technology. . . .”).

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

FIGURE 1: A COMPARISON OF THE ENGINEERING STRENGTHS OF
MODULAR AND MONOLITHIC DESIGN

Nevertheless, it is also important to differentiate mature from immature
applications. The less mature the application, the greater the risks inherent in
integration—and thus the more overwhelming the superiority of modular
design.48 The need for continuous revisions, upgrades, and patches to
immature applications implies that even developers are unaware of every
aspect of their program’s behavior. As a product matures, some of that initial
integration risk will attenuate, though some will always remain; even with
mature applications, the promised benefits of integration must be significant to
overcome the risks inherent in hard-wired cross-module communication.
Thus, any decision to integrate an immature application is suspicious, and
antitrust authorities must learn to differentiate between the circumstances in
which engineering design might justify integration and those in which business
strategy provides the only plausible explanation.

Under normal circumstances, market discipline will ensure that developers
who choose an integration that appears premature possess a good faith belief
that they are developing superior products. In a competitive platform market, a
developer who integrates an application into its platform prematurely risks
destabilizing its platform. A reputation for instability and bizarre side effects
could drive potential consumers to alternative platforms. But in the absence of
platform competition, the monopolist may see little risk in degrading its
platform’s performance by integrating premature middleware strategically;
market forces cannot provide the discipline needed to elevate engineering
concerns over strategy. More importantly, integration by a monopolist
effectively adopts the integrated software as the de facto standard. Alternative
approaches will have a hard time competing on their merits. This premature
integration will foreclose new approaches and restrict innovation of
improvements in the integrated approach. It will elevate the platform
monopolist’s proprietary idea to the status of a standard before it has earned
that promotion on its merits—thereby serving the monopolist’s strategic
business objectives at the expense of the consuming public’s interest in
innovative product improvements.

These basic principles of software engineering have powerful implications
for the enforcement of antitrust laws governing technological bundling in
software markets. Although authorities are understandably reluctant to
second-guess product engineering decisions, they need to ensure that product
engineering rather than strategic marketing, truly drives integration decisions

48 See, BROOKS, supra note 35, at 142-147.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

before exercising such deference.49 Software capabilities embodied in
middleware or in applications that are changing rapidly; that are subject to
ongoing innovation; that competing developers distinguish by racing to
introduce innovative new features; and that these competitive vendors sell as
heterogeneous products, invariably deserve to retain their independence and
modularity. Antitrust authorities should be skeptical when they see
monopolists integrating middleware of this sort, and allow it to stand only if
the monopolist can provide a compelling engineering justification. The factual
inquiries underlying this approach, while nontrivial, lie well within the realm
of questions that public authorities, supported by expert testimony, can
adjudicate competently.

III. THE LEGAL ANALYSIS OF INTEGRATION
Virtually everyone who has considered the unique challenges that software

poses to antitrust inquiries into tying, bundling, and integration, has concluded
that technological maturity is a central—if not the central—issue. Legal and
economic scholars have noted that the tests and rules that the U.S. Supreme
Court has applied to standard products and markets do not apply easily to
software markets: Professor Lawrence Lessig noted that a strict application of
those general rules could be over-inclusive in ways that reduced consumers’
access to innovative, powerful products.50 The D.C. Circuit Court of Appeals
reached a similar conclusion when it announced that its newly required rule-of-
reason analysis for tying cases involving platform software explicitly left open
the broader question of general software integration.51 Antitrust expert J.
Gregory Sidak has proposed a decision rule for courts investigating software
integration that begins with a preliminary question: “Is the market
technologically mature or technologically dynamic?”52 He reserved his
follow-up questions for dynamic software markets; they look at plausible
consumer benefits, probable reductions in competition and the consequent
consumer harm, and the net effect of the two.53

From an economic perspective, Sidak’s rule asks the right questions. His

49 “As a general rule, courts are properly very skeptical about claims that competition has

been harmed by a dominant firm’s product design changes.” United States v. Microsoft
Corp., 253 F.3d 34, 95 (D.C. Cir. 2001).

