
COPYRIGHT © 2001 TRUSTEES OF BOSTON UNIVERSITY. THIS VERSION DOES NOT CONTAIN PARAGRAPh/PAGE
REFERENCES. PLEASE CONSULT THE PRINt, CD-ROM, ON-LINE DATABASE VERSIONS FOR PROPER CITATION

INFORMATION

ARTICLE

PROMOTING INNOVATION IN THE SOFTWARE
INDUSTRY: A FIRST PRINCIPLES APPROACH TO

INTELLECTUAL PROPERTY REFORM

BRUCE ABRAMSON
*

ABSTRACT ...
I. INTRODUCTION ...
II. BACKGROUND...

A. Patents, Copyrights, and Antitrust ..
B. Proposed Reforms ...

III. A STATEMENT OF FIRST PRINCIPLES ..
IV. INCENTIVES, INVESTMENTS, AND INNOVATION..

A. Tradeoffs Inherent in IP Rights ...
B. Societal Optimality ..
C. Parameters of Protective Strength ..

1. Breadth...
2. Depth...
3. Interaction among the Parameters ...

D. Private Value...
V. THE ANALYTIC FRAMEWORK ...

A. The Four Analytic Stages ..
B. Transaction and Transition Costs ...

VI. THE SOFTWARE INDUSTRY ...
A. Industry Basics ..

1. Platforms and Applications ...
2. Software as a Network Industry ...
3. Paths to Profitability...

B. Alternative Regimes for the Protection of Software...........................

* Ph.D., (Computer Science) Columbia, 1987; J.D., Georgetown, 2000. Dr. Abramson is
a Principal of Charles River Associates and an Adjunct Professor of Engineering and Public
Policy at Carnegie Mellon University. He may be contacted at CRA, 1201 F St. NW, Suite
700, Washington, DC 20004-1204, (202) 362-3181, babramson@crai.com, fax (202) 662-
3910. The author would like to thank Julie Cohen and Mark Lemley for comments on
earlier versions of this article. The opinions expressed in this article are the author’s alone,
and do not necessarily reflect the views of either Charles River Associates or Carnegie
Mellon University.

B.U. J. SCI. & TECH. L.

1. The Current Regime...
2. The Manifesto Proposal ...

C. Incentives and Responses under Alternative Regimes.......................
1. Applications ..
2. Platforms ...
3. Forcing a Choice ...

VII. ANALYZING THE SOFTWARE INDUSTRY..
A. The Current Regime ..
B. The Manifesto Proposal ..
C. Policy Implications..

VIII. CONCLUSIONS ...

I. ABSTRACT

The Intellectual Property (IP) clause of the U.S. Constitution encourages
Congress to promote the development of art and science. The Constitution
also instructs Congress to achieve this goal by allowing authors and inventors
to retain exclusive rights to their innovations and thus to profit from their
commercialization. No further details are provided. These instructions may be
viewed as the “first principles” of the U.S. IP system: harnessing the profit
motive to promote artistic and scientific progress.

Throughout most of American history, two primary categories of IP rights
have sufficed to promote this progress: patents and copyrights. The promotion
of innovative software presented the IP system with a unique set of challenges.
Software shares some characteristics with the innovations generally protected
by patents, and others with innovations generally protected by copyright. It
does not fit neatly into either category. Nevertheless, a unique combination of
patent, copyright, and trade secret law—complete with a set of sui generis
exceptions—has emerged to protect software.

This article argues that the existing system of software rights is inconsistent
with the first principles of our IP system. It shows how the combination of
protections now available to software developers provides a sub-optimal
incentive structure for innovation. Under the current regime, knowledge is
hoarded rather than shared. Products mature more slowly than they might
under a more appropriately tailored regime, and firms may be rewarded for
anticompetitive behavior. This article does not contend that the existing IP
regime has failed to generate a vibrant software industry. It does, however,
show how different protective regimes could have led (and could still lead) to a
more rapid dissemination of knowledge, to more intense commercial
competition, and to superior software products.

The article demonstrates these points within an analytic framework designed
to highlight a general point. Software may be the first industry for which
neither patents nor copyrights are a natural fit; it is unlikely to be the last. A
firm grounding in first principles is necessary to design appropriate protection
for all such industries.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

I. INTRODUCTION

Quick. Is Microsoft Windows like Joyce’s Ulysses, Edison’s light bulb, or
the formula for Coca-Cola?

The answer is almost certainly “none of the above.” For a variety of
reasons, however, “none of the above” is not an acceptable answer—at least
not within the confines of intellectual property (“IP”) law. From an IP
perspective, creative innovations are divided into a small number of neat
categories. Textual and artistic works—like Ulysses—are protected by
copyright.1 Functional inventions—like the light bulb—are granted patents.2

Recipes and formulas—such as the one for Coca-Cola—may be maintained as
trade secrets3 and protected against espionage, but they become ineligible for
legal protection once someone other than their creator has discovered (or
dissected) them.4 Windows, a well-known example of computer software,
violates these categorical distinctions. All computer programs are textual
works designed to be functional,5 thereby suggesting a need for both copyright
and patent protection. Because many programs are also maintained as
proprietary corporate secrets, trade secret law has also played an important role
in the development of the software industry.6

The schizophrenic nature of software emerges (at least in part) from its dual
identity as source code and object code. Programs can be viewed as textual
source code that is comprehensible to trained programmers, or as functionally
equivalent compiled object code that only computers can understand. Since
many software manufacturers choose to keep their source code secret while
distributing copies of their object code, their interests focus on maintaining
strict proprietorship of their source code and on reducing instances of improper
copying and circulation of their object code. These concerns implicate
multiple branches of IP law.

1 See 17 U.S.C. § 102(a)(1) (2000).
2 See 35 U.S.C. § 101 (2000).
3 See ROGER M. MILGRAM, MILGRAM ON TRADE SECRETS § 1.01 (2001) (A trade secret is

“a formula, pattern, device or compilation of information which is used in one’s business,
and which give him an opportunity to obtain an advantage over competition, who do not
know it or use it . . . The subject matter of a trade secret must be a secret.”); Coca-Cola
Bottling Co. v. Coca-Cola Co., 107 F.R.D. 288, 289 (D. Del. 1985) (“The complete formula
for Coca-Cola is one of the best-kept trade secrets in the world.”).

4 See id.
5 See 17 U.S.C. § 101 (“A ‘computer program’ is a set of statements or instructions to be

used directly or indirectly in a computer in order to bring about a certain result.”).
6 There is one additional category of IP protection: trademark. While software

trademarks raise a variety of interesting issues, they are tangential to this article. Patents,
copyrights, and trade secrets all deal with innovations in which society would like to
motivate investment. Trademarks arise from a distinct set of concerns, namely consumer
protection. As a result, software trademarks require a different analysis that will not be
considered here.

B.U. J. SCI. & TECH. L.

In short, Windows is like—and unlike—all of Ulysses, the light bulb, and
Coke. This situation posed a quandary for the policy makers who first had to
decide how software should be categorized and protected. That quandary has
since become a morass. In contemporary America (as well as in most of the
rest of the developed world) some software is protected by patents, some by
copyrights, and some by both. There are surprisingly few bright lines dividing
patentable from unpatentable software. Most commercial software is protected
against piracy by its patents and/or its copyrights, while trade secret law
provides an added layer of protection for source code. Traditional means of
circumventing trade secret protection, such as various forms of reverse
engineering,7 raise a number of unique legal issues when applied to software.
The courts and Congress have both attempted to address these issues, but the
line dividing permissible from impermissible circumvention remains somewhat
blurred.8

The challenge inherent in shoehorning software into one of these few
categories is representative of a broader problem. Innovations in agrarian and
industrial societies may have lent themselves to a meaningful bipartition.
Copyrights provided artists with one class of commercial opportunities; patents
provided inventors with another.9 These opportunities were believed to
motivate appropriate levels of innovation within both groups of innovators.
Our contemporary technological society contains many different types of
innovation—in areas as diverse as information and genetics—and innovators
whose expected financial returns accrue in various ways and at various speeds.
Our continued reliance on only two forms of protection is likely to be under-
rewarding innovation in some fields (and thus retarding progress), and over-
rewarding it in others (and thus needlessly elevating the societal cost of
progress).

This article addresses both this broad theoretical concern and the more
focused challenge of protecting software. It proposes a general analytic

7 See DONALD S. CHISUM & MICHAEL A. JACOBS, UNDERSTANDING INTELLECTUAL

PROPERTY LAW § 3E[3] (1992) (Reverse engineering involves “starting with the known
product and working backward to find the method by which it was developed.”), citations
omitted, [hereinafter UNDERSTANDING INTELLECTUAL PROPERTY LAW].

8 This blurring, and the judicial and legislative attempts to clarify it, are discussed in the
text infra § VI.B.1.

9 See ROBERT P. MERGES ET AL., INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL

AGE 23-27 (2d ed. 2000). A patent grants exclusive rights to make, use and sell an
invention for up to 20 years. See id. at 23. “The patent grant is nearly absolute, barring
even those who independently develop the invention from practicing its art In general
copyrights are easier to secure and last substantially longer than patents, although the scope
of protection afforded copyrights is narrower and less absolute than that given to patents.”
Id. In theory the justification for granting these rights is based on the notion that granting
legal protection for “ideas” creates an incentive for people to create or invent. See id. at 12.
The differences between patents and copyrights thus implicitly create different commercial
opportunities.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

framework for assessing the propriety of a protective regime as applied to a
specific industry, and then uses the software industry as the first case study of
this framework’s applicability. The analysis demonstrates that although the
existing bifurcated IP regime has generated a vibrant software industry, an
alternative set of protective rights could probably have done better. In
particular, a system of software rights designed with an eye on some of the
industry’s unique characteristics would have been likely to motivate innovation
comparable to the current system, to provide society at large with greater
access to scientific and technological advances, and to bestow additional
benefits on consumers, all while reducing the costs borne by society.10

This article contains eight sections. Section 2 reviews some background
information that motivates the reconsideration of IP rights in the software
industry. It also introduces an influential proposal for reforming software
protection first suggested in 1994 by a team of technologists and IP scholars.11

This proposal is used throughout the article as a foil to the current regime. The
contrast between these regimes helps illustrate the ways in which different
types of protection could have led (and could still lead) to different
configurations of the software industry.

The next three sections develop the article’s underlying theory. Section 3
presents a statement of first principles: IP rights exist solely to motivate
innovation.12 Section 4 discusses the basic economics of incentives,
investments, and innovation necessary to evaluate tradeoffs between a set of IP
rights and the innovations that it is expected to motivate. This discussion leads
to section 5’s four-stage framework for the analysis of a specific industry: (i)
Characterize the industry; (ii) Define the protective regime; (iii) Calculate the
potential return on private investment; and (iv) Consider the societal costs and
benefits.

Section 6 sets the software industry in section 5’s framework. Section 6.1
provides the first stage—a description of the software industry. Section 6.2

10 One caveat is required before proceeding with this demonstration. This article is about
analysis and policy. It shows that software rights derived from the first principles of the IP
system would look very different from those that currently exist. The implications of this
analysis include prescriptions for future IP rights. Nothing in this discussion should be
construed as disparaging existing rights or encouraging the infringement of those rights.
The software industry in its current form is an important contributor to the world economy.
The rights that underpin it—improvidently granted or not—must continue to be respected
unless and until they are changed.

11 See Pamela Samuelson, Randall Davis, Mitchell D. Kapor & J.H. Reichman, A
Manifesto Concerning the Legal Protection of Computer Programs, 94 COLUM. L. REV.
2308, 2422-25 (1994) (advocating short-term anti-cloning protection for software as a
means of protecting new software innovations long enough to allow development of a
market for them) [hereinafter Manifesto].

12 See U.S. CONST. art. I, § 8, cl. 8 (giving Congress the power “To promote the progress
of science and useful arts, by securing for limited times to authors and inventors the
exclusive right to their respective writings and discoveries.”).

B.U. J. SCI. & TECH. L.

contains the second stage description of two protective regimes: the current
one and the reform proposal mentioned above. Section 6.3 begins the
cost/benefit discussion central to the third and fourth analytic stages. Section 7
summarizes the comparative analysis, and demonstrates the likely net
superiority of industry-tailored rights. Section 8 offers some concluding
thoughts.

II. BACKGROUND

This article interleaves discussions of a general phenomenon—the potential
shortcomings of existing legal doctrine in motivating innovators—and the
specific manifestation of that phenomenon in the software industry. The
selection of the software industry as a concrete illustration was hardly
arbitrary. It was chosen because it is among the largest, the most mature, and
the best studied of the post-industrial age industries. The challenge of
protecting software innovation has blurred the previously bright lines dividing
the realms of patent and copyright. This section reviews many of the issues
raised by courts and commentators as they recognized this phenomenon. It
provides background on two key issues: the challenge inherent in deciding how
to reward innovative software development (section 2.1), and some proposed
approaches towards meeting that challenge (section 2.2).

A. Patents, Copyrights, and Antitrust

Perhaps the first question that commercially focused software developers (or
more likely, their legal counsel) asked themselves was whether their
innovations would be protected by patent or by copyright. While the current
answer is a clear “it depends,” this question had no easy answer during the
early years of the software industry. On the copyright front, questions lingered
at least through the 1970s.13 In 1974—already the third decade of software’s
existence—Congress established the National Commission on New
Technological Uses of Copyrighted Works (CONTU).14 Four years later,
CONTU recommended extending copyright law to cover software in line with
prevailing industry expectation and practice.15 Although the commission’s
conclusions were not unanimous,16 Congress enacted CONTU’s
recommendations into law in 1980, and software became explicitly
copyrightable.17

13 See Pamela Samuelson, CONTU Revisited: The Case Against Copyright Protection for
Computer Programs in Machine-Readable Form, 1984 DUKE L.J. 663, 693-94 (1984).

14 Act of December 31, 1974, Pub. L. No. 93-573, 88 Stat. 1873 (1974) (codified as
amended at 17 U.S.C. § 701 (2000)).

15 See Samuelson, supra note 13, at 666.
16 See id. at 698-99.
17 Pub. L. No. 96-517, 94 Stat. 3015 (1980) (codified as amended at 17 U.S.C. § 117

(2000)). For a brief overview of CONTU, and of Commissioner Hersey’s dissent, see
MERGES ET AL., supra note 9, at 911-13.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

The path to patent protection was even more tortuous. Long-standing patent
principles prohibit patenting an idea or a mathematical formula.18 Computer
programs were viewed as textual representations of mathematical algorithms
and thus potentially appropriate subjects for copyright protection—but not for
patents.19 As a result, the Patent and Trademark Office (PTO) consistently
refused to award patents to software developers, and a combination of
copyright and trade secret law came to define the industry throughout the
1950’s and 1960’s.20 The first serious doubts about this paradigm emerged in
1972, when the Supreme Court accepted the general principle of a software
patent (although it refused to grant one at that point).21 At the risk of
oversimplification, the Court introduced a hypothetical split between simple
algorithms (unpatentable) and algorithms embedded in specific applications
(potentially patentable subject matter).22 The Court refined this split and found
a patentable embedded algorithm in 1981.23

The pendulum has since swung towards increasingly lower barriers for
software patents, as applied to both algorithms and business methods. In the
midst of the 1999 holiday shopping season, for example, a District Court ruling
granted a preliminary injunction allowing Amazon.com to enforce its patent on
the “one-click” method of ordering goods over the Internet, despite
Barnesandnoble.com’s contention that the patent was invalid because the PTO
had paid insufficient attention to the prior art.24 Although the Federal Circuit
subsequently vacated that ruling and remanded the case for further
proceedings,25 the fact remains that the PTO granted the patent, and the courts
allowed it to affect Internet commerce during a key fourteen-month period.
This appellate ruling may (or may not) mark yet another turnaround and an
acknowledgment that the PTO’s standards for business process patents had
fallen too low—an issue that the PTO itself had reportedly been reassessing.26

The challenge of categorizing software thus posed some serious definitional
problems that worked their way to the highest levels of the political and legal

18 See DONALD S. CHISUM, CHISUM ON PATENTS § 1.01, § 1.03[2][d] (citing Gottschalk v.
Benson, 409 U.S. 63 (1972)) (2001) [hereinafter CHISUM ON PATENTS].

19 See Mackay Radio & Tel. Co. v. Minnesota & Ont. Paper Co., 306 U.S. 86, 94 (1939)
(holding that a mathematical representation of a scientific truth is not patentable).

20 See Peter S. Menell, Tailoring Legal Protection for Computer Software, 39 STAN. L.
REV. 1329, 1348 (1987) (stating that Patent and Trademark Office initially refused to patent
computer programs).

21 See Gottschalk v. Benson, 409 U.S. 63, 71-72 (1972).
22 See id. at 65, 71.
23 See Diamond v. Diehr, 450 U.S. 175, 191-93 (1981).
24 See Amazon.com, Inc. v. Barnesandnoble.com, Inc., 73 F. Supp. 2d 1228, 1233, 1235

(W.D. Wash. 1999) vacated and remanded by 239 F.3d 1343 (Fed. Cir. 2001).
25 See Amazon.com, Inc. v. Barnesandnoble.com, Inc., 239 F.3d 1343, 1347 (Fed. Cir.

2001).
26 See Sabra Chartrand, Federal Agency Rethinks Internet Patents, N.Y. TIMES, Mar. 30,

2000, at C12.

B.U. J. SCI. & TECH. L.

systems—and that nevertheless continue to cause controversy. The underlying
problem, however, runs deeper than ambiguity at the edge of legal doctrine.
Despite the availability of software patents, most software remains protected
by the aforementioned combination of copyright and trade secret law. The use
of copyrights to protect the functional innovations embodied in software has
allowed the rights holders to exert their rights in ways that could not have been
imagined by the drafters of the original Copyright Act.27 Many of these
exertions parallel activities that have been banned either under the antitrust
laws or under the patent law doctrine of patent misuse.28 Because copyright
law was not designed with functional innovations in mind, it contains no
comparable traditional doctrine to address these potentially undesirable (or
illicit) exertions of rights.29 This understandable shortcoming sets the stage for
an inevitable tension between copyright law and antitrust law as applied to
software.30

27 See Samuelson, supra note 13, at 705-06 (explaining that the quid pro quo of
copyright law is intended to be legal protection in exchange for the disclosure of new ideas
to the general public but that computer software released as object code readable only by
machines secures the legal protection while subverting the public benefit).

28 See generally MERGES ET AL., supra note 9, at 303-14, 1101-98; see also the
discussion in infra note 48. Patent misuse is a judicially crafted doctrine that prevents
patent holders from “misusing” their patent rights—typically by attempting to extend them
beyond the range for which they were granted. See MERGES ET AL., supra note 9, at 303.
Much of the behavior proscribed under this doctrine is similar to activities that qualify as
antitrust violations. See id. at 307. While the original conception of patent misuse was
broader in scope than the antitrust laws, it has been narrowed considerably since it was first
articulated in 1917. See id. at 307-14. The two bodies of law are now quite similar—
although patent misuse does still cover a number of practices that arise exclusively or
primarily in the context of patents. See id.

29 There is a nascent doctrine of copyright misuse that has been adopted by several of the
Circuits. See Brett Frischmann & Dan Moylan, The Evolving Common Law Doctrine of
Copyright Misuse: A Unified Theory and its Application to Software, 15 BERKELEY TECH. L.
J. 865 (2000) (tracing the development of this doctrine back to its common law roots and
discussing its specific, recent development within the realm of software litigation). The
doctrine is discussed in greater detail in infra n. 185.

30 The DC Circuit’s recent response to an argument forwarded by Microsoft captures this
tension well:

The company claims an absolute and unfettered right to use its intellectual property as
it wishes: ‘[I]f intellectual property rights have been lawfully acquired,’ it says, then
‘their subsequent exercise cannot give rise to antitrust liability.’ That is no more
correct than the proposition that use of one’s personal property, such as a baseball bat,
cannot give rise to tort liability. As the Federal Circuit succinctly stated: ‘Intellectual
property rights do not confer a privilege to violate the antitrust laws.’

United States v. Microsoft Corp., 253 F.3d 34, 63 (D.C. Cir. 2001) (citations omitted) (per
curiam), reh’g denied, 2001 U.S. App. LEXIS 17137 (D.C. Cir. Aug. 2, 2001), mot. denied,
2001 U.S. App. LEXIS 18175 (D.C. Cir. Aug. 17, 2001), cert. denied, 2001 U.S. LEXIS
9509 (U.S. Oct. 9, 2001) [hereinafter Microsoft-Appeal].

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

To appreciate the source of this tension, it is important to recall that IP
protection—of any flavor—confers a monopoly on the holder of the IP rights.
This legally bestowed monopoly thus enables the rights holder to license her
protected innovation and to collect royalties from authorized users. While
relatively few of these “monopolies” confer any type of meaningful market
power, the holders of the select few valuable IP rights can emerge as
significant monopolists. These powerful rights holders may propose (and even
extract) license terms that violate the antitrust laws. The law’s perception of
the boundary between permissible and impermissible license terms has shifted
over time; terms that have been considered valid assertions of IP rights during
some eras would have been viewed as misuse and/or as antitrust violations in
others. 31 This movable boundary defines an inherent tension between the IP
laws and the antitrust laws.32 Prior to the advent of software, however, this
tension lay almost entirely in the realm of patent law.

The courts’ initial view of this boundary was highly deferential to patent
rights. In a classic 1926 case, General Electric (“GE”) licensed patented light
bulb technology to Westinghouse under terms that required Westinghouse to
adhere to GE’s pricing schedule.33 The government argued, inter alia, that this
term constituted resale price maintenance, or vertical price fixing,34 a practice
that had already been found illegal under the antitrust laws.35 Chief Justice
Taft, writing for the Court, agreed with the government’s view that GE would
have been guilty of vertical price fixing had it applied comparable terms to an
unpatented product.36 Nevertheless, the Court also agreed with GE that its
patent protected it from the allegation, reasoning that since GE could legally
have withheld the technology from Westinghouse altogether, there was no
reason to disallow this strictly less restrictive license term.37

While General Electric has never been overturned, a collection of cases
narrowing its holding appeared throughout the middle decades of the twentieth
century.38 This case law asserted, for example, that “the authorized sale of a

31 See infra notes 33-44 and accompanying text.
32 See MERGES ET AL., supra note 9, at 1105-10.
Traditionally, the conventional wisdom was that the antitrust laws and the intellectual
property laws are in conflict Baldly stated, the conflict arises because the
intellectual property laws grant ‘monopolies’ to inventors, while the goal of the
antitrust laws is to prevent or restrict monopoly. However, scholars are increasingly
taking the position that the two laws are not in conflict at all. Rather, they are
complementary efforts to promote an efficient marketplace and long-run, dynamic
competition through innovation.

Id. at 1105.
33 See U.S. v. General Electric, 272 U.S. 476, 479 (1926).
34 See id. at 479-80.
35 See Dr. Miles Med. Co. v. John D. Park & Sons Co., 220 U.S. 373, 405 (1911).
36 See General Electric, 272 U.S. at 486.
37 See id. at 490.
38 See U.S. v. United States Gypsum Co., 333 U.S. 364, 400 (1948) (patent holders

B.U. J. SCI. & TECH. L.

[patented] article. . .is a relinquishment of the patent monopoly”39 and that
“[t]he first vending of any article manufactured under a patent puts the article
beyond the reach of the monopoly which that patent confers.”40 These mid-
century cases severely narrowed the range of restrictions that a patent holder
could place on her licensees and shifted the balance away from patent rights
towards antitrust law.

The pendulum may have swung back in a more permissive direction since
the creation of the Federal Circuit.41 In a key 1992 ruling, the Federal Circuit
reversed a summary judgment against Mallinckrodt despite some restrictive
conditions that its licenses placed on the reuse of a patented medical device.42

The court remanded the case for a new trial to determine whether the
prohibition on reuse was closer to a restriction on repair (an activity that is
generally permissible under the patent law) or reconstruction (an activity that is
among the rights reserved by the patent-holder even in the absence of an
explicit license term).43 The Supreme Court has yet to comment on the
direction taken by the Federal Circuit—a direction that appears to be rather
deferential to patent rights.44

Software and other functional texts have allowed the IP/antitrust tension to
migrate from patent law into copyright law. The government’s antitrust case
against Microsoft45 is probably the clearest and most widely discussed—but

cannot organize the use of their patents throughout an entire industry by regulating
distribution through licenses); U.S. v. Masonites Corp., 316 U.S. 265, 279 (1942) (“A
patentee who employs such an agent to distribute his product certainly is not enlarging the
scope of his patent privilege if it may fairly be said that that distribution is part of the
patentee’s own business and operates only to secure to him the reward for his invention
which Congress has provided. But where he utilizes the sales organization of another
business—a business with which he has no intimate relationship—quite different problems
are posed since such a regimentation of a marketing system is peculiarly susceptible to the
restraints of trade which the Sherman Act condemns.”); U.S. v. Univis Lens Corp., 316 U.S.
241, 249 (1942) (stating that at least some patent rights are operative only through the first
sale of the patented article).

39 Univis Lens Corp., 316 U.S. at 249.
40 Id. at 252.
41 Congress created the Federal Circuit in 1982 with the passage of the Federal Courts

Improvement Act, in part to unify patent doctrine by establishing a single court to hear all
appeals in cases asserting patent claims. See MERGES ET AL., supra note 9, at 129-30.

42 See Mallinckrodt, Inc. v. Medipart, Inc., 976 F.2d 700, 708-09 (Fed. Cir. 1992).
43 See id. at 709.
44 In addition to these shifts in the courts’ attitudes, the enforcement agencies (i.e., the

Justice Department and the Federal Trade Commission) have also moved the line between
rights that accompany a patent and activities that violate the antitrust laws. Their current
thinking about this interface shows an increased deference to patent rights consistent with
the trend in the courts. See U.S. DEP’T. OF JUSTICE & FTC, ANTITRUST GUIDELINES FOR THE

LICENSING OF INTELLECTUAL PROPERTY, § 4 (1995).
45 Reporting of the first round of the Microsoft trial was split. The findings of fact are in

United States v. Microsoft Corp., 65 F. Supp. 2d 1 (D.D.C. 1999) aff’d in part, rev’d in part,

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

hardly the only—demonstration of this tension. Microsoft was found guilty of
antitrust violations for a variety of negotiating tactics and licensing terms
associated with Windows, a software package protected by a combination of
patent, copyright, and trade secret laws.46 A unanimous en banc D.C. Circuit
upheld the illegality of most of these tactics; Microsoft was found to have
improperly maintained its (previously earned) monopoly over operating
systems for PCs based on Intel’s microprocessors.47

The behavior described in Microsoft is analogous to a pattern that has long
been common at the patent/antitrust interface48 but implicates an important
new twist: Many of the rights asserted were protected by copyright, rather than
by patent. The novelty of this twist emerged from a confluence of events.
Whereas an operating system patent would have conferred a fairly broad
monopoly on Microsoft, the Windows copyright was fairly narrow.49

Microsoft had to earn the extension of its monopoly from Windows to
operating systems running on Intel-based PCs50 by defeating all competing
operating systems in the marketplace. Microsoft’s monopoly was thus

remanded, 253 F.3d 34 (D.C. Cir. 2001), cert. denied 2001 U.S. LEXIS 9509 (Oct. 9, 2001)
[hereinafter Microsoft-Facts]. The findings of law are in United States v. Microsoft Corp.,
87 F. Supp. 2d 30 (D.D.C. 2000) aff’d in part, rev’d in part, remanded, 253 F.3d 34 (D.C.
Cir. 2001), cert. denied, 2001 U.S. LEXIS 9509 (Oct. 9, 2001) [hereinafter Microsoft-Law].

46 See Microsoft-Law, 87 F. Supp. 2d at 35.
47 See Microsoft-Appeal, 253 F.3d at 46.
48 In this classic pattern, a patent holder agrees to license her patent subject to a variety

of conditions. Some of these conditions restrict the licensee’s ability to make independent
business decisions. The licensee (or, as in Microsoft, the government on behalf of
consumers) brings suit, objecting that these restrictions limit his ability to compete, or
possibly even restrict the entire competitive structure of the market. The patent holder
counters that the license terms are nothing more than a legitimate exercise of her patent
rights. Suits of this sort raise questions of both antitrust and patent misuse. The patent
misuse doctrine was first articulated in Motion Picture Patents Co. v. Universal Film
Manufacturing Co., 243 U.S. 502, 516 (1917). It has gone through several incarnations in
the past eighty-plus years—some interpreting the violation broadly and some narrowly. Its
relationship to antitrust law—and in particular to the antitrust violation of tying—has
remained a matter of some controversy throughout all of these incarnations. Judge Posner,
for example, has argued that it should be coextensive with antitrust law, and in particular the
antitrust violation of tying. See USM Corp. v. SPS Technologies, 694 F.2d 505, 510 (7th
Cir. 1982), cert. denied, 462 U.S. 1107 (1983). At the time of his assertion, however, there
was still a body of good law suggesting that patent misuse was broader in scope than tying.
Congress has since entered the fray to narrow at least some of this excess scope with the
Patent Misuse Reform Act (PMRA) of 1988. See Pub. L. No. 100-703, § 201, 102 Stat.
4674 (codified as amended at 35 U.S.C. § 271(d) (2000).

49 The concepts of protective breadth and depth are discussed in detail in infra § 4.3 of
the text.

50 The market for such Intel-based PCs is that which Microsoft monopolized. See
Microsoft-Appeal, 253 F.3d at 45.

B.U. J. SCI. & TECH. L.

partially granted and partially earned—and as the court noted, maintained at
least in part through illegal means.51

Courts have developed a variety of responses, not all of which are mutually
consistent, to this newfound ability to leverage copyrights in an
anticompetitive manner. Some have crafted a decompilation exception to
copyright law, creating some ambiguity around the issue of reverse
engineering.52 At least part of this exception has been codified in the Digital
Millennium Copyright Act (“DMCA”),53 thereby removing some but not all of
the ambiguity.54 Others have begun to develop a new doctrine of “copyright
misuse” that addresses the newly relevant boundaries between functional
copyrights and antitrust law.55 Either way, both Congress and the courts have
recognized that some type of reform—or at the very least, flexibility—is
required.

B. Proposed Reforms

Commentators drawn from the legal and the technological communities
have also voiced their opinions about the challenges posed by software that
were simply not implicated in the protection of more traditional innovative
products. In the early days of software development, copyright protection
appeared to be a much better, albeit imperfect, fit than patent protection.56 As
the industry matured, many of the problems inherent in this policy choice
became evident. By 1987, these difficulties were sufficiently evident for
Menell to present a cogent (and in many ways prescient) analysis of the
impropriety of copyright protection for software.57

In the ensuing years, a number of proposals have been forwarded. These
proposals may be broken into two broad classes: radical reforms pushing for a
new sui generis form of protection for software, and conservative reforms
pushing for increased flexibility in the application of existing legal doctrines to
software. Perhaps the most significant of the radical reforms was presented as
part of a symposium held at Columbia University in 1994. The key article,

51 See id.
52 E.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992); Atari Games

Corp. v. Nintendo of America, Inc. 975 F.2d 832 (Fed. Cir. 1992).
53 See Pub. L. No. 105-304, 112 Stat. 2877 (1998) (codified as amended at 17 U.S.C. §

1201 (2000)).
54 For a more complete discussion of the decompilation exception see infra note 219 and

accompanying text.
55 Both of these responses are discussed in detail elsewhere in this article. Reverse

engineering is discussed in infra note 219. The copyright misuse doctrine is discussed in
infra note 185 and accompanying text.

56 See Menell, supra note 20, at 1347-51 (discussing the development of patent
protection for software and the shortcomings of this form of IP protection for software);
Samuelson, supra note 13, at 692-94 (discussing early application of copyright to software).

57 See Menell, supra note 20, at 1359-64.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

commonly known as “The Manifesto,”58 set out to “contribute a basic
framework for constructing a new form of legal protection for program
innovations.”59

The Manifesto’s analysis began by identifying several key characteristics of
computer programs: (i) They behave, (ii) they are constructed from text, and
(iii) they evolve incrementally from one generation to the next.60 Each of these
features provides insight into the types of innovation that must be promoted to
ensure the development of a healthy software industry. These features also
imply the inadequacy of existing IP rights. Traditional copyrights, for
example, protect expressions of ideas, not ideas themselves.61 To a novelist or
an artist, this protection is meaningful. To a computer programmer, it is not.
While there may be a pride of authorship that accompanies a well-written piece
of computer code, a program’s raison-d’être is its behavior. Programs are
written to perform specific tasks. Software innovators are driven to automate
increasingly sophisticated behavior. An IP right that provides no protection to
the newly discovered behavior, and that allows any other programmer to
mimic the behavior simply by writing new code from scratch, fails to protect
the valuable item that motivated the innovation. At the same time, the
incremental nature of software development suggests that most programs
would fail either the novelty or non-obviousness tests of patent law.62 Most
computer programs, including most important software innovations, represent
only slight movements in the state of the art.63 The first key to the Manifesto’s
analysis was thus a demonstration of the inadequacy of traditional IP rights,
and a conclusion that the use of traditional legal regimes to protect software
innovations would lead to inevitable cycles of under- and over-protection.64

The Manifesto then developed a set of abstract principles and goals for a
market-oriented approach to the protection of software innovations and
sketched a proposal for a new regime that paralleled many important
motivational components of patent law.65 Under this proposal, software
developers would be able to register their programs to obtain protection for the

58 Manifesto, supra note 11.
59 Id. at 2315.
60 See id. at 2315-16.
61 WILLIAM F. PATRY, COPYRIGHT LAW AND PRACTICE, VOL. I, at 312 (1994) (citing 17

U.S.C. § 102(b) (1978)).
62 “The novelty requirement lies at the heart of the patent system.” CHISUM ON PATENTS,

supra note 18, at § 3.01. The novelty requirement ensures that patentable inventions are
“new,” a somewhat subjective term defined formally by statute. See id. Novelty is closely
related to the requirement of nonobviousness; an invention that is new enough to qualify as
novel must meet the additional requirement that it not be obvious to one with ordinary skill
in the art implicated by the invention. See id.

63 See Manifesto, supra note 11, at 2330-31.
64 See id. at 2356.
65 See id. at 2405-13 (listing fifteen goals and principles).

B.U. J. SCI. & TECH. L.

innovative behavior that they embodied.66 In exchange, the developers would
be required to disclose their programs—including their source code.67 In this
way, at least, the Manifesto’s proposal appears to mimic the patent system.
The proposal differs from patent law, however, in a few key respects. In
particular, the proposed protection would be easier to earn (i.e., it would have
to meet lower thresholds of novelty and nonobviousness than a standard patent
application), and it would expire much more quickly.68

The Manifesto’s proposal was but one of several radical responses to the
challenges posed by software. Other revolutionary proposals have included the
creation of various hybrid regimes and/or other types of sui generis forms of
protection.69 Proponents of even radical reform, however, have recognized
that patent law and copyright law provide a wealth of information about legal
mechanisms that have succeeded and failed in a variety of different settings.
Advocates of conservative reform have recognized that the historical
development of legal doctrines within patent and copyright law, as well as the
occasional cross-fertilization that results in nascent doctrines like copyright
misuse, provide the building blocks from which any reform proposal should be
drawn. In the specific context of software protection, the nature of the industry
and several decades of experience should provide even further guidance.

These concerns played an important role in The Digital Dilemma, a recent a
study commissioned by the National Research Council.70 The study concluded
that, although there was a clear need for new forms of IP protection, legislation
at this point would be premature.71 Its ultimate recommendation was that
Congress observe the various “experiments” already underway in business
(i.e., relying on combinations of contracts and technology to protect software)
and in the courts (i.e., the development of new, relevant IP doctrines and/or
exceptions) to gain useful data in assessing appropriate reform.72

66 See id. at 2417-18.
67 See Manifesto, supra note 11, at 2417-18. For a discussion of source code and object

code in software programming, see discussion in infra § VI.B.
68 Some of the Manifesto’s key points were recognized by a source as unlikely as the

holder of the business method patent of one-click Internet ordering, namely Amazon.com
Chairman Jeff Bezos, who suggested that a three-to-five year lifetime would be adequate for
software patents. See Matt Richtel, Chairman of Amazon Urges Reduction of Patent Terms,
N.Y. TIMES, Mar. 11, 2000, at C4. Bezos’s comments were made shortly after a District
Court upheld the patent (a decision that was later reversed and remanded on appeal). See
Amazon.com, 73 F. Supp. 2d 1228 vacated and remanded by 239 F.3d 1343.

69 For a discussion of the historical and international development of legal hybrids see
J.H. Reichman, Legal Hybrids between the Patent and Copyright Paradigms, 94 COLUM. L.
REV. 2432 (1994).

70 NATIONAL ACADEMY OF SCIENCES, THE DIGITAL DILEMMA (2000) [hereinafter DIGITAL

DILEMMA].
71 See id. at 239.
72 See id. at 16. The study further suggested that when reform is contemplated, it be

evaluated in line with a list of principles designed to reward creativity without impeding

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

The Digital Dilemma’s recommendations stem, at least in part, from a
realistic recognition that sui generis software protection is unlikely to emerge
in the near future, and that the likelihood of its peaceful emergence grows
slimmer as the initial debates recede into history and as the commercial
reliance on existing terms of protection continues to grow. A similar sense of
realism helped to motivate a number of other proposals more conservative than
that of the Manifesto. Cohen and Lemley, for example, argued that a narrow
scope for software patents could reduce, if not eliminate, the problems posed
by overprotected software.73 They contend that this narrow scope can
probably be achieved within the confines of several existing patent law
doctrines, primarily the experimental use doctrine and the doctrine of
equivalents.74

The experimental use doctrine allows competitors to make certain restricted
uses of a patented invention in the name of experimentation, or the furtherance
of knowledge.75 Firms developing blocking patents, or patentable
improvements on their competitors’ patented inventions, frequently rely upon
this doctrine.76 Cohen and Lemley suggested that the experimental use
doctrine could be read broadly enough to permit a limited right to reverse
engineering—a right that would circumscribe a patent holder’s ability to shut
down its competitors’ development efforts.77

The doctrine of equivalents defines the amount of dissimilarity required
before a product competing with a patented invention is considered to be non-
infringing.78 The more broadly the doctrine is viewed, the greater the scope of
the patent and the larger the portion of the software industry threatened by the
patent. Cohen and Lemley contended that a narrow reading of the doctrine, at
least in the context of software, is both appropriate and important to protect
innovation.79

development. See id. at 236-38.
73 See Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the Software

Industry, 89 CAL. L. REV. 1, 5-6 (2001).
74 See id. at 7, 36-37.
75 “Experimental use” is a well-recognized, judicially created defense to infringement in

cases in which the patented product was used solely for research or experimentation without
the authorization of the patent holder. See MERGES ET AL., supra note 9 at 295-97.

76 E.g., City of Elizabeth v. American Nicholson Pavement Co., 97 U.S. 126 (1878)
(holding that an inventor’s public use of an invention to test its qualities was not a public
use within the meaning of the statute); Pharmacia, Inc. v. Frigitronics, Inc., 726 F. Supp
876, 885-86 (D. Mass. 1989) (holding that sale of an experimental product was by definition
noncommercial and not subject to the section 102(b) statutory bar).

77 See Cohen & Lemley, supra note 73, at 29-30.
78 “The doctrine of equivalents allows a patent owner to hold as an infringement a

product or process that does not correspond to the literal terms of a patent’s claim but
performs substantially the same function in substantially the same way to obtain the same
result as the claimed subject matter.” CHISUM ON PATENTS, supra note 18, at § 18.04.

79 See Cohen & Lemley, supra note 73, at 52-53.

B.U. J. SCI. & TECH. L.

The generally conservative tenor of such proposals is reflected in the
authors’ contention that necessary reform can be achieved within the scope of
existing legal doctrine.80 Cohen and Lemley admit that more radical steps may
be necessary; if the courts decide that their proposed doctrinal readings are
inconsistent with existing law, the authors advocate legislatively granted
exemptions.81 For a variety of reasons, the legislative approach may be
preferable; as long as the IP laws put software in the same one-size-fits-all
basket with other industries, doctrines tailored to one end of the basket may
have unforeseen consequences at the other end.82

The need for intelligent reform may thus be summarized as follows: The
conferral of an IP right enables various types of anticompetitive behavior.83

While it is possible to simply grant the rights, assume that they will be wielded
responsibly, and allow antitrust law to clean up inappropriate uses, such an
approach is exceedingly dangerous. Society would be better served by an IP
system that conferred rights that provide appropriate motivation and few
opportunities for abuse. The potential hazards of the wrong reform are equally
obvious. They could destroy the current strengths of a thriving software
industry while offering little of value in return. These dual needs may be
described as calling for “cautious, but potentially radical” reform—in line with
the recommendations of the Digital Dilemma.84

This section has outlined a few significant proposals that have been
forwarded to meet the challenge of intelligent reform. One of this article’s foci
is fostering an understanding of these proposals’ potential to both help and
harm the industry. Any such analysis must consider the full range of each
proposal’s costs and benefits. The analysis must recognize that the costs
inherent in an IP regime are not restricted to the balance between risks and
rewards that they confer on rights holders, or even on the societal costs and
benefits of progress. They also include both transaction costs (i.e., the
ongoing costs of implementing and running a policy regime) and transition
costs (i.e., the potentially large one-time costs inherent in moving from one
system of rights to another).85 All of these costs can be significant, and all are

80 See id. at 7.
81 See id. at 37.
82 It is hard to find statutory authority for the courts to interpret patent law differently in

diverse industries. Narrow readings of the doctrines in the software industry, where the
readings appear to be appropriate, may have significant negative consequences in other
industries. This sort of “bleed through” is a potentially hazardous side effect of all
conservative reforms.

83 For example, IP rights granted without sufficient attention to the societal good that
they claim to be serving create opportunities for potentially dangerous anticompetitive acts.
These acts can have serious, detrimental effects both on consumers (who may be restricted
to low quality, high-priced goods) and on competing innovators (who may discover
significant barriers to innovation).

84 See DIGITAL DILEMMA, supra note 70, at 12-16.
85 One other potential pitfall of a transition is that industry lobbyists may view periods of

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

relevant to the ultimate attractiveness of a proposed reform. They are distinct,
however, from the merits of a proposed regime change. The next few sections
develop a framework within which such an analysis may be conducted.

III. A STATEMENT OF FIRST PRINCIPLES

The IP clause of the U.S. Constitution empowers Congress to “promote the
progress of science and useful arts, by securing for limited times to authors and
inventors the exclusive right to their respective writings and discoveries.”86

This charge makes no reference to patents, copyrights, or any other specific
form of protection. It simply states a goal (i.e., the promotion of art and
science) and a mechanism (i.e., the reservation of exclusive rights), and leaves
the details to Congress. It does, however, recognize that authors and inventors
constitute distinct classes, and hints that the rights reserved to these two classes
of innovators need not be identical.

A return to these first principles must similarly begin with the goal of
promoting innovation and with the mechanism of reserving exclusive rights.
In addition to recognizing the distinction between authors and inventors, a
contemporary analysis might posit the existence of multiple categories of
innovators, each of whom could respond to different sorts of incentives. The
goal of any first principles approach is to understand how these categories can
be characterized, how the contours of the categories affect incentives, and how
incentives can be structured to promote innovation and development in each
category.

This first principles approach contrasts with those taken by previous IP
reform proposals. The more conservative of the proposals, or those that
attempt to resolve the protection of software using only existing doctrines of
patent or copyright law (or minor modifications thereof), take pragmatism as
their starting point.87 Others (notably the Manifesto) begin with a
consideration of software, and see computer programs as a new class of
innovations that were created by neither authors nor inventors as those terms
are generally understood.88 They thus tend to propose sui generis forms of
protection for software without questioning the broader applicability of either
the patent or the copyright systems.

The implications of a first principles approach are potentially even more
radical. This article’s key premise is that while the software industry is among

legislative deliberation as opportunities to divert IP regimes away from the public good and
towards the parochial concerns of their clients. The industry-specific approach advocated in
this article may lead to an increase in such behavior, as rights targeted to a specific industry
are likely to receive less careful scrutiny than broadly applicable rights—thereby increasing
the opportunities for domination by the affected industry. Such costs are but one example of
transition costs that need to be considered during any debate over reform.

86 U.S. CONST. art. I, § 8, cl. 8.
87 See Cohen & Lemley, supra note 73, at 7.
88 See Manifesto, supra note 11, at 2332, 2376.

B.U. J. SCI. & TECH. L.

the first victims of the one-size-fits-all89 mentality that has long pervaded
thinking about IP rights, it is unlikely to be the only one. While much of the
article’s analysis focuses on software, many other parts are broadly applicable
to other industries whose peculiarities challenge the long-standing partitioning
of IP rights.