50 See Brief of Amicus Curiae Professor Lawrence Lessig at 24, United States v.
Microsoft Corp., 87 F. Supp. 2d 30 (D.D.C. 2000). Professor Lessig is generally viewed as
unsympathetic to Microsoft’s positions.

51 See Microsoft, 253 F.3d at 95.
52 See J. Gregory Sidak, An Antitrust Rule for Software Integration, 18 YALE J. ON REG.

1, 28 (2001). Mr. Sidak has served as a consultant to Microsoft and is generally viewed as
sympathetic to Microsoft’s positions.

53 See id. at 28-33.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

answers, however, invert the lessons of basic software engineering. His
analysis implies that the courts should presume that engineering concerns
guide all integration decisions unless and until proven otherwise.54 But the
principle of modular design suggests that premature integration, though not
always wrong, is always suspicious.55 As a result, when a court determines
that a platform monopolist integrated a technologically dynamic application’s
functionality into the platform, the court should presume that strategic
considerations motivated the integration. The court should then allow the
defendant to justify its decision—essentially placing the burden on the
monopolist. If the platform monopolist can persuade the court that its
integration provided consumers with benefits that could not have been
achieved via a modular design, and that these benefits were significant enough
to overwhelm the consumer harm implicit in reduced competition, the court
should allow the integration to stand. In the absence of such a showing,
however, the court should view integration in a technologically dynamic
market as presumptively strategic, and thus anticompetitive.

All told, the engineering case for integration does not depend upon the
competitive or monopolistic nature of the platform market. The appropriate
engineering approach is generally to maintain modularity at least until the
applications are as mature as the underlying platform—and then to integrate if
and only if the projected performance enhancements warrant the risk of
unintended side effects.56 Violations of this principle suggest decisions guided
by business strategy, not by engineering considerations. Authorities can
convert this technical observation into a legal rule by presuming—based on
market evidence—that all integration decisions that appear to be strategic are,
in fact, strategic, unless and until the developer can present a compelling
demonstration of the net engineering benefits of integration.

IV. MICROSOFT’S INTEGRATION STRATEGY
Though most of our discussion to this point has been both theoretical and

general, we clearly directed it towards Microsoft and its ever-expanding
Windows monopoly. The basic principles of modular design and software
maturation explain why only some of Microsoft’s historical behavior deserved
deference. Microsoft’s integration of Windows into DOS appears to have been
consistent with sound software engineering principles. Microsoft first
launched Windows in 1985 as a middleware product—a graphical interface

54 See id. at 28.
55 See supra pp. 12-13.
56 Product quality and short-term marketability often point in different directions. The

discussions above outlined some basic principles of software engineering that professionals
have observed lead to quality software products. Deviations from these principles suggest
the elevation of some other set of concerns above those of engineering design.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

sitting atop DOS—at a time when the DOS market was still competitive, and
Microsoft was but the largest of several competitors.57 Many industry
observers felt that early versions of Windows were buggy and unstable.58 In
response, Microsoft upgraded and updated Windows much more often than its
stable DOS operating system. Roughly five years later, Windows 3.0 marked
its first powerful release.59 Five years after that, Windows 95 became the first
integrated Windows/DOS platform. Six years later, Microsoft created an
entirely new code base for its seamless integration of Windows and DOS
capabilities in Windows XP.

Microsoft’s bundling of IE into Windows 95 in the early days of browsers,
when innovative ideas were still brewing and browser technology was neither
stable nor mature, was inconsistent with these basic principles. This premature
integration had two related effects on technological development. First, by
leveraging its platform monopoly into the browser market, Microsoft curbed
innovation on browsers other than IE—and thus curtailed competition.60
Second, by neutralizing the competitive threat from Netscape and Java,
Microsoft eliminated the likely innovation focused on an Internet-centered
platform—and thus guaranteed that virtually all subsequent browser innovation
would have to arise from, or be channeled through, Windows/IE.61 This

57 Software magazines’ reviews of competing products, for example, often compared

then to Microsoft’s. As late as 1990, they were able to opine that “[t]he latest incarnation of
DR DOS, Digital Research’s MS-DOS clone, is an innovative and intriguing operating
system that’s thoughtfully designed. Version 5.0 is also packed with the extra features that
Microsoft’s own operating system should have.” Caldera v. Microsoft, 72 F. Supp. 2d 1295,
1295 n.1 (D.Utah 1999), citing Stan Miastkowski, A Cure for What Ails DOS, BYTE, Aug.
1990, at 107.