New formats of IP rights should emerge over the next few decades to
address the needs of industries in which traditional IP rights are likely to be
either overprotective and prone to anticompetitive abuse or underprotective
and likely to result in underinvestment. The first principles approach thus
leads to the following key question: What set of exclusive rights would
motivate the optimal level of innovation among the members of a given
industry?

IV. INCENTIVES, INVESTMENTS, AND INNOVATION

The key question, as stated above, remains rather abstract. This section will
develop the machinery necessary to evaluate both protective regimes that offer
exclusive rights and specific industries—as well as to understand the meaning
of “optimality.”

A. Tradeoffs Inherent in IP Rights

“Intellectual Property” is an artificial and counterintuitive construct. An
“intellectual good” is nothing more than an idea. Ideas are non-rivalrous and
non-excludable—textbook characteristics of public goods.90 Stated in
somewhat simpler terms, one person’s use of an idea neither precludes anyone
else’s simultaneous use nor damages the idea in any way that detracts from
anyone else’s later use. Thus, society as a whole would be best served by the
rapid and free dissemination of all newly conceived ideas, so that maximum
productive use of the idea could be made at the earliest possible moment. The
creation of property rights in ideas impedes their dissemination at an
immediate societal cost. It also imposes a more tangible cost on society. The
holder of a property right in an idea may charge for access to that idea.91 By
conferring IP rights, society—in the guise of consumers—agrees to pay
monopoly rents to the right holder for the life of the grant.92

There is a substantial literature on the economics of public goods.93 Part of
this literature focuses on market failures, or ways in which standard market

89 While a technically correct statement would admit that a few sizes fit all, the
colloquially accepted expression is close enough for purposes of this discussion.

90 See Menell, supra note 20, at 1337 (indicating that ideas are non-excludable because
one cannot exclude those who pay for the use of the idea from those who do not and are
non-rivalrous because having a larger and larger number of people using them does not
affect the supply of the idea).

91 See MERGES ET AL., supra note 9, at 12-16.
92 See Menell, supra note 20, at 1340.
93 Public goods and market failures are standard topics in a course on microeconomic

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

principles do not apply to public goods.94 Ideas suffer from several of these
classic market failures. If all new ideas are spread quickly and freely,
innovators will have few opportunities to capitalize on their innovations, and
investors will have minimal incentive to invest in innovation. Most people
looking for an investment venue will choose to put their time, effort, and/or
capital into tangible property that can be resold at a personal profit rather than
into ideas that will benefit society at large but whose promised personal returns
are limited.95 A societal insistence on the immediate public ownership of
innovative ideas will necessarily reduce private investment in innovation and
will consequently reduce the number of new ideas generated.

This inherent tension has led most contemporary developed societies to
create limited types of private property rights in the realm of ideas.96 The grant

theory. Most good textbooks should contain useful discussions—although they may be
intertwined with more general analyses of market goods and the circumstances under which
market principles work. E.g., DAVID M. KREPS, A COURSE IN MICROECONOMIC THEORY

(1990). The issues take on a particular relevance when the focus turns to the specific
problems of valuing and/or managing public goods. See, e.g., ALFRED E. KAHN, THE

ECONOMICS OF REGULATION (1988); ROBERT C. MITCHELL & RICHARD T. CARSON, USING

SURVEYS TO VALUE PUBLIC GOODS: THE CONTINGENT VALUATION METHOD (1989). For a
broad overview of the relationship among public goods, market failures, and various legal
doctrines see A. MITCHELL POLINSKY, AN INTRODUCTION TO LAW AND ECONOMICS (1989).
For a discussion of their relationship to IP law see RICHARD A. POSNER, ECONOMIC

ANALYSIS OF THE LAW 43-50 (1998). These topics have recently emerged as important
issues at the forefront of antitrust analysis, as part of the “Post-Chicago” school. See Carl
Shapiro, Aftermarkets and Consumer Welfare: Making Sense of Kodak 63 ANTITRUST L.J.
483, 484-85 (1995).

94 See MITCHELL & CARSON, supra note 93, at 1-2; POLINSKY, supra note 93, at 135-38.
95 This predictable preference would also represent a cost to society, albeit one that is

harder to measure.
96 The decision to grant such rights is fairly modern (in historical terms), is not

necessarily obvious, and remains a matter of some controversy at the international level.
Even today, many commentators continue to advocate replacing the patent system with a
system of fixed rewards. For an introductory description of 19th century critics of the patent
system see STEVEN SHAVELL & TANGUY VAN YPERSELE, REWARDS VERSUS INTELLECTUAL

PROPERTY RIGHTS 1-4 (Nat’l Bureau of Econ. Research, Working Paper No. 6956 (1999)).
Shavell and van Ypersele also developed a model for comparing the societal benefits of a
reward system (i.e., where the government provides innovators with a fixed reward) and our
existing patent regime. See id. at 8-13. They showed that given a number of assumptions
about the availability of information, a reward system would be preferable to patent rights
(although a system that offered innovators a choice of property rights or an award would be
preferable to either pure system). See id. at 17-18. But see Brett Frischmann, Innovation
and Institutions: Rethinking the Economics of U.S. Science and Technology Policy, 24 Vt.
L. Rev. 347, 349-50 (2000) (pointing out that under current U.S. policy many innovators
receive both rewards (i.e., as research grants) and property rights (i.e., as patents or
copyrights)). Frischmann viewed this duality as inherently overprotective, and called for a
significant rethinking and reformation of science and technology policy. See id. at 351-52.
The propriety of property rights in ideas is of more than academic significance, however.

B.U. J. SCI. & TECH. L.

of IP rights thus represents a societal decision to privatize a public good.97

Under any type of IP regime one individual owner is given some right to
dictate how, by whom, and under what terms an idea is used. That owner
receives a distinct benefit, while society at large absorbs the (monetary and
non-monetary) costs of having the idea removed from the public realm.98

Society is only willing to assume that cost because it believes that it receives a
concomitant benefit of greater value—specifically, increased innovation.99 IP
rights provide potential investors in innovation with a mechanism for profiting
from their investments. IP rights thus represent a societal attempt to harness
the profit motive in order to motivate innovation.

Any assessment of the effectiveness of an IP regime must consider two
perspectives and the tradeoffs relevant to them. From the societal perspective,
benefits are accrued when an innovator develops a new idea. Costs are
incurred when rights are granted to that innovator after the idea has been
developed, and rents are extracted from the consumers who comprise society.
From the perspective of the individual innovator, costs are incurred in the
development of an idea—which may or may not work. Benefits are accrued
by taking advantage of the rights granted to a successful innovation (i.e., by
charging the allowable rents). These tradeoffs provide a conceptual framework
within which a societally optimal IP regime may be considered and developed.

B. Societal Optimality

The notion of a societally optimal IP regime may appear rather abstract.
The basic definition of optimality follows from some fairly standard economic
definitions. The societal value of an IP regime is the net difference between
the costs that society bears to develop and to run the regime and the benefits
that society accrues by establishing the regime.100 The societally optimal
regime is the one that maximizes societal value. A series of illustrations may
be helpful to illustrate these definitions.

Consider Zero-IP (ZIP), a society that does not recognize any private rights
in intellectual goods. In ZIP, some people will innovate for the sake of
innovation (i.e., they may simply enjoy the intellectual stimulation inherent in
innovation), while others will innovate to address their own personal needs.
Some market factors, such as the first mover advantage (i.e., the observation
that the first firm in a market is often able to establish a market niche that later

The rift between the developed and developing worlds’ views of IP rights rose to the fore
during negotiations over the GATT/TRIPS. See JOHN H. JACKSON ET AL., LEGAL PROBLEMS

OF INTERNATIONAL ECONOMIC RELATIONS 848-850 (3d ed. 1995); Dennis S. Karjala, Policy
Considerations: Theoretical Foundations for the Protection of Computer Programs in
Developing Countries, 13 UCLA PAC. BASIN L.J. 179, 189-90 (1994).

97 See MERGES ET AL., supra note 9, at 16-17.
98 See id.
99 See id.
100 See id. at 15.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

competitors are unable to shake) and/or the rewards available for teaching and
training, provide further incentives to innovate in ZIP.

These inherent motives for innovation ensure that even though ZIP confers
no property rights on its innovators, it will not be a society devoid of
innovation. The innovations generated in ZIP define a base level of
innovation. Because any society could gain access to these base level
intellectual goods without awarding any private rights, any rights granted to
private innovators in these goods constitute pure costs that were not strictly
necessary. ZIP is thus a conservative, risk averse society that refuses to invest
in innovation, but that is willing to free ride on the investments of private
innovators. With no societal investments or likelihood of positive returns, ZIP-
like regimes confer limited positive (or at least non-negative) values on
societies that adopt them. These values, however, are unlikely to be very large.
Societies willing to incur some risks by absorbing some costs should be able to
generate greater positive returns.

The members of Weak-IP (WIP) societies recognize the potential value of
taking some risks and introduce a weak set of IP rights. WIP’s decision
represents an immediate absorption of some costs; base level innovators are
rewarded for tasks that they would have undertaken even in the absence of
individual property rights. WIP is thus immediately worse off than ZIP, unless
the rights motivate the diversion of private resources towards further
innovation leading to useful ideas above the base-level innovations. If that
diversion occurs, WIP will accrue restricted benefits (i.e., uses that do not
conflict with the private rights granted and the ability to buy the other rights
back from the right holder) in two classes of innovation: (i) the base-level
innovations of ZIP; and (ii) the second-level innovations that exist in WIP but
not ZIP. In exchange, WIP must cede the difference in utility between
unrestricted and restricted use of the base-level innovations. If the value of
restricted use of the second-level innovations exceeds the reduced value of the
base-level innovations, WIP will achieve a higher return in net societal value
than did ZIP. Otherwise, ZIP is better off, and WIP’s decision was a mistake.

If WIP is better off than ZIP, then perhaps Strong-IP (SIP) might decide to
incur even further costs by adopting a stronger set of IP rights. Once again, the
incremental increase in the private value (i.e., the value that SIP’s rights confer
on private parties that WIP’s did not) will motivate at least some additional
potential innovators to develop third-level innovations. SIP will thus accrue a
net societal benefit equal to the amount that the newly-restricted rights on the
three levels of innovation exceeds the less-restricted rights on the first two
levels of innovation.

This pattern of costs and benefits will continue as the conceptually
incremental process of strengthening private IP rights progresses, but only to a
point. Early in the strengthening process, increased rights can be expected to
spur additional innovation. Eventually, however, the rights may become so
expansive that they block innovation. New entrants may become discouraged
when virtually anything that they discover infringes a right that has already
been granted. Thus, societies that grant increasingly stronger rights may gain

B.U. J. SCI. & TECH. L.

increasingly restricted use of a growing pool of innovations—or they may
deter future innovation. As each strengthening proposal is considered, society
must ask itself whether the pool is likely to grow or to contract. If it is
expected to grow, society must ask whether the increased restrictions across
the larger pool are likely to result in a net gain or a net loss. Proposals that
promise a net gain should be adopted; those that promise either a net loss or a
smaller pool of innovations should be rejected. When no available proposals
promise to yield a net benefit, the regime in place is societally optimal.101

C. Parameters of Protective Strength

Optimal protection is harder to recognize than it is to define. The ZIP-WIP-
SIP metaphor essentially glossed over the meaning of “weak” and “strong” IP
rights. A true comparison of competing IP regimes requires mechanisms for
measuring strength, costs, and benefits. Three protective dimensions are well
suited for this task: breadth, depth, and length.

The breadth of protection refers to the similarity between a protected
product and a competing product that is required before the rights holder can
claim that her rights have been infringed. In the narrowest possible regime,
identical products infringe these rights, but products embodying even de
minimis differences do not. In the broadest possible regime, even a de minimis
similarity constitutes infringement. All reasonable IP regimes fall somewhere
between these extremes. The broader the regime, the greater the value
conferred to the private innovator and the greater the cost borne by society.

The depth of protection refers to the uses that the holder of an IP right may
restrict. Deep regimes allow owners to restrict many activities, including
potentially severe restrictions on resale. Shallow regimes confer the right to
restrict only a few uses. Again, the deeper the regime, the greater the value
promised to potential innovators and the greater the cost to society.

The length of protection refers to the period of time over which the holder of
an IP right may restrict the public use of her innovation. Patents and
copyrights, for example, are both of limited length. Under both regimes,
owners are permitted to restrict the granted breadth and depth of public use of
their innovation throughout the terms of the protection, and not at all after the
right’s expiration. Other approaches to length are also possible; a property
right could confer different rights as it aged. For any fixed form of protection,
longer terms are strictly more valuable to private innovators and more costly to
society.

101 As a technical matter, this situation describes a local optimum, not necessarily a
global optimum. The Optimal-IP society that adopts this regime has no reason to absorb the
further costs implicit in granting increasingly restrictive IP rights. A society that continues
to strengthen its IP rights beyond that point is overprotecting intellectual property. A
society that sees available net benefits in increasing IP rights but fails to strengthen them is
underprotecting intellectual property. Those that adopt all proposals that promise a net
positive return—and only proposals that promise a net positive return—are optimally
protecting intellectual property.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

The meaning of protective length is relatively straightforward, and it is easy
to see how varying the length of protection can increase or decrease the overall
strength of an IP right. On the other hand, characterizing breadth and depth
variations may be quite complicated. Patents, for example, provide deep
protection with respect to commercialization,102 but rather shallow protection
of the underlying knowledge.103 Copyrights are at least as shallow as patents
in their protection of the underlying knowledge,104 but quite broad in the
protection that they afford to concrete representations of that knowledge.105

While the development of patent and copyright law has tinkered with the
fringes of these parameters, the basic description of commercially deep patents
and broad copyrights appears to stem from the nature of the innovations that
they were designed to motivate. Substantial variations of overall strength are
thus most likely to occur along the subtler parameters of patent breadth and
copyright depth. Existing patent and copyright law doctrines can help to
demonstrate such potential variations.106

1. Breadth

How broad is a patent? Stated another way, how much similarity is required
to trigger infringement? In some sense, infringement is often difficult to
prove. Many patents are drawn quite narrowly, and a successful infringement
suit must prove similarity of all elements.107 The challenges inherent to a
successful suit notwithstanding, the fundamental underlying question remains:
How similar is substantially similar? And more to the point, how can
variations in the required level of similarity be used to craft regimes of
different strength?

The doctrine of equivalents, a standard patent doctrine that embodies the
variable-breadth concept, provides an illustrative answer to both questions.108

This doctrine emerged when the courts recognized that if infringement
required literal duplication of every aspect of a patented invention, copiers
would discover ways to introduce insignificant changes into their products to
circumvent patent protection. Were this type of copying not viewed as
infringement, the patent right would be essentially useless. The doctrine of

102 The patent holder retains the right to impose fairly severe restrictions on distribution,
sales, repair, etc. See discussion in supra note 9.

103 Any practitioner of the relevant discipline is supposed to be able to understand the
published patent and incorporate its contents into her own work. See 35 U.S.C. § 112
(2000).

104 This statement applies to traditional, non-functional copyrights, such as text and
artwork. The difficulties introduced by functional copyrights, such as those awarded on
software, are discussed at length in § VI.B.1.

105 Even small similarities between representations can constitute infringement.
106 See infra §§ IV.C.1 and IV.C.2.
107 See UNDERSTANDING INTELLECTUAL PROPERTY LAW, supra note 7, at § 2F[2][a].
108 See supra note 78 (defining the doctrine of equivalents).

B.U. J. SCI. & TECH. L.

equivalents permits a patent holder to proceed against the producer of a device
that “performs substantially the same function in substantially the same way to
obtain the same result.”109 Terms like “substantially the same,” however, are
subject to interpretation. The liberality with which they are interpreted defines,
in part, the breadth of the patent protection.

The debate between the majority and the dissent in Graver Tank, a classic
doctrine of equivalents case, is illustrative.110 The respondent, Linde, held a
patent for an electric welding process that used a patented composition
containing two alkaline earth metal silicates: calcium and magnesium. Graver
developed a process that was like Linde’s in all respects but one; its welding
composition contained calcium and manganese silicates.111 Manganese is not
an alkaline earth metal.112 The majority applied the doctrine of equivalents to
accept the trial court’s finding of infringement.113 The dissent, however,
viewed the Linde process’s reliance on alkaline earth metals as central to the
patent protection, and would have found for the defendant.114 This debate can
be recast in terms of the breadth of patent protection. The majority took a
more liberal view of equivalence and thus a broader view of the patent rights
than did the dissent, showing that patents are broad in part because the doctrine
of equivalents insures that a sizable number of differences between the original
item and competing ones are required for a finding of non-infringement.

The debate implicit in Graver Tank also has differing implications to the
realms of law and of public policy. From a legal perspective, the question
must be where the line between infringement and non-infringement is. From a
policy perspective, the question is where the lines could be or should be. The
debate over the appropriate definition of “equivalence” is representative of this
struggle. Many other patent law doctrines address comparable questions about
the placement of the line between infringement and non-infringement.115 Each
possible answer has different policy implications and may warrant
consideration within a first principles framework. Each possible answer also
defines a different breadth of protection.

109 Sanitary Refrigerator Co. v. Winters, 280 U.S. 30, 42 (1929).
110 Compare Graver Tank & Mfg. Co. v. Linde Air Products Co., 339 U.S. 605, 612

(1950), reh’g denied, 340 U.S. 845 (1950) with id. at 616 (Black, J., dissenting).
111 See id. at 610.
112 See id. at 618 (Douglas, J., dissenting).
113 See id. at 612.
114 See id. at 616 (Black, J., dissenting).
115 To cite but a few examples, experimental use allows the otherwise unauthorized use

of patented articles for research or experimentation. See CHISUM ON PATENTS, supra note
18, at § 16.03[1]. The first-sale doctrine precludes patent holders from conditioning the use
or resale of a patented product. See id. at § 16.03[2]. The repair and reconstruction doctrine
allows the purchaser of a patented article to effect the repairs necessary for the article’s
continued use. See id. at § 16.03[3]. Alternative IP regimes could reverse any of these
doctrines and rule that the behavior that they allow constitutes infringement.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

2. Depth

The depth of a patent, as noted above, must be characterized differently for
knowledge and for commercialization. The patent system was designed to
insure that the knowledge embodied in the patented good is disseminated
widely, while the commercial exploitation of that knowledge by anyone other
than the patent holder is severely restricted.116 This protection may be viewed
as shallow for scientific purposes but deep for commercial purposes.117

Copyrights are even shallower than patents in their protection of
knowledge,118 but considerably broader in their protection of expression.
Many similarities deemed to be copyright infringements would not be similar
enough for patent infringement. This distinction recognizes that while a patent
holder contributed a new idea, a typical copyright holder contributed an
expression of an underlying idea that may already have been well
understood.119 Thus, society allows patent holders to restrict commerce in
their idea—even if it is expressed in a different way—while copyright holders
may restrict commerce in their expression—even if it is used to represent a
different idea.

The right to restrict the use of a representation raises some interesting depth
questions. Should the copyright holder, for example, be allowed to restrict the
circulation of a textual or artistic creation? After all, the context in which a
work is viewed, or even the mood or emotional state of the viewer, can have a
dramatic impact on the way that the representation is perceived. Copyright law
has addressed these questions by developing a number of doctrines that limit
depth and illustrate the potential for depth variations that could alter overall
protective strength. One such doctrine is fair use.120

116 See MERGES ET AL., supra note 9, at 137. Patent law is based in part on the theory
that while inventions are public goods, an appropriate incentive system is needed to
convince private parties to bear the cost of their development. Patent law provides this
incentive by allowing an inventor to “appropriate the full economic rewards of her
invention.” Id. The requisite public disclosure of all patented inventions provides the
appropriate counterbalance to this private benefit. See id. at 23.

117 By way of contrast, conventional trade secret law is both narrow and shallow. It is
narrow because a successful reverse engineering effort renders the original developer shorn
of all rights. The developer, however, is under no obligation to aid the reverse engineering.
Any legal step taken to secure the secret is considered legitimate. Thus “protection” of a
secret is as deep as the developer can make it using individual efforts, and not broad at all.
See MERGES ET AL., supra note 9, at 22-23.

118 Again, this statement refers only to traditional, non-functional copyrights.
119 See UNDERSTANDING INTELLECTUAL PROPERTY LAW, supra note 7, at § 1B[1] and [3].

Patentable subject matter includes any new and useful process, machine, manufacture, or
composition of matter, see id at § 1B[1], while a work may be copyrightable without being
new or even very different from prior creations. See id. at § 1B[3].

120 See 17 U.S.C. § 107 (2000) (“[T]he fair use of a copyrighted work, including such use
by reproduction in copies or phonorecords or by any other means specified by that section,
for purposes such as criticism, comment, news reporting, teaching (including multiple

B.U. J. SCI. & TECH. L.

The fair use doctrine permits everyone to make certain “fair uses” of
copyrighted material without seeking authorization from or offering
compensation to the copyright holder.121 The doctrine thus immediately limits
the depth of protection. Case law has developed to determine where that
limitation lies.122 An individual who purchased this journal, for example, is
permitted to make a single photocopy of this article for his personal use. A
corporate subscriber, on the other hand, may be prohibited from circulating
multiple copies of this article among its employees.123 For-profit copy shops
may be similarly restricted.124 Regardless of the limitations set by the fair use
doctrine, libraries and archives follow a different set of statutory rules that
allow them to produce limited numbers of copies for specific uses without
explicit authorization.125

These distinctions illustrate the general concept of variable depth by
showing how the line between permissible and impermissible copying can be
drawn in a variety of places. It is easy to imagine copyright regimes in which
libraries and archives are prohibited from unauthorized copying, corporations
are allowed to circulate copies to their employees, and commercial copying
shops are given more (or less) leeway in their copying practices. Each of these
regimes would define a different depth of protection.

Under the current regime, the commercial protection afforded to the ideas
embodied in conventional (i.e., non-functional) copyrights is both narrower
and shallower than that given on patents. Like patents, conventional
copyrights reveal their underlying knowledge for all to see; competitors can
generally “reverse engineer” a copyrighted work simply by reading, viewing,
or listening to it. Unlike patents, however, conventional copyrights allow
competitors to use the ideas underlying the copyrighted work in their own

copies for classroom use), scholarship, or research, is not an infringement of the
copyright.”).

121 See 17 U.S.C. § 107 (2000); MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON

COPYRIGHT, at § 13.05 (discussing the fair use doctrine).
122 See Princeton Univ. Press v. Michigan Document Servs., 99 F.3d 1381, 1383 (6th Cir.

1996) (en banc), cert. denied, 520 U.S. 1156 (1997) (holding that a for-profit copy shop
could not make copies of copyrighted books for use in course packets sold to students);
American Geophysical Union v. Texaco, Inc. 60 F.3d 913, 931 (2d Cir. 1994), cert. denied,
516 U.S. 1005 (1995) (ruling that a corporate subscriber to a professional journal did not
have the right to photocopy articles to circulate among its employees); Basic Books, Inc. v.
Kinko’s Graphics Corp., 758 F. Supp. 1522, 1526 (S.D.N.Y. 1991) (finding infringement by
a for-profit copy shop producing course packets from copyrighted materials).

123 See American Geophysical, 60 F.3d at 931.
124 See Princeton Univ. Press, 99 F.3d at 1383; Basic Books, Inc., 758 F. Supp. at 1526.
125 See 17 U.S.C. § 108 (“Notwithstanding the provisions of section 106, it is not an

infringement of copyright for a library or archives, or any of its employees acting within the
scope of their employment, to reproduce no more than one copy or phonorecord of a work,
or to distribute such copy or phonorecord under the conditions specified by this
section . . .”).

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

innovations. Protection is extended only to the literal elements of the work and
to a relatively small class of derivative works, not to the underlying idea.126

3. Interaction among the Parameters

Beyond the illustrations of the protective parameters drawn from patent and
copyright law, it is important to recognize that breadth, depth, and length are
essentially independent dimensions. A societal decision about breadth of
protection, for example, does not necessarily restrict decisions about depth and
length. IP regimes may thus be parameterized according to their “three-
dimensional” scores.127 The total strength (hence value) of an IP regime is a
function of all three parameters. While the interplay among the parameters is
complex and likely to differ across industries,128 the notion that a regime’s
value may be expressed parametrically suggests that there are multiple ways to
generate desired quanta of IP protection.129 Stated another way, society can
motivate the same amount of innovation in different ways. The configuration
of the protection can direct investment towards some industries and away from
others.

This last point can be restated somewhat less technically with the help of an
illustrative tradeoff between two parameters. Consider a regime that requires
very substantial similarity for infringement, but that prohibits unauthorized use
even for personal, non-commercial purposes (i.e., a fairly narrow, deep
regime). One contemplated reform might keep the length of protection fixed,
slightly broaden the range of similarities across which infringement is found,
but allow personal, non-commercial use. This proposal, if adopted, would

126 See 17 U.S.C. § 102(b) (“In no case does copyright protection for an original work of
authorship extend to any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described, explained, illustrated,
or embodied in such work.”).

127 Conceptual parametric scoring is not intended as a strict guide to policy. Policy
should not be decided on the sorts of narrow, technical grounds that might be inferred from
a strict reading of this discussion. Nevertheless, a conceptual parameterization can and
should direct the analysis of both an existing policy regime and any proposed reforms.
Section VII infra provides a worked example of this guidance.

128 In many industries, the first few years of protection are generally considered to be the
most valuable. After all, consumer demand is generally greatest for new technologies. By
the time that a patent reaches its latter years, future generations and/or superior technologies
are likely to have overtaken the protected invention. The pharmaceutical industry provides
a stark exception to this rule. Drug companies are prohibited from marketing their
discoveries until they have gained clearance from the Food and Drug Administration—a
process that can consume more than half of a product’s protected lifetime. As a result, the
value of a pharmaceutical patent is likely to be greatest in its final years. In still other
industries, the first few years of the protection may be devoted to generating consumer
acceptance and/or motivating the development of complementary products. In those cases,
the middle years are likely to be the most lucrative.

129 Although it is not necessarily true that any arbitrary combination of parameters is
achievable.

B.U. J. SCI. & TECH. L.

have two obvious consequences. Some potential innovators who chose not to
invest their time, effort, and resources under the old, narrow regime might now
choose to do so in the new regime because of the increased breadth. At the
same time, some old-regime innovators might choose to refocus their efforts
away from innovation because of the new, shallower protection being offered.
If the investment attracted equals the investment deterred, these two regimes
confer equivalent benefits on society.130

In addition, regimes that confer equivalent societal benefits need not be of
equal cost. Societal benefits, you will recall, are measured in terms of
innovation attracted, while societal costs are measured in terms of restrictions
accepted.131 If the societal cost of foregoing personal, non-commercial use
exceeds the cost of broadening the range of infringing products, the proposed
change in the regime promises to maintain societal benefits while cutting
societal costs, thereby increasing the net value to society.

This illustration highlights the challenge of recognizing optimally protective
regimes. It also suggests another way to think about the degree of radicalism
inherent in a reform proposal. Under an incremental (or conservative)
proposal, a single parameter is adjusted. Costs and values can both be forecast
by interviewing groups of affected stakeholders. If the proposed shift promises
a net benefit, it should be adopted; otherwise it should be rejected. Under a
radical proposal, two or more parameters are adjusted simultaneously, thereby
presenting both a much tougher analytic challenge and a greater likelihood of
unintended consequences.132

This characterization of incremental and radical reform is hardly unique to
IP regimes. As a general rule, incremental reforms are easier to propose, to
assess, and even to retract when necessary than are radical reforms.
Radicalism is often required, however, when an existing regime or policy
appears to be both inadequate and beyond fixing. A regime with these
properties may be viewed as stuck at an unacceptable local optimum. In the
context of IP protection, a locally optimal regime is one in which no
incremental change to any single parameter will either reduce societal costs or
increase societal value. An unacceptable local optimum is one in which the net
benefits conferred to society by the regime are insufficient to justify the
societal costs.133 When a policy regime gets stuck at an unacceptable local
optimum, radical reform is necessary, and only major systemic changes stand a
chance of reaching an acceptable solution.134

130 These benefits are unlikely to be identical because the specific innovations that they
motivate are likely to differ.

131 See discussion in supra § IV.A.
132 While this characterization of radicalism differs from the one presented in § II, it is

really just a variation on the theme. Conservative proposals that operate within existing
doctrines tend to vary one doctrine—hence one parameter—at a time. Radical sui generis
or first principle proposals are likely to vary multiple parameters simultaneously.

133 In a catastrophic case, the costs may even exceed the benefits.
134 The distinction between incremental and radical reforms may be described in less

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

A further factor complicating potential reforms to an IP regime emerges
from the law of diminishing returns, an empirical economic observation that
the addition of fixed amounts of an input tends to have a progressively
decreasing impact as the amount of that input present increases. A concrete
example in the IP context is that the value of an added year of protection is
likely to be greatest for rights protected for a short length of time, and least for
those already protected for a long period of time. The benefits to society in
strengthening the private rights provided to potential innovators along any
parameter are thus likely to be inversely proportional to the magnitude of the
restrictions that society has already allowed along that parameter. Under the
law of diminishing returns, the greater the private rights already granted by an
IP regime, the greater the reform necessary to effect a desired change in
behavior. This need is present in both incremental and radical reforms.
Incremental reforms must add progressively larger quanta along the adjusted
dimension, while radical reforms must become progressively more radical.

D. Private Value

The discussion thus far has focused on the costs and benefits to society. The
societal perspective on IP rights, however, is only part of the equation. The
rest lies in the private sector. Private sector innovators are motivated by a
variety of factors. Some innovate for the simple love of their art and consider
monetary rewards to be secondary. These innovators are driven by a desire to
expand truth, beauty, and knowledge and are often oblivious to the
applicability and potential profitability of their work. While IP rights are not
necessary to motivate such innovators, a poorly constructed regime might deter

technical terms. Consider some area regulated by the federal government that has been
subject to radical change at least once over the past twenty years (e.g., taxes, welfare,
communications). Congress began its regulatory involvement in these arenas by passing a
bill into law. Over the years, legislators considered a variety of “conservative reforms” to
the existing statute—largely localized incremental changes designed to achieve some
desired goal. Those that passed were, by definition, those that a majority of Congress
viewed as an improvement over the situation ex ante. In other words, every change was
seen as a local improvement. In many cases, a broad consensus recognized that these
sequential local improvements had led to a Byzantine and unworkable regulatory code. No
small patch seemed to offer a substantial improvement. Reform to these regulations is only
possible when the various stakeholders agree to a major overhaul of the entire regulatory
system. Such “radical reforms” corresponded to a simultaneous change of multiple
parameters. (For three examples, consider the reforms of the income tax code in 1986, to
the welfare system in 1996, and to the telecommunications industry in both 1984 and 1996).
The immediate effect of these changes can be chaotic. Conservative patches applied to the
new system are often required to ameliorate these problems. Taken together, then,
conservative and radical reforms are symbiotic. A radical step is often needed to change the
fundamental structure of a flawed system. It is naïve to believe, however, that the outcome
of a radical restructuring will lead to an immediate improvement. Instead, one goal of the
radical phase should be to establish mechanisms whereby conservative fine-tuning can
develop a superior system.

B.U. J. SCI. & TECH. L.

them. These innovators can generally be motivated by fixed-price grants or
contracts (either from the government or from private patrons) that allow them
to ensure that their bills are paid while they innovate, rather than by the more
open-ended concerns of an IP system. Such innovators-for-the-love-of-it are
therefore not the focus of the current analysis.

A much larger component of the private sector is composed of potential
innovators and potential investors in innovation whose primary objective is to
see a return on their investment.135 If society would like to see these resources
directed towards innovation, the investors must be able to project a suitable
return. The resources will thus only be devoted to innovative pursuits if each
potential investor believes both that the expected rewards of investing in
innovation will exceed the expected costs of that investment and that the
expected net benefits of investing in innovation will exceed the expected net
benefits of other available investment opportunities. These requirements are
non-trivial. After all, innovation is a necessarily risky venture, and society
remains unwilling to grant unrestricted rights to an innovator.136 Furthermore,
society would like to achieve these goals within the context of an optimal IP
regime, not an overprotective one.

In order to understand how a viable IP regime can be constructed, it is
important to focus on the sorts of decisions that will be encountered by
individual investors. As a somewhat oversimplified model of these decisions,
consider the issues facing an individual (or possibly a corporation) searching
for an attractive investment of private resources. On the one hand, the investor
could pursue a safe investment, such as a Treasury Bill, and receive a “risk
free” return. On the other hand, the individual could invest in research and
development (R&D), and receive a return if and only if the investment led to a
successful innovation, and the innovation could be turned into a commercially
successful venture. If the output of this process is tangible property or can be
protected as a trade secret, the venture may proceed. If, on the other hand, the
venture is a functional manifestation of an idea that cannot be kept secret,
some form of IP protection must be granted before a return can materialize. In
such instances, a return will accrue only if the innovator is able to secure the IP
protection and no competitor develops that innovation (and secures IP
protection) first. The investor must consider these uncertain contingencies in
probabilistic terms. Their interdependence suggests that the investor’s
likelihood of seeing any return on the R&D investments is close to the product
of the four probabilities.137

135 Note that the actual innovators invest their time and effort, while their backers invest
dollars. As a result, all participants in this system may be considered investors in
innovation.

136 While it is possible to argue that society never grants completely unrestricted property
rights, it should be clear that there are more restrictions on activities allowed for intellectual
property than for tangible property.

137 The investor will see a return only if all four statements are true: (i) The inquiry must
lead to an innovation; (ii) The innovation must lead to a product; (iii) The innovator must

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

The probability of seeing a return is only a small part of the story. The true
measure of an investment’s attractiveness is the expected magnitude of that
return. Once again, the expected return on the investment is a complex
function of the breadth, depth, and length of the rights that society is willing to
grant. The first two of these dimensions, breadth and depth, configure the
realm of commercial opportunities that the investor can consider. The
commercial venture suggests a market potential and a projected price, which,
in turn, allow the innovator to forecast the potential value of the innovation, if
successful.

Breadth and depth also interact in a somewhat subtler way in the
determination of commercial viability. In narrowly protective regimes, a
competing innovator whose work lags behind that of the leader may be able to
divert a large part of her investment into a similar, but non-infringing
innovation. The broader the protection becomes, the harder it becomes to
divert successfully without infringing. Thus, broad protection both increases
the rewards to the ultimate winner and decreases the probability that each
individual competing innovator will receive anything. Shallow protection
provides a similar opportunity to divert partial results. Deepening the
protection makes diversion correspondingly more difficult.

Determining the appropriate amount of diversion to allow is a challenging
task. Diversion is essentially a distributional mechanism that reduces
individual risk by shifting some of the rewards from the successful innovator
to an industry at large (i.e., both the successful innovator and its actual and
potential competitors). Like most distribution mechanisms, diversion can have
both positive and negative effects.

An IP regime that allows no diversion (i.e., a broad, deep, long regime)
grants 100% of all possible returns to the first successful innovator, and
nothing to second- or third-place finishers. This sort of rule creates an
extremely high-risk investment regime, in many ways comparable to a high-
stakes lottery. Investors in innovation are invited to purchase expensive R&D
“tickets,” one of which at most will pay off, possibly at an extraordinary rate of

secure IP protection; and (iv) No competing innovator can get there first. The conditions are
probabilistically dependent on each other. The technically correct specification of a
probabilistic model would incorporate a set of conditional probabilities and then combine
them to generate a discrete global joint probability distribution. The probability assigned to
the conjunction of the four conditions within this distribution represents the probability that
the investor will receive a non-zero return. Truly motivated potential investors might
consider building formal statistical models of the interrelationships among these factors.
The technical details of model specification and manipulation are beyond the scope of this
article. Interested readers might wish to review Izhar Matzkevich & Bruce Abramson,
Decision Analytic Networks in Artificial Intelligence, 41 MGMT. SCI. 1 (1995) and/or R.T.
CLEMEN, MAKING HARD DECISIONS chs. 7-8 (2d ed. 1996). The key point to note is that
each of these four conditions is uncertain, and that the promise of any return as viewed at
the time of the initial investment can be rather slim. In order to motivate the investment,
then, the promised return must be substantial.

B.U. J. SCI. & TECH. L.

return. All other investors will lose their entire stake. While this approach
may motivate extreme dedication to innovative R&D, it will also deter even
moderately risk-averse investors. The expected payoff may be high, but then
so is the risk of a total loss.138 Thus, some amount of diversion may be
desirable to reduce the risk inherent in R&D investments.

At the same time, diversion inevitably promotes free riding. Some potential
investors may feel that they can maximize their returns by investing the bulk of
their resources in conservative ventures unrelated to innovation and reserve
only the relatively modest amounts necessary to monitor the progress of their
innovative competitors. These conservative investors can then use their
competitors’ innovations to develop their own products, thereby attempting to
profit from investments that they themselves did not make—in other words, to
free ride on their competitors’ risky investments. Regimes that are too narrow
and shallow can thus restrict the rights granted to the successful innovator,
increase the profit opportunities available to free riders, and, consequently,
reduce the attractiveness of investment in innovation. Appropriate diversion
must be implemented to promote a principled mechanism that differentiates
between legitimate investors in innovation, who society may wish to reward
for their nearly successful efforts, and free riders, whose behavior society has
no particular reason to reward.139

Patent law provides an example of a mechanism that attempts to achieve this
goal: the blocking patent.140 Suppose that firm X patents and manufactures

138 Private investors are not the only ones who would lose in this extreme winner-takes-
all world. While only one of the investments could possibly be the first to pass the finish
line, it is likely that many of them generated useful innovations. If these research efforts are
terminated and/or buried, society as a whole loses. This type of wasteful “rent seeking”
behavior has a long history of concern to legal thinkers—dating back at least as far as some
common law doctrines governing the rights of treasure hunters. See POSNER, supra note 93,
at 41.

139 Free ridership describes a full spectrum of behavior—with a correspondingly broad
range of societal impacts. Some potential innovators who choose to sit on the sidelines
during the invention stage, for example, may be able to introduce productive resources
during the manufacturing stage. If they were allowed to use these resources to increase
supply of the new innovation—and thus to lower price—society might be well served by
allowing them to do so. The prohibition against allowing these free riders into the market is
thus a societal cost that belongs in the equation evaluating the overall value of the IP
regime. Extreme free ridership, however, adds no meaningful efficiencies—it simply allows
consumers to choose between otherwise identical goods produced by the innovator or by a
new entrant. This new entrant could be blocked without imposing any costs on society. In
the extreme, then, society has no incentive to reward free riders. Beyond that, the general
argument against free ridership is deterrence; if free riders are rewarded, all potential
innovators are motivated to free ride. This sort of perverse incentive can have devastating
societal consequences.

140 See Prima Tek v. A-Roo Co., 222 F.3d 1372, 1379 n.2 (Fed. Cir. 2000) (“A blocking
patent is an earlier patent that must be licensed in order to practice a later patent. This often
occurs, for instance, between a pioneer patent and an improvement patent.”); see also

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

widgets. While X’s first-generation widgets may be fine products, there are
probably ways in which they could be improved or combined with other
existing products. Any firm, X or its competitors, that discovers a suitably
novel improvement to the widget, may receive a patent on that innovation in
exchange for making its R&D public. Suppose that firm Y receives a patent on
an improved widget. The improvement is essentially blocked from coming to
market. Y cannot market them without infringing X’s patent. At the same
time, X cannot market these second-generation widgets without infringing Y’s
patent. While it is certainly possible that X and Y will refuse to collaborate,
and that the patent system will thus have deprived society of second-generation
widgets, it is in both firms’ rational self-interest to reach an agreement that
enables the marketing of second-generation widgets. Whether the X-Y
collaboration occurs or not, free rider Z, who made no investment in widget
research, may not sell either first- or second-generation widgets without
infringing at least one of the patents.

The blocking patent system enables both innovators to reap rewards, confers
the benefits of all widget research on society and reduces free-riders to
peripheral roles in the market until the expiration of the rights granted to X and
Y.141 In addition, society gains by creating competition in the widget
industry.142 In a winner-takes-all regime, X may start out as the most
innovative firm in the widget industry, but once X has been awarded full,
broad rights, X will have little incentive to continue innovating. Left to its
own devices, X may never develop the second-generation widget. In the long
run, X is likely to decide that the extraction of monopoly profits on first-
generation widgets provides a steady, low risk, high return income and that
further investment in R&D cannot be justified. Society, again in the personae
of consumers, thus suffers a major loss when a single firm can enjoy a broad,
deep, monopoly until the expiration of its IP rights.

The expiration of IP rights, in turn, is nothing more than the use of the third
dimension of IP protection—namely length—to allow (or to prohibit)
diversion. Even very broad, deep rights are unlikely to lead to an entrenched
monopoly if they are of relatively short duration. In particular, if the rights are
crafted to last only about as long as a generation of widget technology, firms
who lost the competition for one generation could easily re-enter the fray for
the next one. At the same time, free-riding would be deterred because free-
riders would be frozen out of each successive generation with the granting of
the new set of rights.143

MERGES ET AL., supra note 9, at 284-87 for a general description of blocking patents.
141 See id. at 1169-71.
142 See id.
143 Neither blocking patents nor IP rights with a short shelf life can fully restore the

benefits of a competitive market. In both settings, firms compete to become the next-
generation monopolist. Consumers continue to pay prices that are considerably higher than
they would be in a competitive market. These monopoly prices are part of the price that
society has decided to pay in return for promoting innovation; in the absence of the ability to

B.U. J. SCI. & TECH. L.

In addition to its role as a diversion mechanism, length also plays a second,
perhaps subtler, role in determining the value of the rights being conferred. IP
length is uniquely important because of the time value of money.144

Investment in innovation tends to be a time consuming process. Present
resources must be invested in order to generate expected future returns. No
returns are possible until the innovation has led to a commercially viable
product. In some cases, the returns may have to be deferred until both the
administrative process of receiving the applicable IP protection and the
development of a commercial entity have been completed. Returns will then
unfold over time, accruing at different rates in different industries. In some
industries, for instance, demand might be explosive. Many consumers will
purchase the innovative good as soon as it hits the market. In others, demand
may grow incrementally. Profits will start low and build as time progresses.
In either case, the forecast profits must be discounted back to their net present
value in order to compare them with the amount invested.145

charge these prices, private investment would not have developed the widgets at all. The
competition to become the next generation monopolist does yield an important societal
benefit: it enhances the quality of the goods being sold. This tradeoff illustrates the societal
considerations described in text. The IP rights allow consumers to purchase expensive, high
quality goods. They also motivate commercial enterprises that further scientific progress.
In the absence of these rights, the goods would be of lower quality, and the scientific
progress that they embody would be lost. They would also be priced differently—possibly
more expensive, possibly cheaper. If the quality improvements and scientific benefits
exceed the price differential, society has benefited from the rights. Otherwise the rights are
hurting society—and the policy underlying them needs to be rethought.

144 Ignoring the possibility of a deflationary environment, there is more value in
receiving $100 today than in receiving $100 at some point in the future since the $100 one
receives now may be invested for profit in the interim.

145 At the risk of oversimplification, a discount rate is the inverse of an interest rate.
Thus, for example, suppose that $1 could be invested today to yield a 10% interest rate one
year from now. Then in many ways, possession of $1 today and possession of $1.10 one
year from today are essentially equivalent states. They simply describe different temporal
points within the same transaction. In financial terms, $1 is the present value of the
investment; $1.10 is its future value. Discounting is simply the financial algorithm for
converting future values back into their (nominally smaller) present values. Financial
theory contains several procedures for calculating appropriate discount rates under a variety
of different scenarios—including those used in litigation. See, e.g., James M. Patell et al.,
Accumulating Damages in Litigation: The Roles of Uncertainty and Interest Rates, 11 J.
LEG. STUDIES 341 (1982); Franklin M. Fisher and R. Craig Romaine, Janis Joplin’s
Yearbook and the Theory of Damages, 5 J. OF ACCOUNTING, AUDITING, AND FINANCE 145
(1990). For present purposes, it is important to understand only that future returns—and in
particular future expected returns—must be discounted back to the present before they may
be compared fairly to the investment required to generate them. It is also important to
recognize that the more temporally distant the returns, the larger they must be to justify a
fixed current investment. Thus, unless the out years of the protected innovation are
expected to generate explosive revenues, they are unlikely to add much in the way of ex
ante incentives. Industries that do not typically anticipate such revenue patterns are thus

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

Taken together, then, the expected net present value of a current investment
in R&D is the discounted value of the expected revenue stream that it is
forecast to generate. Any R&D investment worth considering must promise
returns whose expected net present values exceed the investment required.
R&D investments likely to be pursued must also promise rates of return that
exceed those of other, less risky investments, such as investment in an existing
business or in a government bond. IP regimes designed to motivate innovation
must consider all of these factors in assessing the attractiveness of the rights
being offered to potential investors in innovation.