58 See, e.g., id.
59 “Microsoft shipped Windows 3.0 on May 22. Compatible with DOS programs, the

first successful version of Windows finally offered good enough performance to satisfy PC
users. For the new version, Microsoft revamped the interface and created a design that
allowed PCs to support large graphical applications for the first time. It also allowed
multiple programs to run simultaneously on its Intel 80386 microprocessor.” Computer
History Museum Timeline, available at
http://www.computerhistory.org/timeline/timeline.php?timeline_category=sl (last visited
July 3, 2004). See also STAN J. LIEBOWITZ AND STEPHEN E. MARGOLIS, WINNERS, LOSERS,
AND MICROSOFT, (The Independent Institute, 2001) at 143-146 (discussing the speed with
which users switched from DOS to Windows following the 1990 release of Windows 3.0).

60 “Microsoft took actions that could only have been advantageous if they operated to
reinforce monopoly power.” United States v. Microsoft, Corp., 84 F. Supp. 2d at 28 (D.D.C.
1999).

61 “Microsoft focused its antipathy on two incarnations of middleware that, working
together, had the potential to weaken the applications barrier severely without the assistance
of any other middleware. These were Netscape’s Web browser and Sun’s implementation of
the Java technologies. . . .” Id.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

second effect was particularly harmful. By design, Windows was a translation
frontier appropriate for the concerns of business/office users. It thus
incorporated design decisions presumably appropriate to those tasks. The
Netscape/Java frontier that Microsoft blocked would have embodied decisions
appropriate to the Internet. The existence of two (or more) translation
frontiers, each optimized to a different set of uses and concerns, would have
allowed developers to avail themselves of different feature sets in new and
innovative ways that would almost certainly have rendered that alternative
frontier both powerful and profitable, though it is obviously impossible to
predict precisely what revolutionary new applications might have developed in
this environment.

Microsoft’s premature integration of IE into Windows was but part of a
general trend. At various points in Microsoft’s history, it has had to make
strategic choices to favor some products over others. Though each critical
juncture led to an internal debate, strategic concerns have always trumped
engineering design. Microsoft’s own developers reportedly often felt that “the
company sacrificed innovation for ‘strategy,’ the complex set of hooks and
lock-in techniques that Gates invariably insisted on to steer customers toward
Microsoft’s end-to-end product line and keep them from being able to
competitive products—and which customers hated for the very same
reason. . . . The ‘strategy tax’ could be deeply demoralizing.”62 This elevation
of strategy over engineering should come as no surprise: corporations strive to
maximize profits, and strategic considerations are central to their calculations.
In Microsoft’s case, the best way to maximize profits is to preserve and to
extend its valuable Windows monopoly.

Microsoft’s neutralization of the Netscape/Java threat thus served its own
strategic interests while limiting the creative opportunities available to
developers at precisely the time that the Internet and the Web were becoming
important. Since then, and especially with the 2001 launch of Windows XP,
Microsoft has moved to gain control of nascent platforms centered on
entertainment and communications.63 Its chosen methods mirror those used so
successfully with IE: the premature integration of both the Windows Media
Player (WMP) and Windows Messenger into the platform.64 These integration
decisions played a key role in the European Commission’s recent ruling on

62 DAVID BANK, BREAKING WINDOWS 96 (Free Press, 2001). See also United States v.

Microsoft Corp., 84 F. Supp. 2d 9, 51 (D.D.C. 1999) (quoting Microsoft executive James
Allchin’s explanation of the strategic need to bundle IE into Windows).