V. THE ANALYTIC FRAMEWORK

The preceding section laid the groundwork for investigating the extent to
which an IP regime will promote innovation in a given industry. This section
will recast that discussion in four analytic stages.

A. The Four Analytic Stages

The analytic framework can be conceptualized in four (potentially iterative)
stages:

• Stage 1: Characterize the Industry. The aspects of the industry likely to
be relevant are those that play against the protective parameters of
length, breadth, and depth. Up front capital costs, the inherent riskiness
of research efforts, and the number of innovations needed to field a
product are basic characteristics of the industry. Expected time from
investment to return is the key factor relevant to length. Existing
industry participants, likely entrants, and barriers to entry are relevant to
breadth. Ease of copying, ease of use, needs for training,
complementary equipment, etc. are relevant to depth. Again, some of
these issues may require detailed discussion and analysis, but general
rules should be observable in any mature industry, and trends and
expectations should appear in the literature for young and/or nascent
industries.

• Stage 2: Define the Protective Regime. Specify the breadth, depth, and
length of the IP rights on offer. As a general rule, length should be easy
to quantify; breadth and depth may not be. Nevertheless, it should be
possible to devise fairly terse descriptions of the types of uses protected
(depth) and of the degree of similarity necessary to constitute
infringement (breadth).

• Stage 3: Calculate the Potential Return on Private Investment. Several
determinations must be made. How will a private investor view the
rights on offer? What up-front costs will be required to invest? How
large will the returns have to be to justify the investment? How likely
will they have to be? How much diversion is possible? When can the

unlikely to provide society with much additional innovation in exchange for the added costs
inherent in lengthier protection.

B.U. J. SCI. & TECH. L.

investor expect to start seeing profits? How long can the profit stream
be expected to continue?

• Stage 4: Consider the Societal Costs and Benefits. Several
determinations must be made here as well. Could the desired
investments be attracted with weaker rights (i.e., does the proposed
regime overprotect innovation)? Are insufficient rights deterring
desirable investments (i.e., does the regime underprotect innovation)?

It is important to note that although these stages are numbered, the analysis
will rarely be sequential, and it is unlikely to ever follow a neat series of
steps.146 Nevertheless, these stages suggest a useful formalism for
summarizing the nature, the costs, and the benefits of a proposed industry-
specific reform of IP rights in line with the two goals underlying the
framework’s development: (i) the desire to highlight the differences among
industries to reveal the legacy of the one-size-fits-all IP system; and (ii) the
determination of whether a given proposal is likely to increase societal value.
Stage 4 provides this determination. The framework’s step-by-step approach
insures that the Stage 4 answer is informed by an appropriate consideration of
all relevant subsidiary issues, most notably the Stage 3 assessment of the
private-sector’s likely responses to the proposed reform.

B. Transaction and Transition Costs

IP regimes are neither developed nor implemented in a vacuum. Even a
regime that appears to be theoretically optimal may prove to be unworkable,
either because of the transaction costs associated with the regime’s
maintenance and enforcement, or because politically powerful entrenched
interests will block any change to the status quo. While a full consideration of
these concerns is beyond the scope of this article, no proposed framework for
policy analysis can be considered complete without at least a brief discussion
of transaction and transition costs.

Transaction costs refer to the costs of implementing a policy regime, making
them an important part of a complete Stage 4 analysis. Some obvious
examples of transaction costs associated with the current regime include the
costs of running the Patent and Trademark Office and the Copyright office, the
legal costs associated with the prosecution of patents, the litigation costs
expended challenging or defending patents and copyrights, and the court costs
generated by IP-related cases. Any proposed reform would be likely to require
analogous categories of operating costs.

146 The first two stages, for example, (the characterization of the regime and of the
industry) are independent in some ways, and may be performed in either order. They are
also interdependent in other ways, and may provide mutual feedback about the usefulness of
various industry characterizations and protective specifications. The Stage 3 and Stage 4
considerations of private and public values share a similarly complicated interrelationship.
In addition, issues raised during the evaluation of costs and benefits (Stages 3 and 4) will
undoubtedly point to gaps in the characterizations (Stages 1 and 2), and may refine those
analyses. Several iterations of each stage may be necessary to reach a coherent formulation.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

A subtler form of transaction cost does not involve operations but rather
recognizes that any industry affected by government regulation, including the
awarding of IP rights, will hire lobbyists to protect its interests. These
lobbyists play an important role in policy debates by keeping their clients’
interests active and alive. At times, however, they can also distort the debate
by forcing disproportionate attention on their clients’ interests to the exclusion
of the legitimate interests of other affected stakeholders. Lobbyists may thus
simultaneously reduce the costs of collecting and assessing information
sympathetic to their clients’ viewpoints and increase the costs of collecting and
assessing information that points in the opposite direction. When multiple
powerful interests are implicated in different ways by a single reform proposal,
their lobbyists may work against each other and thus absorb much of the cost
of the policy debate. As the number of competing powerful interests declines,
so does the government’s ability to hear multiple perspectives without sinking
substantial costs.147

The effect of reform on transaction costs may thus vary widely.
Conservative proposals are likely to present transaction costs that are similar to
those of the current regime. Radical proposals are likely to include both those
that are much more expensive and those that are much less expensive than the
current regime. Under either type of proposal, however, some reforms will
reduce transaction costs while others will increase them. Net transaction costs
must thus be assessed on a case-by-case basis.

Transition costs, on the other hand, are likely to be proportional to the
degree of radicalism underlying a proposed regime change. The further the
new regime is from the current system, the greater the expected transition
costs. Transition costs arise whenever public policy changes the rules under
which decision-makers must operate—and thus have implications to
calculations of both Stages 3 (private) and Stage 4 (public) values. Consider
but three simple examples of the challenges posed by any changes in the
protections afforded to the innovative members of a given industry:

• A firm that invested in a product expecting to receive the existing
protections may discover that its expectations were thwarted by the
policy shift. Should the investing firm be compensated? If so, by
whom, and how much? If not, to what extent does the uncertainty that
would result from any high-level debate freeze investment?

147 In some ways, this type of political economy argument may seem to cut against this
article’s primary thesis: IP rights applicable to many industries are likely to be subject to
broad debate, while industry-tailored rights are more easily hijacked. In a broader sense,
however, the recognition of this added potential cost is entirely consistent with the article’s
approach. Public policy reform is rarely easy. Even when the need for reform appears
obvious to most, entrenched interests will attempt to direct public policy towards their own
benefit—rather than towards that of society at large. Well-crafted reforms must include
mechanisms for monitoring and evaluating the concerns of all potentially relevant
stakeholder groups. This need for constant monitoring is an important transaction cost
inherent in any policy regime.

B.U. J. SCI. & TECH. L.

• A firm that has already been awarded an IP right may not want to
relinquish it in favor of the newly awarded rights. Might forcing it to do
so constitute a taking? If the incumbent firm is allowed to keep its
existing rights, but its competitors are only able to obtain the new types
of rights, is the competitive playing field inherently uneven? Is there
any way to develop fair competition in such an environment?

• Government specialists in the patent and copyright offices have been
trained to assess applications for existing forms of IP protection.
Attorneys and judges understand the law surrounding existing IP rights.
Any regime shift will require retraining, re-education, and the
development of new legal doctrine. The transition period may also be
replete with uncertainty about the detailed workings of the new regime.
This uncertainty, in turn, will lead to poor strategic decision-making,
miscalculated investment decisions, and misallocated resources.

These concerns all argue in favor of conservative reforms. The closer the
new rights are to the existing set, the smaller the necessary transition costs. It
is important to note, however, that transition costs are only a small part of the
story. Over the long run, costs sunk during a transitional period will be
dwarfed by those incurred running the system. Furthermore, if the existing
regime is inherently flawed, a cheap patch is unlikely to hold for very long,
and transition costs are only likely to grow with time as expectations become
increasingly entrenched.

Transition costs thus pose a particularly challenging problem to would-be
reformers. On the one hand, analysts who begin by focusing on the political
difficulties inherent in upsetting the status quo, on the disruption of expectation
interests, on the possible takings consequences of changing rights already
awarded, and on the inequity of grandfathering existing rights holders but not
their direct competitors, will almost certainly conclude that conservative,
incremental reforms are the only ones possible. On the other hand,
commentators who ignore transition costs risk developing radically new,
elegant systems of IP rights that have no chance of ever being adopted, and
that are thus irrelevant to the real world.

Analyses of the transaction and transition costs associated with reform
proposals should proceed in parallel with analyses of the merits of those
proposals. This parallelism is likely to both weed out impractical proposals
and incorporate early feedback from potentially affected parties, thereby
smoothing eventual political acceptance. It is crucial to recall, however, that
only proposals whose payoff net of changes in transaction costs and of
transition costs exceed those of the current regime should be considered
improvements.

All told, transaction costs and transition costs are an important part of any
cost/benefit analysis. They need to be considered in both Stage 3 and Stage 4
of the analytic framework. With those caveats in mind, the essential
framework is in place.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

VI. THE SOFTWARE INDUSTRY

The preceding three sections were fairly theoretical. They began with an
abstract return to first principles, added several layers of specificity, and
progressed to a concrete analytic framework, albeit one stated in rather general
terms. This section will present the first application of that framework to a
specific industry: software. Section A will provide the Stage 1 industry
profile. Section B will describe two potential protective regimes, as per Stage
2. Section C will assess private and public costs and benefits under each of
these regimes, as required for Stages 3 and 4.

A. Industry Basics

Software firms engage in a kaleidoscopic set of concerns broadly focused on
helping computer users achieve increasingly sophisticated tasks. The aspects
of software, of software engineering, and of software management that appear
central to the field’s definition seem to change every few years. Fortunately, a
full technical exposition of the industry is not needed to understand the ways
that IP rights motivate software developers and shape the market. For present
purposes, the answers to three key questions should provide the necessary
industry definition:

• What types of software comprise the commercial industry?
• Which of the industry’s characteristics drive consumer preferences?
• How can firms profit from developing software?
In addition to providing the information necessary for the Stage 1 industry

profile, the answers to these questions will also help to shape the discussions of
responsive protective rights (part of Stage 2) and of private sector rewards
(part of Stage 3).

1. Platforms and Applications

Commercial software may be divided into two broad categories: platforms
and applications.148 The best-known examples of platforms are operating

148 The Manifesto was strangely silent on this distinction. See generally Manifesto,
supra note 11. Its view of the software industry appears to be monolithic, and essentially
follows the analysis that the text applies to applications. Nevertheless, the
platform/application distinction is real, and can have a profound impact on the analysis of
incentives. To pick one obvious example, much of the behavior described in Microsoft-
Facts was contingent on Microsoft’s control of Windows, a platform program. See
Microsoft-Facts, 61 F. Supp. 2d 1, 10-19 (D.D.C. 1999). Analogous behavior in the
applications sector would have made little or no sense and would likely have been doomed
to failure. The DC Circuit enshrined the platform/applications distinction as a matter of law
by requiring a rule of reason analysis for tying claims involving platform software, while
retaining a per se rule for all other software markets. See Microsoft-Appeal, 253 F.3d 34,
84-85, 95 (D.C. Cir. 2001).
This legal distinction, however, may provide litigants with less of a bright line than the
Court believes, particularly when the issue involves allegations of tying. Many applications
have served as quasi-platforms—at least during some stages of their development.

B.U. J. SCI. & TECH. L.

systems, such as DOS, Windows, OS/2, and Unix. Application programs
include word processors, spreadsheets, and games.149 Every usable computer
system must consist of some underlying hardware, one platform program,150

and at least one application. Each of these system components is responsible
for a specific task. The hardware performs the computation that lies at the
heart of all computing. Applications provide the functionality that the user
desires. The platform allocates hardware resources among the applications and
generally facilitates “communication” between the hardware and the
application programs.151

This communication metaphor is critical to understanding software. Digital
computers are machines capable of discriminating between high and low
voltage levels.152 Human computer users are far less adept at this task. They

Spreadsheets, for example, can frequently be augmented with “add-ins,” separate software
packages that enhance the functionality of the basic spreadsheet. Popular add-ins are
frequently incorporated into later versions of the spreadsheet. From the perspective of an
independent add-in producer, this incorporation could be described as a tie. The Court’s
ruling leaves open the question of the appropriate analytic regime to apply to such an
allegation.
Its potential shortcomings as a legal bright line test notwithstanding, the
platform/application distinction remains useful. A program that functions simultaneously as
a platform and an application may force its developer to make an uncomfortable choice,
particularly in a setting (such as the one described in the text) that tailors IP protection to the
generally different marketing needs for the two classes of software. Nevertheless, this
choice should rarely be too uncomfortable. These dual-use stages are generally transitory,
and it is frequently clear towards which category the program is headed. Furthermore, as
discussed in the text, platforms and applications occupy different niches in a virtual network
and suggest different approaches to maximizing revenue. The distinction between them
may thus become evident from the ways that they are marketed—as well as the ways in
which they operate.

149 See Definition of “Application Program” (last visited Nov. 28, 2001), at
http://searchserviceprovider.techtarget.com/sDefinition/0,,sid28_gci507192,00.html (“An
application program is any program designed to perform a specific function directly for the
user or, in some cases, for another application program.”).

150 While it is possible to have more than one platform on a system, very few systems do.
Two platforms running simultaneously are likely to conflict and make the system unusable.
Even on systems with multiple resident platforms, only one may be used at any given time.

151 See Platform, FOLDOC (Free On-Line Dictionary of Computing), at http://foldoc
.doc.ic.ac.uk/foldoc/index.html (last visited Jan. 9, 2002), (“Specific computer hardware, as
in the phrase ‘platform-independent’ may also refer to a specific combination of hardware
and operating system and/or compiler, as in ‘this program has been ported to several
platforms.’ It is also used to refer to support software for a particular activity, as in ‘This
program provides a platform for research into routing protocols.’”).

152 See Voltage Levels and Signaling, PCGUIDE.COM, at http://www.pcguide.com/intro
/fun/clock.htm (last visited Jan. 9, 2002), (“While it is useful for us to think of data bits as
being ones and zeros, this is in fact an abstraction. Within the PC’s circuits, a one and a zero
must be represented in some sort of physical manner. In fact, different components represent
bits in totally different ways. On a hard disk, ones and zeros are encoded magnetically; on

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

prefer to describe the world in imprecise spoken languages, such as English.
Computer scientists and computer engineers develop tools that allow users
who speak English to communicate with machines that “speak” voltage levels.
Large parts (if not all) of the work performed in these fields can thus be viewed
as translation. Voltage levels are read, grouped, and coded into a sequence of
languages that look increasingly like a specialized form of English.153 This
“upward” translation process eventually generates a platform program that
allows the computer to function at a relatively high level.154 At the same time,
the user’s English is restricted, formalized, modeled, and fed through
specialized grammars to yield a sequence of languages that look increasingly
like detailed engineering specifications.155 This “downward” translation leads
to an application program’s input language.156 When these two translation
chains meet in a common language, communication between people and
computers becomes possible.

While a full translation chain was always necessary for people to use
computers, the locus of technical and commercial attention has shifted as
computers have matured. In the 1960s, virtually all computer users were
technically trained professionals who were personally proficient in Fortran,
COBOL, ALGOL, LISP, or some other specialized language that bore only a
cosmetic relationship to English.157 By the 1990s, many accomplished
computer users knew no machine language more technical than the Boolean
inputs to a search engine or a set of point-and-click instructions.158 This shift
was enabled by computer engineers who developed technologies that increased
hardware power and by computer scientists and programmers who availed
themselves of that power to advance the translation chain built up from voltage
levels progressively closer to English.159

The technological innovations that shifted the machine’s “understanding”
closer to English also shifted the balance between platforms and applications—
as well as the balance between hardware and software. Each technological
generation incorporated more of the tasks that had once been required to
facilitate translation down from English into the chain that grew upward from
voltage levels. These shifts allowed tasks to migrate from applications to

an optical disk, by a sequence of pits and lands. And within the core operating circuitry of
the PC, ones and zeros are represented by voltage levels.”) (emphasis in the original).

153 See generally, IVAN FLORES, COMPUTER PROGRAMMING (Prentice Hall 1966)
(providing a background of various computer programming principles).

154 See id.
155 See id.
156 See id.
157 See The Computer Museum History Center, at http://www.computerhistory.org (last

visited Dec. 5, 2001) (providing a detailed chronology of the history of computing); see also
Charles Babbage Institute, at http://www.cbi.edu (last visited Dec. 5, 2001) (providing
resources on the history of computing).

158 See The Computer Museum History Center, supra note 157.
159 See id.

B.U. J. SCI. & TECH. L.

platforms to hardware and allowed software developers to focus on the
development of input languages and interfaces that appeared increasingly
natural to human users. As a result, the boundaries between platforms and
applications have shifted with every generation of technology. Commercial
opportunities have followed that technological lead.

Under any generation of the technology, successful communication between
the platform and the applications is critical; without this last remaining
translation, the entire system is useless. Because platforms typically
communicate with many applications while applications only communicate
with one (or at most, a small number of) platforms, the sensible approach to
this final translation is for the applications to “learn” the platform’s language,
rather than the other way around. Platform developers facilitate this education
by publishing dictionaries and grammars that teach potential application
developers how to communicate with their platforms. In contemporary
parlance, these translation aides are known as “application programming
interfaces” (“APIs”).160

2. Software as a Network Industry

Despite the consistent (and ongoing) changes that the software industry
encounters as technology advances, some features of the industry have
remained invariant:

• The number of platform programs circulating approximates the number
of computers (i.e., virtually all computers house exactly one platform).

• There are many application programs on each computer.
• Special-purpose users require a specific application. These users must

select a platform that can support that application.161

• General-purpose users want to own a functioning computer system that
can accomplish a broad range of tasks; their concern with the specifics
of those tasks is secondary. These users thus tend to select a platform
and accept the de facto restriction to applications that can communicate
with the selected platform.

• In every technological generation to date, the general-purpose market
has dwarfed the special purpose market.

• General-purpose application developers want to attract as many users as
possible. They will thus choose to develop applications that
communicate with as many viable platforms as possible, starting with
the most popular. The number of users whose platform can

160 Although “API” is a relatively recent term, the role of the API has always been
present in computer technology. For the purposes of this article, the term API will refer to a
basic functional role, whether or not the term is technically applicable to the generation of
technology being discussed. See Microsoft-Facts, 65 F. Supp. 2d 1, 9, 13, 19-22 (D.D.C.
1999) (providing some basic definitions and discussing the importance of APIs).

161 Consider, say, a movie studio purchasing a specialized state-of-the-art animation
package to facilitate special effects. For these purchases, the availability of the application
is likely to dictate all other purchases, including both platform and hardware.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

communicate with an application defines the maximum market for that
application.

• General-purpose platform developers want to attract as many users as
possible to their platforms. Because platform choice is guided, at least
in part, by the availability of applications, platform developers will want
to see a large suite of applications compatible with their platforms.

Some of these observations have been controversial at times and were once
less obvious than they appear to be today. For the remainder of this discussion
of software industry incentives—which will focus entirely on the general-
purpose software market—they will be taken for granted.

Because many of these intergenerational invariant characteristics flow from
software’s classification as a network industry,162 a brief overview of the
economics of network industries is a prerequisite to understanding the
incentives that motivate software developers. Network industries, as their
name implies, have a fair amount in common with physical networks. Physical
networks, such as the telephone or the electricity networks, are basically
collections of end users (i.e., people who use telephones or electrical
appliances) connected by a physical link, such as a wire. Any two items wired
to the same network must be interoperable, or able to conform to the
specifications of the network. Anyone who has ever attempted to plug an
American appliance into a European electrical outlet has experienced the
frustration of non-interoperable equipment; a perfectly good appliance plus an
equally good but incompatible outlet equals nothing of value.

Not all networks, however, require physical wires. Users of interoperable
software define a virtual network. Examples of software networks are the
collections of all people using software that can run in Windows or in Linux.
These people are “connected” by the APIs to which all application developers,
and thus all users, must conform. Entire industries can also be examples of
virtual networks. One important defining characteristic of a network industry
is “positive feedback,” whereby the value of a network grows with the size of
the network.

Consider again the example of appliances and electrical networks. An
American appliance cannot be plugged into a European outlet without an
adapter. An American appliance with an adapter can be plugged into a
European outlet, but it will quickly burn out unless it is also attached to a
converter. Imagine a consumer attempting to purchase an appliance in an
environment of multiple competing electrical systems—a situation that
actually existed in the U.S. during the earliest days of electricity. A logical
consumer would select the appliance best suited to her home. But what if her

162 See generally, CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES, 173-225
(Harvard Business School Press 1999) (providing an excellent non-technical introduction to
the economics of network industries). See also Mark A. Lemley and David McGowan,
Legal Implications of Network Economic Effects, 86 Calif. L. Rev. 479 (1998) (discussing
the ways in which network economics have already had an impact on several areas of the
law, including IP law).

B.U. J. SCI. & TECH. L.

home were not yet wired for electricity? If that were so, she would face two
decisions: choosing both an appliance and an electrical network. Again, being
logical, she would probably recognize that the widest selection of appliances
existed for the most popular electrical network and thus choose to join that
largest network. Her rational, value-driven choice would thus make the largest
network even larger.

This phenomenon also exists in the software world. Application developers
would like to access the broadest possible market. If more people own
computers with operating system W than with operating system U, then W-
compatible applications will be written for a larger market than U-compatible
applications. Application designers will rationally decide that, all else being
equal, they would prefer to sell into the larger market. These decisions will
add to the collection of W-compatible software, thereby making W even more
attractive to new consumers. This cycle illustrates the positive feedback
phenomenon.

By way of summary, network industries have two basic characteristics
relevant to understanding the incentives of industry participants:163

• All components of the network must be mutually compatible (i.e.,
interoperable); and

• The value of the network increases with the number of members, users,
or subscribers (i.e., positive feedback).

3. Paths to Profitability

These characteristics point toward a strategy for generating revenue that is
unique to network industries. The importance of positive feedback suggests
that firms should disseminate the components that define their networks as
widely as possible and at the lowest price possible—zero, if necessary. Once
consumers are locked into the network,164 the firm that holds the network’s

163 Interoperability and positive feedback are not the only important characteristics of
network industries. They are, however, the two most relevant to the motivation of
innovation. For commercial opportunities, lock-in, discussed in infra note 164, is at least as
important.

164 Lock-in is a third defining feature of true network industries. If consumers are not
locked into the network owner, any steps that the network owner tries to take to increase his
profits above the competitive level will cause consumers to shift their business to competing
networks. Even a firm owning a monopoly network may be susceptible to such switching if
entry is easy, uncommitted entrants exist, or consumers can integrate backward to take the
item being provided in-house. The relationship between locked in consumers and
anticompetitive behavior was first formalized as a matter of antitrust law in Eastman Kodak
Co. v. Image Technical Services 504 U.S. 451 (1992). For a discussion of the ways in
which the recognition of lock-in affected antitrust analysis, see generally, Bruce D.
Abramson, Analyzing Antitrust Analysis: The Roles of Fact and Economic Theory in
Summary Judgment Adjudication, 94 ANTITRUST. L. REV. 303 (2001). The relationship
among anticompetitive behavior, network economics, and lock-in played an important role
in Microsoft, where the Court recognized that much of Microsoft’s anticompetitive behavior

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

keys can then profit through a variety of interoperable add-on sales and
services or by selling network access to its competitors.

Consider, for example, the strategies available to a firm that manufactures
operating systems. If operating systems did not exhibit network externalities,
the task would be straightforward (although not necessarily easy): The firm
would establish a profit maximizing price for its operating system and attempt
to sell as many copies as possible at that price. Because operating systems
define networks, however, other strategies may be more appropriate. The firm
could (and should) recognize that it can generate revenues by selling
applications that run on its operating system, by licensing its APIs to
competitors who promise to develop applications, by selling tools and/or
development kits to would-be application developers, by providing after-sales
service, or by some combination of the four.

This example highlights the differences between the incentives of platform
developers and the incentives of application developers. In terms of a Stage 1
industry analysis, then, software actually breaks down into two industries with
distinct incentive patterns. The most likely source of revenue to a platform
developer comes from the sale of network access. The most likely source of
revenue to an application developer comes from the sale of software. A first-
principles approach to IP rights must assess the likely impact of these differing
incentive structures on the industry’s participants.

B. Alternative Regimes for the Protection of Software

Perhaps the simplest way to approach the analysis of incentives is to
consider the ways in which they might guide behavior under different
protective regimes. A comparison of two regimes should suffice to raise most
relevant issues. This section thus describes how the current regime works,
considers some signs of existing underprotection and overprotection, and then
contrasts it with a proposed reform based on the principles outlined in the
Manifesto.165

To reiterate software’s challenge to the IP system, computer programs are
textual works designed to generate functional behavior.166 They deliver that
functionality by cloaking a comprehensible textual work (of the sort typically
circulated and protected by copyright) in an incomprehensible work of
“machine language.” Software is thus a complex product that exists on many
levels, at least three of which have received legal protection and the scrutiny of
the courts:

• Source Code is the collection of algorithms written by computer
programmers in a programming language, such as Fortran, Pascal,

was enabled by the “applications barrier to entry,” a phenomenon that the court described in
almost textbook network-industry terms. Microsoft-Facts, 65 F. Supp. 2d at 28-36.

165 See generally Manifesto, supra note 11.
166 See discussion in § I setting out the challenge presented by software to the IP system.

B.U. J. SCI. & TECH. L.

LISP, C++, or Java.167 Source code is readable and comprehensible by
trained professionals.168 Computer programmers or engineers given
access to source code should be able to understand a program’s
functionality, and to replicate that functionality in their own work.169

• Object Code is a pre-compiled version of the source code that translates
the programming language into something closer to machine
language.170 Object code is generally incomprehensible to any human
reader, regardless of training; it is intended for use by machines only.171

Access to object code generally allows users to use the software, but not
to decipher the underlying functional mechanisms.172

• The User Interface defines the way in which a user experiences the
software.173 The “look and feel” of text and objects on a user’s monitor

167 See Source Code, WHATIS?COM, at http://searchwebmanagement.techtarget.com/
sDefinition/0,,sid27_gci213030,00.html (last visited Jan. 9, 2002), (“Source code and object
code refer to the ‘before’ and ‘after’ versions of a computer program that is compiled . . .
before it is ready to run in a computer. The source code consists of the programming
statements that are created by a programmer with a text editor or a visual programming tool
and then saved in a file. For example, a programmer using the C language types in a desired
sequence of C language statements using a text editor and then saves them as a named file.
This file is said to contain the source code. It is now ready to be compiled with a C
compiler and the resulting output, the compiled file, is often referred to as object code. The
object code file contains a sequence of instructions that the processor can understand but
that is difficult for a human to read or modify. . . .When you purchase or receive operating
system or application software, it is usually in the form of compiled object code and the
source code is not included.”)

168 See id.
169 See id.
170 See id.
171 See id.
172 See id.
173 See User Interface, WHATIS?COM, at http://searchwebservices.techtarget.com/s

Definition/0,,sid26_gci214505,00.html (last visited Jan. 9, 2002).
In information technology, the user interface (UI) is everything designed into an
information device with which a human being may interact—including display screen,
keyboard, mouse, light pen, the appearance of a desktop, illuminated characters, help
messages, and how an application program or a Web site invites interaction and
responds to it. In early computers, there was very little user interface except for a few
buttons at an operator’s console. The user interface was largely in the form of punched
card input and report output. Later, a user was provided the ability to interact with a
computer online and the user interface was a nearly blank display screen with a
command line, a keyboard, and a set of commands and computer responses that were
exchanged. This command line interface led to one in which menus (list of choices
written in text) predominated. And, finally, the graphical user interface (GUI) arrived,
originating mainly in Xerox’s Palo Alto Research Center, adopted and enhanced by
Apple Computer, and finally effectively standardized by Microsoft in its Windows
operating systems. The user interface can arguably include the total ‘user experience,’
which may include the aesthetic appearance of the device, response time, and the
content that is presented to the user within the context of the user interface.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

define the interface.174 For most computer users and commercial
software purchasers, the interface and its underlying capabilities define
the relevant product.

Any IP regime designed to protect software must address at least the first
two of these levels. Protection of the interface, while important, is an
orthogonal concern. Because source code and object code capture the
functional components of the software, they are central to both the nature of
the product and the challenge posed by functional copyrights. Interface issues
actually arise in only a small (albeit highly visible) portion of programs, and
implicate a fundamentally different set of concerns—namely those related to
look, feel, layout, and artistic expression.175 The analysis will thus touch upon
interface issues only tangentially.

1. The Current Regime

Although the current IP regime protecting software incorporates aspects of
patent, copyright, and trade secret law,176 copyright remains the most important
protection granted to software developers. It is not difficult to see the appeal
of software copyrights (at least to the legal and administrative communities
charged with granting and enforcing the protection). Their pitfalls are subtle
and complex—but potentially damaging nonetheless.177

The most obvious appeal of granting copyright protection to software is that
software looks like something that should be copyrighted; it is comprised of
words, drawn from a limited lexicon, and combined to conform to the rules of
a grammar. Multiple copies can be produced at low cost and circulated at the
discretion of the copier. In most cases, copyright law affords the copyright
holder the exclusive right to reproduce, to distribute copies, or to perform the
original,178 as well as fairly broad rights in “derivative works.”179 Software
also controls the arrangement of images and/or words on a video screen.
Again, such arrangements have long been protected by copyright, and there is

Id.
174 See id.
175 See, e.g., Lotus Dev. Corp. v. Paperback International, Inc., 740 F. Supp. 37 (D.

Mass. 1990); Apple Computer, Inc. v. Microsoft Corp. 799 F. Supp. 1006 (N.D. Cal. 1992),
aff’d 35 F.3d 1435 (9th Cir. 1994).

176 This integration of three bodies of law has led to a fairly complex web of
simultaneous IP rights. This point is discussed further in infra note 200.

177 Professor Karjala has provided several detailed discussions of the difficulties inherent
in the decision to protect software with copyrights. Needless to say, the points raised here
are only the tip of the iceberg. For more detailed analyses, see, e.g., Dennis S. Karjala, The
Relative Roles of Patent and Copyright in the Protection of Computer Programs, 17
MARSHALL J. COMPUTER & INFO. L. 41, 50-6 (1998); Dennis S. Karjala, Copyright
Protection of Operating Software, Copyright Misuse, and Antitrust, 9 CORNELL J. L. PUB.
POL’Y 161, 171-82 (1999).

178 See 17 U.S.C. § 106 (2000).
179 See 17 U.S.C. § 103.

B.U. J. SCI. & TECH. L.

no obvious reason that arrangements generated by software should be any
different from their more conventional counterparts.180 The extension of
copyright protection to software thus appears to be a natural fit—at least at first
blush.

Software, however, differs from traditional copyrightable works in (at least)
one crucial way: it is functional. Congress developed copyright law to protect
“artistic” expressions—or, more plainly, expressions of ideas rather than the
ideas themselves.181 Although even traditional texts and artworks can create
perplexing problems at the margins, the distinction between an idea and its
specific, copyrightable expression is usually evident. When copyright law
began extending its reach into compilations and organizations, issues related to
functionality began to emerge.182 Even in those areas, the expression captured
in the copyrighted work, not the underlying functional concept, benefited from
protection. In many ways, then, the use of copyright protection for an
inherently functional product has the feel of fitting a “square peg into a round
hole.”183

This misfit has led some courts to develop a nascent doctrine of copyright
misuse, which prohibits a copyright holder found liable of attempting to extend
his limited monopoly beyond the allowable confines of copyright law from
enforcing his copyright.184 This doctrine, borrowed from patent law, was
found (for the most part) in settings related to patents granted on goods or
processes important as inputs to other goods.185 It is unclear how the doctrine

180 The “look and feel” cases dealt with precisely this issue—the “feel” conveyed by the
shape and arrangement of icons on a desktop. See, e.g., Lotus Dev. Corp. v. Paperback
International, Inc., 740 F. Supp. at 62-65; Apple Computer, Inc. v. Microsoft Corp., 35 F.3d
at 1442-45.

181 See NIMMER & NIMMER, supra note 121, § 2.03[D] (2001).
182 See id. § 2.18.
183 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir. 1992).
184 See Lasercomb v. Reynolds, 911 F.2d 970, 973 (4th Cir. 1990).
185 Copyright misuse draws liberally on the accepted doctrine of patent misuse. In a

copyright misuse case, a copyright holder agrees to license use rights to a second party—but
only subject to a variety of restrictive conditions. In Lasercomb, 911 F.2d 970, for example,
Lasercomb developed Interact, a copyrighted CAD/CAM package that aided the creation of
steel rule dies used in the manufacture of cardboard boxes. Lasercomb licensed a fixed
number of copies of Interact to Reynolds. Lasercomb’s standard Interact licenses also
contained a clause that prohibited Interact licensees from creating a directly competitive
software package. Reynolds made several unauthorized copies of the program, and
Lasercomb sued for copyright infringement. Reynolds defended, inter alia, by claiming
copyright misuse. In assessing this defense, the Court noted that “much uncertainty engulfs
the ‘misuse of copyright’ defense. We are persuaded, however, that a misuse of copyright
defense is inherent in the law of copyright just as a misuse of patent defense is inherent in
patent law.” Id. at 973. The Court then concluded that Lasercomb’s license term did
constitute a misuse of its copyright. Other courts have reached similar conclusions about
the validity of the copyright misuse defense, notably the Ninth Circuit in Practice Mgmt.
Information Corp. v. American Med. Ass’n, 121 F.3d 516, (9th Cir. 1997) (the AMA’s

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

would apply to non-functional goods—a vagueness that explains (at least in
part) why a comparable copyright law doctrine did not seem necessary prior to
the advent of functional copyrights.

Functional copyrights pose yet another challenge to the courts. One of the
classic boundaries between works that can be copyrighted and those that
cannot be lies in the idea/expression distinction.186 Copyright protection
extends only to the expression of ideas, not to the ideas themselves.187 With
respect to functional works, the line between an idea and its expression can be
less than obvious. This difficulty has been recognized since at least 1879,
when the Supreme Court ruled that the general approach to bookkeeping
implicit in a copyrighted accounting ledger was a “method of operation,” and
thus an idea, not an expression.188 In more recent years, this distinction has
produced a circuit split with respect to software interfaces.189 After all, every
interface embodies a method of operation and hence an idea. At the same
time, every interface also embodies a set of discretionary decisions about key
words, icons, layouts, etc. and therefore embodies an expression.

The challenge posed by software, however, goes far beyond the interface.
The very nature of a computer program blurs the distinction between an idea
and its expression and thus makes it quite difficult to determine when a second
program that shares both functional and layout characteristics with the first has
infringed. Various courts have proposed elegant tests for determining when a
second program is “close enough” to an earlier copyright-protected competitor
to constitute infringement. Perhaps the most influential of these tests is the
abstraction-filtration-comparison test, first introduced by the Second Circuit in
Computer Assoc. Int’l v. Altai190 and subsequently adopted by several other
circuits.191 Under this test, courts consider protectable and unprotectable

licensing of a coding system for medical procedures on the condition that a licensee not
develop a competing code constituted copyright misuse), and the Fifth Circuit in Alcatel,
Inc. v. DGI Technologies Inc., 166 F.3d 772 (5th Cir. 1999) (Alcatel’s licensing term
requiring that its copyrighted software be used only in conjunction with Alcatel
equipment—and not competing equipment—constituted copyright misuse). Despite the
growing number of lower courts that have come to recognize the copyright misuse
defense—and despite the growing relevance of the defense in a society with increasing
numbers of functional innovations protected by copyright rather than by patent—the
Supreme Court has yet to consider the doctrine.

186 See NIMMER & NIMMER, supra note 121, at § 2.03[D].
187 See id.
188 See Baker v. Selden, 101 U.S. 99, 103-5 (1879).
189 Cf. Lotus Dev. Corp. v. Borland Int’l, 49 F.3d 807, 815 (1st Cir. 1995), aff’d by

equally divided Court, 516 U.S. 233 (1996) (the keystrokes necessary to operate Lotus’s
spreadsheet program constitute a method of operation, and are thus unprotectable by
copyright) with Autoskill, Inc. v. Nat’l Educ. Support Sys., Inc., 994 F.2d 1476, 1499 (10th
Cir. 1993) (the keying procedure on Autoskill’s program can be protected by copyright).

190 982 F.2d 693 (2d Cir. 1992).
191 See Lotus Dev. Corp. v. Borland Int’l, 49 F.3d at 814-15; Comprehensive

B.U. J. SCI. & TECH. L.

program characteristics separately, and find infringement only if the second
program is too similar to the protected components of the first.192

The Ninth Circuit provided a rather high profile example of this test when it
considered Apple’s claim that early versions of Microsoft Windows infringed
its copyrighted operating system and interface for the Macintosh.193 The court
noted that all similarities between the two programs must have come from one
of three sources: (i) an earlier license granted by Apple; (ii) obvious expressive
interpretations of the same underlying idea; and (iii) outright copying.194 The
first two sources were legitimate; the last was a potential source of copyright
infringement.195 The court then identified all similarities (abstraction), traced
most of them to one of the first two categories (filtration), and compared what
remained as potential infringement (comparison).196 The court ruled that
Apple failed the comparison test and thus affirmed the lower court’s finding
that Microsoft had not infringed Apple’s copyright.197

The Altai test notwithstanding, no bright line separates the protected
behavioral elements of a program from its unprotected elements. While courts
regard both source code and object code as literal elements of a creation, and
thus as protected by copyright law,198 this protection provides little comfort to
software developers whose primary interest lies in protecting their programs’
behavior—not its literal expressions of that behavior.199

As things stand, many (if not most) commercial software firms do not rely
on copyright law alone to protect their source code. Instead, they maintain
their source code as a trade secret while obtaining copyright protection on their
object code.200 This duality provides software developers with a unique form

Technologies Int’l. v. Software Artisans, 3 F.3d 730, 735 (4th Cir. 1993); Gates Rubber Co.
v. Bando Chem. Indus., Ltd., 9 F.3d 823, 834 (10th Cir. 1993); Kepner-Tregoe, Inc. v.
Leadership Software, 12 F.3d 527, 534 (5th Cir. 1994); Bateman v. Mnemonics, Inc., 79
F.3d 1532, 1544 (11th Cir. 1996); Control Data Sys. v. Infoware, Inc., 903 F. Supp. 1316,
1322-24 (D. Minn. 1995).

192 See Bateman, 79 F.3d at 1544.
193 See Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435 (9th Cir. 1994).
194 See id. at 1443, 1447.
195 See id.
196 See id.
197 See id. at 1447.
198 “It is now well settled that the literal elements of computer programs, i.e., their source

and object codes, are the subject of copyright protection.” Altai 982 F.2d at 702 (citing
Whelan Assoc., Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1233 (3rd Cir. 1986))
(source and object code); Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1249 (3d. Cir. 1983) (source and object code); Williams Elecs., Inc. v. Artic Int’l, Inc., 685
F.2d 870, 876-77 (3rd Cir. 1982) (object code).

199 See Manifesto, supra note 11, at 2310-32.
200 This copyright/trade secret duality oversimplifies the current use of IP rights by the

software industry in at least two ways. First, it omits the distinct but related problems
caused by software patents and by software protected simultaneously by patent and

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

of protection. When an author circulates her conventional copyrighted work,
anyone who comes into legitimate possession of a copy of the work has legal
authorization to do three things:

• Read (or otherwise use) the copyrighted work.201

• Understand the idea underlying the copyrighted work and create an
independent expression of that idea.202

• Make some class of “fair uses” of the copyrighted work.203

A software firm’s ability to circulate only object code allows it to split the
legal rights that accompany a legal copy of the work. In limiting circulation of
the program to object code, the holder of a software copyright, unlike

copyright law. Second, it does not mention that source code is typically copyrighted along
with object code. Neither of these simplifications detracts from the text’s basic assertion
that the current paradigm overprotects software—in fact, they both tend to strengthen the
argument.
 In terms of software patents, it is important to recall that patents protect only a relatively
small percentage of commercially viable software products. When present in a complex
software package, they extend the protection even further than the “standard” combination
of copyright and trade secret. A patented algorithm embedded in copyrighted object code
derived from trade secret protected source code is extraordinarily well protected. It
represents a mathematical formula captured by a specific representation that may not be
circulated freely. Reverse engineering may reveal complicated interactions between
patented and unpatented components of the software. While such circumstances strengthen
the overprotection analysis described in the text, they are not necessary for software to be
overprotected. The combination of copyright and trade secret protection suffices—with or
without the complications added by patents.
A discussion of source code copyrights is similarly unnecessary to demonstrate
overprotection. While software firms may copyright their source code, they rely on trade
secret law for most of its protection. In fact, they typically copyright their source code
without ever revealing its contents. The Copyright Office accommodates this dual
protection by allowing authors of software containing trade secrets to black out the trade-
secret protected portions in the deposited copies of their source code. Furthermore, if the
author is unwilling to deposit source code, the Office will register the software under its rule
of doubt. See U.S. COPYRIGHT OFFICE, CIRCULAR 61: COPYRIGHT REGISTRATION FOR

COMPUTER PROGRAMS 2, available at http://www.loc.gov/copyright/circs/circ61.pdf (last
visited Jan. 9, 2002). The industry’s primary reliance on trade secret protection has become
increasingly evident as both Congress and the courts have come to permit various forms of
decompilation—the one practical way of defeating a trade secret against which a standard
application of copyright principles could have defended. See, e.g., 17 U.S.C. § 1201(f)
(2000) (allowing decompilation for the purposes of achieving interoperability among
computer programs); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir.
1992) (allowing Accolade to reverse engineer Sega’s game programs in order to create
games compatible with Sega’s hardware). The key to the overprotective paradigm described
in the text is thus not that different protections are sought on different aspects of the
software, but rather that different protections are used.

201 See NIMMER & NIMMER, supra note 121, at § 13.01.
202 See id.
203 See id. at § 13.05.

B.U. J. SCI. & TECH. L.

copyright holders of other subject matter, can permit customers to use her work
while prohibiting them from understanding it, integrating it into their own
world views, and creating an independent expression of the same idea. This
ability necessarily turns the software copyright into a much more powerful and
valuable form of protection than it ever was in a conventional, textual
setting.204

Copyright law was not designed to cope with this type of situation.
Functionality was essentially an afterthought in copyright law. In contrast,
patent law, developed to protect functional innovations, contains a very
powerful combination of responsive mechanisms: mandatory disclosure,
blocking patents, and cross licensing.205 Copyright law contains no analogous
provisions.206

The Stage 2 parameterization of the current regime may thus be stated as
follows: Existing software copyrights are narrow, shallow, and long. They are
narrow because behavior is not protected by copyright, and behavior is the
component of the innovation that the copyright holder would most like to
protect.207 They may be shallower than a standard copyright because of the
courts’ apparent willingness to allow decompilation by commercial
competitors as part of the reverse engineering process.208 Their length is
effectively infinite because copyright protection lasts far longer than the useful

204 This dual desire to own a widely distributed product while retaining control over a
competitor’s access is common to all participants in network industries. Firms in most
industries must choose between wide distribution and controlled access whereas software
firms need not make such a choice. The dual nature of their product allows them to keep
source code secret (thereby controlling access) while simultaneously distributing object
code (thereby gaining wide distribution). In 1998, Congress strengthened the rights
afforded by copyright law to software designers wishing to take advantage of this dual
protection by enacting the DMCA 17 U.S.C. § 1201(a)(1)(A), prohibiting the
“circumvent[ion of] a technological measure that effectively controls access to a work
protected under this title [the Copyright Act].” At the same time, however, the DMCA also
explicitly allowed various forms of reverse engineering of a computer program in which a
user effects the circumvention “for the sole purpose of identifying and analyzing those
elements of the program that are necessary to achieve interoperability of an independently
created computer program. . .” 17 U.S.C. § 1201(f)(1).

205 See CHISUM ON PATENTS, supra note 18, § 7.01 et seq., 16.02, 19.01 et seq.
206 See id. at § 14.01 et seq.
207 This desire differs from that of an innovator who produces a typical textual or artistic

work protected by copyright. Those innovators are frequently more interested in protecting
their expression than the underlying knowledge that it embodies.

208 Even courts that have allowed decompilation have recognized that their rulings are
part of a growing trend of anomalies in software copyright law. See Sega Enters. Ltd. v.
Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir. 1992). In any event, the effect of the legal
treatment of reverse engineering on protective depth remains uncertain—it might make the
protection either deeper or shallower than conventional copyrights depending on the
ultimate determination of permissible actions to reverse engineer without infringing.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

life of computer code. Existing copyrights by themselves thus appear to
underprotect the rights of software developers.