63 See, e.g., John Burgess, EU, Microsoft Cannot Agree on Settlement, THE
WASHINGTON POST, March 19, 2004, A1.

64 Microsoft’s Passport and .Net initiatives, both launched concurrent with XP, apply a
similar but more complicated strategy to e-commerce. A discussion of these more
complicated parallels lies beyond the scope of this article. See id.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

Microsoft’s behavior, currently on appeal.65

Regardless of the outcome of the appeal, these integrations reveal a
consistent strategy designed to channel all innovation towards Windows. By
extending its monopoly into one software market after another, Microsoft
ensures that the absorbed market’s future remains compatible only with
Windows. In so doing, Microsoft simultaneously protects Windows’ platform
monopoly, precludes the emergence of a nascent threat, and eliminates
competition in a previously standalone market. Decreased competition from
abuses like technological bundling likely reduces the talent pool and the capital
invested in innovation. Monopoly maintenance precludes the innovative
exploitation of interactions between human and machine that do not pass
through Windows. Because Microsoft’s strategic interests are best served by
reducing the innovation that it cannot control, unfettered discretion to integrate
software into Windows strategically will curb innovation and lead to weaker
software products. Antitrust authorities should thus view Microsoft’s
integration decisions as strategic, and evaluate them as they would other
decisions born of business strategy. They are not due the special deference
that courts typically accord to engineering design decisions.

V. THE OPEN QUESTION
Although various courts have commented on Microsoft’s claim to the

unfettered liberty to integrate,66 no court has yet announced a workable
antitrust rule differentiating permissible from impermissible integration. The

65 See id. The European Commission has been investigating Microsoft for several years.

The scope of its investigation covers a number of issues that arose subsequent to the U.S.
government’s filing of its suit, including integration and leveraging allegations involving the
releases of the Windows 2000 and Windows XP operating systems. On August 6, 2003, the
Commission issued a press release, announcing: “The European Commission has given
Microsoft a final opportunity to comment before it concludes its antitrust probe. The
Commission has gathered additional evidence from a wide variety of consumers, suppliers
and competitors. This evidence confirms and in many respects bolsters the Commission’s
earlier finding that Microsoft is leveraging its dominant position from the PC into low-end
servers and that Microsoft’s tying of Windows Media Player to the Windows PC operating
system weakens competition on the merits, stifles product innovation, and ultimately
reduces consumer choice. The Commission also invites Microsoft to submit its comments
on a series of remedies it intends to impose in order to bring the antitrust infringements it
has identified to an end. As this complex investigation draws to a close, the Commission
will continue to ensure a meticulous respect of due process. Therefore, the Commission has
addressed to Microsoft a final Statement of Objections.” Press Release, European
Commission, Commission gives Microsoft last opportunity to comment before concluding
its antitrust probe (Aug. 6, 2003), available at
http://europa.eu.int/rapid/start/cgi/guesten.ksh.

66 See supra notes 5-8.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

absence of such a rule defines perhaps the key challenge facing courts and
regulators currently contemplating antitrust issues in the software industry—
and in particular, those contemplating Microsoft’s actions. This issue is
unlikely to disappear until a viable rule emerges.

Judge Kollar-Kotelly chose not to announce such a rule and instead focused
entirely on narrow claims concerning software markets that Microsoft had
already been adjudicated to have damaged.67 The behavioral restrictions that
she imposed on Microsoft are thus unlikely to provide adequate protection for
future software markets. Judge Kollar-Kotelly’s analysis of Microsoft’s
premature integration of IE into Windows, for example, relied on the software
markets of late 2002, rather than those of 1995, when the integration began.68
But even assuming that her cost-benefit analysis was sound with respect to the
browser market, it remains inapplicable to either media players or
messengers—two software markets whose futures Microsoft’s current behavior
is shaping.69 The existence of competitive products with heterogeneous
features indicates that media player and messenger technologies are still the
focus of innovation driven by competition. These factors suggest that
Microsoft’s integration of WMP and Messenger into Windows—like its earlier
integration of IE—is strategic, not technological.