Software is anomalous because innovators do not have to opt out of trade
secret protection to acquire IP rights. The combined copyright/trade secret
protection is broader and possibly deeper than conventional (i.e., non-software)
copyrights, and is of effectively infinite length. Programmers other than the
original developer are blocked from incorporating behavior, expression, and a
full range of activities that require access to the knowledge embedded in the
source code. The de facto protection of behavior thus makes software
copyrights broader than their conventional counterparts. The prohibition
against some forms of decompilation and reverse engineering may make them
deeper, as well.209 This dual protection thus leads to a situation in which
current IP rights plus trade secret protection are likely to be overprotective.

2. The Manifesto Proposal

The Manifesto recognized many of these shortcomings of the current
regime.210 In particular, the Manifesto saw three aspects of the current regime
as particularly damaging to the long-term health of the software industry: a
misplaced balance between the protection of a program’s literal and behavioral
elements;211 insufficient attention paid to reverse engineering;212 and the ability
of a software developer to gain IP rights without disclosing the inner workings
of his innovation.213 These difficulties are necessarily intertwined.

The first key difficulty requires understanding the nature of a computer
program. To most users, the program appears through its interface, the
collection of icons and text revealed on the monitor. These icons and
arrangements are literal elements of the program and are thus protected by
copyright law.214 Software developers care about this protection, and often
litigate perceived infringement. Interfaces are only interesting, however, if
they connect the user to a functioning program that accomplishes the tasks
required of it. These necessary functional components of the program define
behaviors. They embody the algorithms devised by the software developer.
For the most part, innovative software embodies innovative algorithms. In
order to work, the algorithms must be translated from the quasi-mathematical

209 Although, as noted in supra note 200, the prohibition on decompilation has been
weakened considerably by both case law and statute, and may now represent only a minimal
depth increase. Again, as noted in supra note 208, the effect of the legal treatment of
reverse engineering on protective depth remains uncertain.

210 See generally, Manifesto, supra note 11.
211 See id. at 2312-13.
212 See id. at 2336-38.
213 See id. at 2336-40.
214 See, e.g., Lotus Dev. Corp. v. Paperback International, Inc., 740 F. Supp. 34, 65-68

(D. Mass. 1990); Apple Computer Inc. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal.
1992), aff’d 35 F.3d 1435 (9th Cir. 1994).

B.U. J. SCI. & TECH. L.

language in which they were first expressed into a programming language that
the machine can understand. Under standard copyright rules, these
programming language translations (as well as their further translations into
object code) are protected as literal elements of the work, or as expressions of
the algorithm. The underlying mathematical algorithm remains an idea—not
an expression—and can thus not be protected by copyright law.215 This
situation thus underprotects the innovations that society would most like to
motivate.

This mismatch between the reward system and the types of innovation that it
purports to motivate leads to the second key deficiency of the current regime:
the inappropriate attention paid to reverse engineering. The reverse
engineering of a copyrighted work is usually trivial, as the work itself is
facially obvious. In copyright-protected software, however, the “masking” of
the facially obvious source code behind the opaque object code renders reverse
engineering difficult—but not impossible. In particular, software developers
have found two ways to reverse engineer competing products.

The first route employs “black box” testing.216 A software engineer
employing this technique devises a series of test inputs, observes the
performance of a program (to which he has only object code access) under
each of the inputs, and then works backward to infer the underlying source
code. The Manifesto views this technique as powerful (and often successful),
and thus sees it as a genuine threat to a software developer’s ability to protect
the behavioral aspects of her programs. As an empirical matter, it is not clear
how useful black box testing is to programmers attempting to decode complex
competing programs. Black box testing certainly works well on gross behavior.
Intricacies of interoperability and robustness under unusual input sequences,
however, are much harder to duplicate.

Black box testing thus appears to be a greater threat to truly novel and
revolutionary programs than to incremental advances over the state of the art.
These novel programs, however, are also those most likely to be protected by
patents, and software patents provide greater protection against reverse
engineering than do software copyrights. This greater protection is not without
its own pitfalls. Cohen and Lemley argued that the standard protection against
reverse engineering inherent in patent law might be strong enough to impede
the development of next-generation patented software.217 This concern inverts
the Manifesto’s argument that the holders of software copyrights are
underprotected from reverse engineers.

The second route to reverse engineering lies through decompilation. A
decompiler is a computer program whose purpose is complementary to that of
a compiler. While a compiler translates human-readable source code into

215 See NIMMER & NIMMER, supra note 121, at § 2.03[D].
216 See Manifesto, supra note 11, at 2317.
217 See Cohen and Lemley, supra note 73, at 5.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

machine-readable object code, a decompiler does the opposite.218 Thus, a
competitor who purchases object code and decompiles it successfully also
possesses a copy of the copyright-protected source code—by definition, an
unauthorized copy.

The status of reverse engineering through decompilation appeared to be
controversial prior to the passage of the DMCA—which appears to allow it.219

In one well known pre-DMCA case that addressed this question, Accolade
purchased Sega’s video game programs, decompiled them, learned how they
worked, and used that knowledge to build competing games.220 Sega sued for
copyright infringement because of the decompilation.221 Accolade contended
that its creation of an unauthorized copy for purposes of reverse engineering a
trade secret qualified as fair use.222 The court ruled in favor of Accolade, but
noted that its decision appeared incongruous with copyright law doctrines
developed in more traditional domains.223 The court explicitly labeled this
decision as but one more of a growing trend of anomalies in software copyright

218 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1515 n.2 (9th Cir. 1992)
(describing decompilers).

219 The DMCA prohibited the circumvention of anti-copying devices, see supra note
204, but explicitly allowed various forms of reverse engineering of a computer program in
which a user effects the circumvention “for the sole purpose of identifying and analyzing
those elements of the program that are necessary to achieve interoperability of an
independently created computer program. . . .” 17 U.S.C. § 1201(f)(1) (2000). The one
court to have directly addressed the DMCA’s prohibition on circumvention ruled that the
use of a decryption algorithm to allow the unauthorized copying of DVDs “clearly is a
means of circumventing a technological access control measure,” and thus violates the
prohibition of § 1201(a). Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 294,
317 (S.D.N.Y. 2000) aff’d sub. nom. Universal City Studios v. Corley, 2001 U.S. App.
LEXIS 25330 (2d Cir. 2001). The status of decompilation under these new provisions had
not been addressed in any case reported before the end of 2001. To further complicate
matters, there does seem to be an understanding that “section 1201 of the DMCA occupies
‘a niche distinct from copyright infringement’ and that section 1201 is removed from the
[Copyright] Act’s definition of copyright infringement.” RealNetworks, Inc. v. Streambox,
Inc., 2000 U.S. Dist. LEXIS 1889 (W.D. Wash, 2000) (quoting NIMMER & NIMMER, supra
note 121, § 12.A17[B] (1999 Supp.)). Under current law, then, decompilation appears to be
an uneasy exception to general copyright tenets, recognized by some courts, whose status
under the DMCA has yet to be adjudicated fully. Furthermore, the DMCA—as a copyright
act—says nothing at all about the decompilation of patented software.

220 See Sega Enters. Ltd., 977 F.2d at 1527. See also Atari Games Corp. v. Nintendo of
America, Inc. 975 F.2d 832 (Fed. Cir. 1992) (similarly holding that decompilation did not
constitute infringement).

221 See Sega Enters. Ltd., 977 F.2d at 1515-16.
222 See id. at 1520.
223 See id. at 1527. Under current law, then, decompilation is an uneasy exception to

general copyright tenets, recognized by some courts, whose status under the DMCA has yet
to be adjudicated fully.

B.U. J. SCI. & TECH. L.

law that has emerged from the tendency to (or the explicit attempt to avoid)
forcing “the proverbial square peg into a round hole.”224

The DMCA’s apparent allowance of decompilation as a form of reverse
engineering225 opens a potentially powerful route for competitors wishing to
defeat trade secret protection. Various commentators have described
decompilation as practical and significant.226 The Manifesto described its
apparent absence from copyright law as a potential source of
underprotection,227 while Cohen and Lemley cautioned that its apparent
presence in patent law is a potential source of overprotection.228 The true
significance of decompilation remains to be seen. While there is little doubt
that technological advances in decompilers will make the process easier in the
future, it is unclear whether advances in encryption will outstrip these
advances.229 In addition, decompiled software is often difficult to understand
and to replicate,230 and again, this difficulty grows with the complexity of the
program being decompiled.

The practical prospects for reverse engineering thus remain unclear. Both
routes become increasingly cumbersome as the programs that they target
increase in complexity. Protection against reverse engineering is thus most
likely to be important to developers of relatively simple applications.
Developers of sophisticated operating systems may learn that trade secret
protection retains a great deal of value despite the technological and legal
advantages that may be given to reverse engineers.

The practical aspects of the techniques aside, however, reverse engineering
is but one of the issues that have led the courts to oscillate between the
underprotection and overprotection of software. The Manifesto viewed the
problem as inherent in the nature of software:

[T]he Office of Technology Assessment once stated that if copyright did
not protect more than the literal code of computer programs, it would
protect too little, and if it protected more than the literal code, it would
protect too much. We agree and make a similar point about patents: Most

224 Sega Enters. Ltd., 977 F.2d at 1527. See Julie E. Cohen, Reverse Engineering and the
Rise of Electronic Vigilantism: Intellectual Property Implications of “Lock-Out” Programs,
68 S. CAL. L. REV. 1091 (1995) (providing an in-depth discussion of the importance of the
court’s willingness to recognize this anomaly—and of the dangers posed by courts who rule
the other way); Cohen and Lemley, supra note 73, at 21-28 (contending further that a right
to reverse engineering is so important to the development of a healthy software industry that
the courts should find such a right even for patented software. In the absence of a judicial
ability to find such a right, they argued that one should be legislatively created).

225 See discussion in supra note 219.
226 See Sega Enters. Ltd., 977 F.2d at 1515 n.2.
227 See Manifesto, supra note 11, at 2342. Recall that the Manifesto was published four

years before the DMCA was enacted.
228 See Cohen and Lemley, supra note 73, at 16-21.
229 See 17 U.S.C. § 1201(g) (2000) (protecting advances in encryption).
230 See Sega Enters. Ltd., 977 F.2d at 1515 n.2.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

of the commercially significant innovations in software will be
underprotected if patent law adheres to its traditional bounds; yet if this
law is stretched to protect commercially valuable program innovations, it
will overprotect them.231

The Manifesto further illustrated this underprotection/overprotection cycle
by reference to a few well-known cases.232 In Whelan Assocs., Inc. v. Jaslow
Dental Lab., Inc.,233 the court ruled that everything about a program except its
basic functionality was protectable expression, unless there was only one way
(or very few ways) to achieve that functionality, in which case the idea and its
expression were merged and no protection was available.234 This decision
rendered virtually all aspects of a program protectable, and set the stage for a
period of overprotection.

The aforementioned Altai filtration test turned the tide in the other
direction.235 Again, Altai introduced a more sophisticated approach towards
distinguishing between protectable and unprotectable elements of a program.236

The Manifesto noted that a scrupulous application of the Altai test could strip
the protection from virtually all non-literal aspects of a program and thus lead
back to underprotection.237 The Manifesto thus contended that most of the
courts that claim to have adopted the Altai test performed considerably less
filtration than the test itself appears to require.238 It is particularly interesting
that the Manifesto cited Sega as one of the cases that adhered to the Altai
viewpoint,239 despite Sega’s willingness to deviate from traditional copyright
principles by refusing to protect one of a program’s undisputed literal elements
(i.e., its source code).

This cycle of overprotection and underprotection, and the seeming anomaly
of allowing decompilation despite the general contours of copyright law,
highlight the third key difficulty that the Manifesto found with the current
regime—the lack of disclosure. Because current IP rights in the absence of
trade secret protection (and in the absence of judicially-crafted exceptions to
standard copyright principles, such as the one adopted in Whelan and rejected
in Altai) tend to underprotect the behavioral aspects of software, many

231 Manifesto, supra note 11, at 2356 (citing Office of Technology Assessment, U.S.
Congress, Intellectual Property Rights in an Age of Electronics and Information at 78
(1986)).

232 See id. at 2356-61.
233 797 F.2d 1222 (3d. Cir. 1986).
234 See id. at 1248.
235 See Altai, 982 F.2d 693.
236 See id. at 702-9.
237 See Manifesto, supra note 11, at 2360-1.
238 See Manifesto, supra note 11, at 2361 (citing Dennis S. Karjala, Recent United States

and International Developments in Software Protection (pt. 2), 16 EUR. INTELL. PROP. REV.
58, 60-62 (1994)).

239 See Manifesto, supra note 11, at 2359 n. 201.

B.U. J. SCI. & TECH. L.

developers guard their source code zealously. This guardianship runs counter
to the basic quid pro quo underlying the IP system.

Thinking back to first principles, authors and inventors were supposed to be
rewarded for promoting the arts and the sciences.240 Sharing new knowledge is
an obvious and important part of this promotion. As a result, patent holders
are required to disclose their innovations in a description that can be
understood by an average practitioner of the relevant discipline.241 Copyright
holders typically reveal their works to the world as a matter of course; any
competent reader should be able to discern both the protected expression and
the unprotected underlying idea.

Software developers, however, are in a bind. Were they to reveal their
source code in a manner that an average programmer could understand, they
would be shorn of all meaningful protection. The construction of an
independent expression of the underlying idea would be a trivial task.
Competitors could thus enter the commercial market with impunity. Original
developers would have little to show for their efforts and would thus be under-
compensated and inadequately motivated. At the same time, their current
ability to withhold source code requires their competitors to undertake a great
deal of duplicative work. This reconstruction represents an inefficient use of
resources and thus fails to promote adequate progress in the field. The
Manifesto recognized that some mechanism was needed to encourage
developers to publish their source code without depriving them of the
protection necessary to earn a viable return on their R&D investments.242

These three key areas of difficulty played a central role in the Manifesto’s
construction of a proposed alternative regime.243 The basic elements of their
proposal were that:

• Software developers seeking IP protection would have to register their
source code. When they were granted their rights, the source code
would become publicly available.244

• Developers granted IP protection would retain exclusive rights to
behavioral innovations embodied in their source code. All competing
products that embodied that behavior would be considered
infringements.245

• The protection would be of relatively short duration. It would be much
shorter than either a patent or a copyright in the current regime, and

240 See U.S. CONST. art. I, § 8.
241 See CHISUM ON PATENTS, supra note 18, at § 7.01 et seq.
242 See Manifesto, supra note 11, at 2364-65.
243 While this terse statement leaves many details unspecified, it does capture the most

significant features of the proposal forwarded in the Manifesto (which was rather spare on
details itself). Thus, while it might be technically correct to refer to the proposal, as stated,
as one variant on a theme launched in the Manifesto, this article will refer to it simply as
“the Manifesto’s proposal.”

244 See Manifesto, supra note 11, at 2365-71.
245 See id. at 2371-78.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

would expire long before the expected useful lifetime of the innovations
that it protected.246

This proposal, if adopted, could lead to a restructuring of the software
industry. It would certainly realign the rewards available to software
developers. It would affect their decisions about the relative merits of IP and
trade secret protection. It would thus motivate different types of information
exchanges, marketing programs, pricing strategies, and commercial contracts.
It would also result in a much larger percentage of available source code being
shared.

In Stage 2 terms, the Manifesto’s proposal promises broad, short protection
that is shallow on the underlying knowledge but deep in commercial uses—in
many ways similar to patent law. One of the greatest potential benefits of this
type of regime would be its ability to create something akin to a blocking
patent. The regime’s breadth would guarantee the first mover a valuable
monopoly, but only for a limited time. Its shallowness on knowledge would
allow competitors to combine the first mover’s research with their own, and
again, the time limitations would provide them with an opportunity to
capitalize on the combined research while it was still valuable.

C. Incentives and Responses under Alternative Regimes

Before considering the relative merits of the current regime and the
Manifesto’s proposal as required by Stages 3 and 4, two related points that the
Manifesto failed to discuss in any detail must be raised. First, under any
reasonable IP regime, potential applicants may opt out of the IP system and
maintain their innovations as trade secrets. Second, as discussed above,
software is not a monolithic industry; it includes both platforms and
applications. While participants in these sub-industries share many concerns,
they also play in different markets. The differences between these markets can
have a profound effect on the ways in which revenues are generated and thus
on the way that developers seek rewards for their innovations. The differences
can lead to very different marketing strategies and to different decisions about
the relative merits of IP rights and trade secret protection. An analysis of the
software industry must thus consider the likely reactions of both market
segments. In particular, it must consider the circumstances under which the
members of each segment might consider opting out of the IP system and
relying, instead, on trade secret protection.

1. Applications

Dual copyright/trade secret protection is valuable to both platform and
application developers, but in subtly different ways. Recall that an application
developer’s revenue is driven by sales. In the absence of any IP protection, the
developer would invest substantial R&D costs, sell a very small number of
copies of the software (possibly one) and then be faced with immediate

246 See id. at 2378-2405.

B.U. J. SCI. & TECH. L.

competition. Competitors would emerge in two ways. First, consumers who
purchased the first few copies could make multiple additional copies at close to
zero cost. Because these early purchasers do not need to recoup R&D outlays,
they would be able to circulate their copies at close to zero prices and still turn
a profit. Second, even assuming that the application developer kept its source
code secret, the mere existence of a software program would allow trained
engineers to perform at least partial reverse engineering and thus to develop
competing software that is effectively a functional equivalent to the original
release.

The original developer’s revenues under this scenario would thus be
restricted to two main sources: the sale price of those first few copies, and
aftermarket service and support. Because the service and support markets are
inherently porous, the developer will only be able to charge rates that are
competitive with service organizations that did not incur R&D costs. It is thus
difficult to see any way that the developer could recoup its R&D investment
without charging its first few customers an exorbitant price. Given this
imperative, most potential customers would prefer to wait until the price
dropped near zero. The developer’s prospects of recouping its R&D costs are
thus slim. A regime in which software application developers receive no
formal IP rights and must rely solely on trade secret law appears to motivate
little investment in innovation.

The right (and ability) to preclude copying and distribution is thus central to
the motivation of application developers. While some attempt has been made
to achieve this goal through contract law in the form of shrink-wrapped
licenses, the viability of these licenses remains unsettled.247 In addition, a
contract that allows a vendor to retain rights in the object being sold might
violate the antitrust laws as a vertical contract between parties explicitly
designed to restrict output and to raise consumer prices. Some sort of
underlying IP right covering copying and distribution is probably necessary to
carve a meaningful exception, and thus appears to be needed to motivate the
developers of application programs.

247 See DIGITAL DILEMMA, supra note 70, at 100 (enumerating several cases involving
shrink-wrap licenses, only some of which were upheld). The principles differentiating those
that were upheld and those that were disallowed remain somewhat unclear. In addition, the
very nature of shrink-wrapped licenses raises some troubling questions under the IP laws. If
these licenses are allowed for software, should they be similarly allowed for other
copyrighted works? Should a book publisher be permitted to include a license prohibiting
fair use of the book? If so, is the Copyright Act reduced to nothing more than a default
licensing scheme? These questions notwithstanding, the Uniform Computer Information
Transactions Act (UCITA) § 209 (approved in 1999 for recommendation to the States by the
National Conference of Commissioners on Uniform State Laws) recommends that all States
adopt provisions recognizing the validity of shrink-wrapped (or “mass market”) licenses.
See UCITA § 209, available at http://www.ucitaonline.com/ucita.html (last visited Jan 9,
2002). This provision remains controversial (as do various other parts of UCITA).

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

An immediate leap from this motivational need to standard copyright
protection would cut the analysis short. The appropriate questions must now
focus on the Stage 4 assessment of the societal costs and benefits inherent in
various combinations of depth, breadth and length, and on the Stage 3
consideration of ways in which those combinations impact private sector
investment decisions. Once again, the goal of this analysis must be to find
suitable rewards for potential investors in R&D without unduly burdening
would-be competitors, consumers, or the general growth of knowledge. A
consideration of the current regime is again instructive.

The most glaring oddity of the current regime is its length. Copyrights last
at least 95 years,248 a time frame that is effectively infinite in the software
world. Under this standard, most UNIVAC code (written in the 1950’s) retains
decades more of protection, and Windows 95 source code will not enter the
public domain until late in the 21st century—long after it will have lost any
residual value. This situation stands in stark contrast to conventional
copyrighted works. Part of the assumption guiding copyright length is that the
few creations that retain value at the end of the copyright term retain immense
value (e.g., Mickey Mouse)—so much so that they have become icons of
popular culture whose use by society at large should not be restricted. In the
case of software, any components that retain value at the end of this long life
will undoubtedly retain that value because they have been incorporated into
future generations protected by later copyrights and thus remain protected in
their useful incarnations. The decision about protective length is thus whether
the protection should expire during the program’s foreseeable useful lifetime
or be granted to the initial developer for an effectively infinite time period.

The length decision helps focus thinking about depth and breadth. Infinite
protection is obviously more valuable than finite protection. Thus, finite
protection must be deeper and/or broader than infinite protection in order to
motivate the same investment in R&D. Per the discussion above, any
meaningful protection must bar copying and distribution; the developer must
be allowed to sell single copies of object code. From the consumer’s
perspective, then, a standard purchase of an application program must allow
installation on a single computer (perhaps one at a time, allowing a user to
upgrade hardware without repurchasing software or to place copies on multiple
computers owned by the same individual and never used simultaneously), a
maximum range of uses for either personal or commercial benefit, and no
rights to copy, to circulate, or to resell the purchased object code (i.e., to take
any action that would lead to more than one copy of the object code being used
at any given time).

The tricky issues thus focus on the depth and breadth of rights retained by
the developer with respect to its competitors, and on the rights reserved to
those competitors either as purchasers of the application or as members of

248 See 17 U.S.C. § 302(c) (2000) (describing the copyright term for works made for hire,
or corporate works); NIMMER, supra note 121, § 9.01, 9.08-12.

B.U. J. SCI. & TECH. L.

society. If the first application released proves to be successful, many
competitors will want to enter the market. These would-be competitors all
understand that the only way to win market share from a successful incumbent
is to introduce products that are both similar enough to the original product to
attract the users who like it and superior in enough ways to make those
consumers switch.

These dual requirements frame the considerations of breadth and depth. In
this context, breadth determines the range of non-infringing, new products that
may be released by competitors. Depth determines the range of activities that
the competitors may take in incorporating the successful innovation into their
own competing products. Stated another way, the depth of the protection
dictates the steps needed to reverse engineer the innovation. The breadth limits
the ends for which the reverse-engineered information may be used.