Beyond Judge Kollar-Kotelly’s analysis, though, the behavioral restrictions
she placed on Microsoft do little to alter either strategic or technological
realities because they do not constrain discretionary integration.70 Many
software companies (including Microsoft) guard their source code as a
valuable trade secret. Attempts by anyone lacking access to source code—
either computer vendors or end users—to replace a truly integrated function
with a competing product could either cripple system performance or strand
extraneous bits of conflicting code. In either case, users are likely to conclude
that their new application works poorly, and may even notice degraded overall
system performance. Most users are likely to blame these problems on the
newly installed applications. This problem is endemic to any market in which
a software monopolist is able to integrate competitive functionality into the
secret source code of a dominant product.

In terms of the direct harm imposed by premature integration, though, the
community of developers whose innovation and creativity impel technology
forward may suffer even more than consumers. Microsoft’s technological
bundling achieves two goals. First, by ensuring that all Windows users also
possess the integrated products, Microsoft guarantees itself a 100 percent reach

67 See supra notes 10-13.
68 See id.
69 These markets’ futures are among the EU’s central concerns. See e.g., Burgess, supra

note 63.
70 See generally Microsoft, 231 F. Supp. 2d 203 (D.D.C. 2002).

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

 B.U. J. SCI. & TECH. L. [Vol. 10:2

into what had been a competitive market. Even a far superior product not
distributed with Windows is unlikely to be resident on all Windows machines.
Second, if Microsoft is able to further “game” the system by making its own
integrated products the only ones that work well with Windows, most
Windows users will bias their selection towards Microsoft for reasons other
than the merits of the product. From there, the rest of the “applications barrier
to entry”71 will follow logically from the network nature of the software
industry. Most content providers, hardware manufacturers, and independent
software developers will follow the user base to Microsoft’s products. This
favoritism will emerge even if Microsoft takes no overt steps to cripple
competing products; it is an outgrowth of the ubiquity of the Microsoft
products shipped with the Windows OS. The effect will be exacerbated,
however, if Microsoft’s products are the only ones capable of running well on
Windows. Developers will increasingly favor Microsoft simply because
rational suppliers will choose to cater to the largest available market. The
applications barrier to entry will thus have a leveraging effect that curbs
innovative activity in competing products, ensuring that remaining innovation
gravitates towards Windows and its newly integrated products. Microsoft’s
ongoing leveraging of its Windows monopoly into adjacent software markets
via discretionary integration is thus likely to harm consumers in two ways: the
short-term frustration of crippled third-party software and the long-term
reduction in innovative product development.

VI. CONCLUSION
Antitrust law should prohibit software monopolists—Microsoft as well as

niche providers—from integrating new products into their monopoly products
prematurely. The marketplace provides a useful proxy for technological
maturity: convergence to a standard. The existence of multiple differentiated
products with heterogeneous features is indicative of an immature technology
still subject to the ferment of competitive innovation. Thus, the appropriate,
workable antitrust rule should prohibit software monopolists from integrating
products whose features are still subjects of innovation and competition into
their monopoly products—or at the very least, should view such premature
integration as presumptively anticompetitive.

This remedial rule would level the playing field in software markets
adjacent to monopoly products. If antitrust law prohibits strategic integration,
software monopolists will integrate only when engineering analyses dictate
that integration is appropriate—precisely the same guidance that motivates
integration in a competitive environment. Monopolists will thus lose an
important bit of leverage and become more likely to compete on their
product’s merits.

71 Id. at 212.

COPYRIGHT © 2004 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT
CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ON-
LINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION

2004] THE FETTERED LIBERTY TO INTEGRATE

Antitrust authorities need to remind the software world of Judge Jackson’s
1997 admonition that “[the] ‘unfettered liberty’ to impose [a discretionary]
idea of what has been ‘integrated’ into [a monopoly software product] stops at
least at the point at which it would violate established antitrust law.”72 They
need to conclude that as a rule, the antitrust laws should prohibit software
monopolists from integrating powerful new technologies still subject to robust
competition into their monopoly products.

72 United States v. Microsoft Corp., 980 F. Supp. 537, 543 (D.D.C. 1997).