Recall that patents may be parameterized as broad, shallow on knowledge,
deep on commercialization, and twenty years long. Conventional (i.e., non-
functional) copyrights are both narrower and shallower than patents but last
much longer. Software copyrights are different, at least in practice. They
allow the original developer to withhold the copyrighted source code from
public view, thereby impeding a competitor’s reverse engineering tasks.
Competitors who devise methods for decompiling object code to recreate the
copyrighted source code have thus created an unauthorized copy, thereby
infringing the developer’s IP rights. Courts that have refused to enforce these
rights have conceded that their refusal is less than entirely consistent with the
general tenets of copyright law.249 Furthermore, the underlying difficulty of
decompiling software (which may increase as cryptographic data-security
algorithms improve), and the necessary imperfection of the resulting “copy,”
makes the de facto combination of software copyrights and trade secrets
broader than conventional copyrights. A ban on decompilation would also
make them deeper.

Once again, then, the combined copyright and trade secret protection of the
current regime provides software developers with protection that is broader
than conventional copyrights, possibly deeper than conventional copyrights,
and of effectively infinite length. Empirical evidence suggests that this
combination of protections has motivated large investments in R&D,
generating increasingly sophisticated software applications. It would be hard
to contend that U.S. policy towards the protection of software rights has failed
to foster a vibrant software industry. From that perspective, the current regime
can certainly be judged a success. What is less clear, however, is whether
some alternative protective regime would have been (or would now be)
preferable. It is possible that some other regime could have generated even
more competition, thereby leading to both superior products and lower prices.

With that in mind, the Manifesto’s proposal can also be evaluated. Recall
that this proposal offers protection that is broader and shorter than the current

249 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir. 1992).

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

regime, and that is shallow on the underlying knowledge (i.e., by requiring
disclosure of source code) but deep in its protection against commercial
competition. The differences between the likely workings of the Manifesto’s
proposal and of the current regime, at least in the applications market, may be
illustrated with the help of a simple example.

Consider the development of a hypothetical new, popular application, the
widgetizer. Under the current regime, several competing software firms would
be likely to realize that widgetizing constitutes a huge potential market, and
compete to be both the first to market and the best early product to market.
Several first-generation products would be released, all produced through
independent research efforts. Widgetized files generated on one first-
generation product would probably be incompatible with those written using
any competing product. Consumers would likely be divided over the features
and systems that they liked. The competing widgetizer firms would be able to
see which competing systems fared well, and to the extent that these firms
could derive comparable functionality independently, they could incorporate
their competitors’ strengths into their own second-generation systems.

Between the first and second generations, some firms would likely exit
while others would enter. Second generation products would incorporate new
features—some newly devised, others inspired by competing first generation
products. As the generations progressed, increasing numbers of features would
be incorporated into each product, and some would even become compatible
with old versions of competing programs. Eventually, most competitors would
be likely to leave the field, and the competitive tension that motivated early
improvements would dwindle.

In a regime designed along the lines of the Manifesto’s proposal, the market
would evolve differently. Suppose that the first mover had been awarded
exclusive rights to market a widgetizer for a brief period in exchange for
publishing its underlying source code. The rights holder would have to recoup
its entire investment during this monopoly period, because its competitors
would undoubtedly continue their research until the rights had expired. Once
the competitors gained access to the rights holder’s source code, they could
develop additional features, for which they, in turn, could seek IP protection.
They could then cross-license their newly protected features with the first
mover to market a (protected) second-generation program, or they could
develop their own program and wait for the monopoly period to end.

If the firms choose to cross license, consumers will gain rapid access to a
second-generation widgetizer compatible with their existing programs, albeit at
a monopoly price. Competition would then move to the next set of features. If
cross licensing did not occur, it is likely that several competitors would have
each devised their own sets of (protected) features. The second-generation
would thus have consisted of several competing systems, each with a unique
set of advanced features and each compatible with the first generation
monopoly product. Because the monopolies granted in the second generation
would be much narrower than the first generation monopoly, the competing
second-generation products would begin to constrain one another’s prices.

B.U. J. SCI. & TECH. L.

Third-generation systems, in turn, would incorporate all desirable second-
generation features—and be compatible with all second-generation systems.
The process would continue from there.

This comparison suggests that over the first few generations, the
Manifesto’s proposal would almost certainly have increased compatibility
among competing systems. At the same time, it would probably also have
sped technological development and, on the down side, elevated early prices.
The potential increase in compatibility is particularly significant given the
network nature of the software industry. By forcing protected software firms
to disclose their source code, a de facto open standard would have been likely
to emerge.250 This open, public domain standard would present fewer barriers
to entry than do the current privately-owned standards of many critical
applications—thereby leading to a larger number of firms competing to enter
successive technological generations, and possibly (eventually) to lower prices.
These considerations—the early price/quality tradeoff, the emergence of
different standards, the potentially larger marketplace of vendors, and possibly
even the eventual reduction in the prices that consumers pay for high quality
goods—all play central roles in the Stage 4 analysis of the relative societal
values of the current regime and the Manifesto’s proposal. 251

250 There is a substantial literature on standards, standard setting bodies, and strategies
for allowing a technology to emerge as a de facto standard in a network industry. For a
general introduction to this literature, see, e.g., SHAPIRO & VARIAN, supra note 162; Stanley
M. Besen and Joseph Farrell, Choosing How to Compete: Strategies and Tactics in
Standardization, 8 J. ECON. PERSP. 117, 117 (Spring 1994).

251 The idea that an open, public domain standard would benefit the public is hardly
novel. In fact, it is the basis of an entire movement within the hacker community—known
first as the “Free Software” movement, currently as the “Open Source” movement, and
tracing its roots to the earliest versions of Unix. See The Open Source Initiative: History of
the OSI, at http://www.opensource.org/docs/history.html (last visited Dec. 31, 2001). The
movement’s “social contract” states (in part):

Open Source doesn’t just mean access to the source code. The distribution terms of
open-source software must comply with the following criteria: 1. Free
Redistribution The license shall not restrict any party from selling or giving away
the software as a component of an aggregate software distribution containing programs
from several different sources. The license shall not require a royalty or other fee for
such sale 2. Source CodeThe program must include source code, and must
allow distribution in source code as well as compiled form Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of a
preprocessor or translator are not allowed 9. License Must Not Contaminate Other
Software The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the license must not insist
that all other programs distributed on the same medium must be open-source software.

Id. It should be clear that had the software industry developed along the lines advocated by
the open source movement, it would look quite different from the way that it does today.
Members of the movement, of course, contend that this but-for software industry would
have improved the array of products available to businesses and consumers at prices below
those assigned to current offerings. For more information on the Open Source movement,

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

Had the Manifesto’s proposal been in place throughout the history of
commercial software development, its realignment of rights and incentives
would have distributed the rewards of software innovation very differently
throughout the private sector. In a network governed by a privately owned
standard, the network owner reaps huge rewards. The closer the network
comes to an open standard, the closer the industry comes to being fully
competitive. Successfully innovative firms would still receive fair, and
frequently substantial, returns, but nowhere near the monopoly profits that can
be extracted by a network-owning monopolist. This redistribution thus frames
the Stage 3 comparison of the private value of the protective regimes.

At this point, is important to recall that the raison-d’être of this entire
analysis is the determination of societal values for each of the regimes—in
other words, the outcome of the Stage 4 inquiry. As noted above, the
consequences of following the Manifesto’s proposal seem likely to include
higher quality software, lower prices in the long term, increased competition,
and fewer opportunities for anticompetitive behavior, all without sacrificing
innovation. These consequences appear to confirm both the Manifesto’s claim
about the superiority of its proposal and this article’s claim about the merits of
industry-specific IP rights at least with respect to the part of the software
industry focused on applications.

That said, it is also important to recall the caveat of section V.B that an
evaluation of a proposal’s merits is incomplete without a corresponding
consideration of transaction and transition costs, an issue that will be deferred
until section VII’s summary analysis. In the meantime, it is fair to conclude
the consideration of applications software by saying that the Manifesto’s
proposal appears to be superior to the current regime—at least on its merits.

2. Platforms

The analysis of incentives in the applications market began by considering
the hypothetical problem of underprotection, thereby motivating the need for
some sort of IP protection. In the platform market, the more pressing problem
appears to be overprotection. This difference emerges from the difference in
primary revenue sources associated with the two classes of products. Recall
that while the primary source of application revenues lies in product sales, the
primary source of platform revenues may lie in network access, which is
perhaps most easily realized by licensing (or by providing development kits for
or pre-release information about updates to) the APIs. The key to assuring this
revenue stream lies in keeping access to the platform’s source code secret and
proprietary. While IP protection could certainly help secure the secret (i.e., by
complicating reverse engineering efforts), the best protection is likely to lie in
the platform developer’s own efforts to assure the security of its crucial trade,
including efforts in advanced encryption technology.

see The Open Source Initiative, at http://www.opensource.org/ (last visited Dec. 31, 2001).

B.U. J. SCI. & TECH. L.

Reduced IP protection would have some potentially significant effects on
platform developers. First, it would probably lead to at least a mild increase in
their investment in security and encryption. Second, it would almost certainly
eliminate their second revenue stream—the sale of copies of their platform—
because unprotected platforms could be copied and distributed at close to zero
cost.252 Thus, in the absence of IP rights, platform developers would be likely
to increase their returns on service contracts, warranties, support, API access,
and development tools and kits, thereby elevating prices in these markets to the
detriment of both direct consumers and application developers (who, in turn,
would be likely to raise their own prices to consumers). Even these increases
are far from guaranteed, however, because the rapid, free dissemination of the
platform could help the developer grow its network, thereby yielding increased
returns through higher volume sales into the larger aftermarkets rather than
through higher prices.

The greater danger in thinking about platforms lies in overprotection. This
danger becomes greatest when a single platform developer has been able to
achieve monopoly power—a situation that is not only predicted by the
economic theories of network markets, but that has actually occurred in the PC
world.253 To see this danger, consider the likely relationships among M, a
hypothetical platform developer possessing market power,254 and four other
groups: (i) original equipment manufacturers (OEMs) who manufacture the
hardware upon which M’s platform runs; (ii) applications developers whose
software must run on some platform; (iii) competing platform developers; and
(iv) consumers/end users of M’s platform and associated hardware and
applications. These relationships define the potential profit sources that must
be considered in the Stage 3 analysis of private sector values.

Before M achieved market power, its relationship with OEMs was
essentially symbiotic. Because most of the OEMs’ customers wanted to
purchase fully functioning systems, hardware had to be sold with a software
platform. OEMs thus had an interest in providing their customers with as
many different platforms as possible. M’s interest, like that of its competitors
in the platform market, lay in making its platform available to as many

252 Note that this phenomenon actually serves one of the objectives of the platform
developer—the growth of its own network.

253 Or at the very least, in the world defined by PCs running Intel processors. See
Microsoft-Appeal, 253 F.3d 34, 51 (D.C. Cir. 2001); Microsoft-Law, 87 F. Supp. 2d 30, 35
(D.D.C. 2000).

254 While the discussion is stated as a hypothetical, it would be disingenuous to pretend
that it is not based on Microsoft. Part of this article’s argument is that many of Microsoft’s
general behavior patterns were reasonably predictable outcomes given the types of legal
protection that it was granted. Network economics, copyright protection, and trade secret
protection combine to create a powerful and robust monopoly. It should not be surprising
that a corporation finding itself in possession of such a monopoly should choose to behave
as a rational monopolist. See generally Microsoft-Appeal, 253 F.3d 34; Microsoft-Law, 87
F. Supp. 2d 30; Microsoft-Facts, 65 F. Supp. 2d 1 (D.D.C. 1999).

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

consumers as possible, regardless of their choice of hardware. In this setting,
platform developers and OEMs were in rough power parity. Neither side
would have benefited from an exclusive agreement that restricted distribution
outside the exclusive. Favoritism given by one platform developer to one
OEM would complicate its dealings with other OEMs and vice versa.

The network nature of the platform market suggests that this situation is
unstable. Eventually, users would tip the market towards one platform that
would become a de facto standard.255 As it happened, a critical mass of
consumers began demanding that OEMs provide them with turnkey systems
running M’s platform. These demands gave M market power; M was suddenly
positioned to shift the power equation vis-à-vis the OEMs. M gained the
power to insist on either an exclusive contract or no contract at all. OEMs who
recognized that a refusal to deal with M would shut them out of much of their
own market were thus forced to accept M’s terms, thereby magnifying the
network effect and increasing M’s market power even further.

This situation was entirely contingent on M’s ability to control distribution
channels. In the absence of IP rights, M would have had no such opportunity;
OEMs could have purchased a single copy of M’s platform and distributed it
freely with their hardware. Many OEMs would have been likely to find
themselves primarily selling systems configured with M’s platform simply
because of consumer demand. They would also, however, have continued to
offer some systems with competing platforms—at least until the burden of
carrying multiple systems outweighed the revenues generated by offering
consumers a choice. M, of course, would not have been shut out of the power
equation entirely; M could still have negotiated with OEMs over terms
involving pre-release information, support, service contracts, updates, etc.

255 Tipping to a standard was inevitable. The requirement that the adopted standard be
proprietary was not. The hardware market, for example, tipped away from Apple’s
Macintosh and towards IBM’s PC only after IBM decided to license its PC architecture,
thereby effectively turning the architecture platform into a commodity that was quickly
mastered by competitors manufacturing “IBM clones.” This decision thus paved the way
for the next platform level—namely the operating system—to become the valuable
proprietary bottleneck in system design. In many ways, Netscape’s decision to publish its
source code represented a similar attempt to commoditize the world of web browsers—a
decision that turned out to be (at the very least) too late to preserve its viability as an
independent company. The parallels between IBM’s power in the era preceding the
commoditization of its PC architecture and Microsoft’s current monopoly power as the
proprietor of the dominant software platform are discussed in Timothy F. Bresnahan, New
Modes of Competition: Implications for the Future Structure of the Computer Industry, in
COMPETITION, INNOVATION AND THE MICROSOFT MONOPOLY: ANTITRUST IN THE DIGITAL

MARKETPLACE 155 (Jeffrey A. Eisenach & Thomas M. Lenard eds., Kluwer 1999),
available at http://www.stanford.edu/~tbres/research/pff.pdf; Timothy F. Bresnahan, The
Right Remedy (2001), at http://www.stanford.edu/~tbres/Microsoft/The%20Right%20
Remedy.pdf. A discussion of Netscape’s strategic decision to publish its source code is
presented in MICHAEL A. CUSUMANO & DAVID B. YOFFIE, COMPETING ON INTERNET TIME:
LESSONS FROM NETSCAPE AND ITS BATTLE WITH MICROSOFT (1998).

B.U. J. SCI. & TECH. L.

Without the threat of withholding a crucial product, however, the negotiations
would have remained on a more equal footing.

This problem suggests the need for a shallower protective regime, at least
for platforms. Under the current regime, M may restrict distribution of its
platform and place even further restrictions on its resale. A shallower regime
could place severe limits on M’s ability to achieve either goal. In the
shallowest possible regime, M would be granted no rights concerning
distribution, and anyone who “found” a copy of M’s platform would be free to
use, to copy, and/or to resell it.

In a somewhat deeper regime, albeit one that is still shallower than the
current regime, M could be granted rights on distribution and on copying, but
only until the time of the first sale. In other words, M could be granted strict
control of the number of copies circulating, but any attempt to restrict activities
of the purchaser (either by contract or through IP rights), could be viewed as a
misuse of the right and thus grounds for invalidating it.256 Under this regime,
M would receive a fee from the OEMs for every copy that they purchased, but
M could not impose any conditions on the way in which the OEMs packaged
the platform. Stated in somewhat more conventional copyright terms, this
regime would reduce, if not eliminate, M’s rights over derivative works.257

The Manifesto’s proposal takes a different approach. Recall that under the
Manifesto’s proposal, M’s protection in the marketplace would be broad and
deep, but short.258 M’s registration of its platform, along with the deposit of its
source code, would guarantee it a first generation monopoly on certain
categories of platforms—namely those that incorporated M’s behavioral
innovations. The realities of network industries, however, suggest that this
short-lived monopoly might be of little value. The true value of a platform
monopoly arises only after it has become a de facto standard. M designed its
platform hoping to earn a long-term platform monopoly. A granted short-term

256 At the time that this article is being sent to press in early January 2002, the ultimate
remedy to Microsoft’s violations trial remains undetermined, but appears likely to include
only behavioral provisions. The analysis presented in this section suggests that some variant
of a misuse remedy—under which the courts would refuse to enforce the portions of
Microsoft’s IP portfolio that relate to Windows until Microsoft could demonstrate that
competition had been returned to the market for operating systems on Intel-based PCs—
might be appropriate. To date, no one has floated the idea of a misuse remedy vocally and
publicly. Most of the debate has centered on the relative merits of structural and behavioral
remedies.

257 A reduction of the rights granted over derivative works has implications to both depth
and breadth. From a depth perspective, it expands the range of activities open to the
purchaser of an authorized copy, thereby leaving the rights holder with shallower rights.
From a breadth perspective, it narrows the scope of works considered similar enough to the
protected original to fall within the ambit of its protection. This point illustrates the
necessary interaction between depth and breadth—and stresses that not all combinations of
depth and breadth are possible.

258 See Manifesto, supra note 11, at 2408.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

monopoly on a small class of platforms is a weak substitute. As a result, were
M forced to choose between the protection afforded by the Manifesto’s
proposal or trade secret protection, M would probably choose trade secret
protection and opt out of the IP system. If M’s competitors gained access to its
platform’s source code, M could never earn its desired monopoly of the
platform market. As a result, M might opt for IP rights in a regime like the
current one, which uses them to augment trade secret protection. M would be
unlikely to opt for any set of rights that forced it to relinquish its trade secrets.

Competing platform developers are M’s direct competitors. A shift in IP
protection is likely to have a minimal impact on most of these relationships.
The only area in which the impact is likely to be felt lies in a slight reduction in
the barriers to reverse engineering.

A consideration of the relationships among existing platform developers (or
would-be platform developers) suggests why the impact of a regime shift is
unlikely to be significant. Perhaps the most interesting questions related to
direct competition in the platform market lie in the transition between
platforms for successive generations of technology. The theory of network
economics suggests that once M has achieved market power for its platform,
most of its direct competitors would likely be either relegated to niche markets
or forced out of business. Competition is unlikely to reemerge unless and until
a new technology arises.

The software industry almost witnessed this type of reemergence with the
introduction of Netscape’s Navigator and Sun’s Java, both of which arose after
Microsoft’s Windows had consolidated its dominance of the Intel-based PC
platform market. These programs have been referred to as “middleware,”
lying somewhere between true platforms and true applications.259 These
programs promised to combine to serve as a quasi-platform for a new
generation of technology—including the technology underlying Intel-based
PCs. At one level, they would have interacted with platform APIs, such as the
APIs for Microsoft’s Windows and/or for Apple’s Macintosh systems. At
another level, they would have presented open, consistent interfaces to which
applications programmers could write new applications. Programmers given
this ability would be less insistent on purchasing systems equipped with a
specific platform, such as Windows. Middleware thus threatened the ability of
the previous generation’s victorious platform developer—in the PC world,
Microsoft—to exploit the power imbalance created by the success of its
platform.

The significance of this middleware challenge to the design of an IP regime
is subtle. In the current regime, platform developers possess several ways to
generate revenues including both the sale of preferred access to APIs and the
sale of copies of the platform. In a regime that did not protect the developer’s
platform distribution rights, all other revenue sources, including API access
fees (frequently in the form of charges for development tools), would become

259 See Microsoft-Facts, 65 F. Supp. 2d 1, 9, 19-22 (D.D.C. 1999).

B.U. J. SCI. & TECH. L.

correspondingly more important to platform developers. Middleware would
thus become even more of a threat than it is in the current regime.
Nevertheless, it is unclear how this difference would affect behavior. The
developer in possession of a dominant platform will continue to take all steps
possible to defeat middleware threats; potential competitors will continue to try
to develop middleware capable of catapulting them to a dominant position in
the next generation of the technology.

Thus, competition under the Manifesto’s proposal could be expected to
continue much as it has under the current regime, although it would be likely to
take place among platforms whose developers had opted out of the IP system
in favor of trade secret protection. This change could have one of two effects.
First, by rebalancing the power equation between platform developers and
other private sector players (particularly OEMs), it could reduce the likelihood
that any single platform developer could claim victory and push its proprietary
platform into the de facto standard. This scenario would thus impede the
emergence of a standard. Second, by reducing the revenues generated by
platform sales, it could force some competing platform developers to exit the
market earlier than they otherwise might. This scenario would thus speed the
adoption of a de facto standard. There does not seem to be any principled
basis on which to choose between these scenarios. In either event, there does
not appear to be any reason to believe that the adoption of the Manifesto’s
proposal should affect the ultimate strategic calculus guiding the relationships
among competing platform developers.

The developers of application programs are another industry group with
whom platform developers must negotiate. This negotiation promises to be
more complicated than negotiations between platform developers and OEMs
because the technical skills necessary to develop platform and application
software are quite similar. As a result, platform developers are also likely to
be application developers. Other application developers may thus be
developing products that complement M’s platform but that compete with M’s
applications. M must thus make a careful strategic decision about its
relationship with other applications developers.

This decision, which may be described as the tension between access and
control, confronts any firm that controls the keys to a network in a network
industry. It determines the degree of exclusivity that M will retain over the
virtual network defined by its platform. Recall that one of the defining
characteristics of a network industry is that the value of the network grows
with the number of network members. Because all application software
written for this network must be interoperable with the platform, M can
eliminate potential application competitors by refusing to license its APIs and
developing all relevant applications software in-house. This approach,
however, would motivate all potential competitors to develop applications for
competing platforms, thereby complicating M’s desire to achieve and to
maintain its market power in the platform market, as well as depriving
consumers of much useful software.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

This strategy, which allows M to retain “total control” of its network, can be
very risky. In essence, it is a bet by M that its platform is superior to any
possible combination of competitor efforts. If M is correct, this strategy could
yield enormous profits, although frequently only in the short run. Apple
Computers applied a variant of this strategy with consequences that worked to
its detriment. In the early-to-mid 1980’s, Apple produced hardware/software
combinations that were, by most accounts, superior to those of its competitors,
the most powerful (and important) of whom was IBM.260 Apple chose to hold
its technology proprietary, thereby making it difficult for competitors to
develop Apple-compatible applications.261 IBM licensed its technology,
thereby motivating competitors in a variety of industries, ranging from
semiconductors to software, to develop products compatible with its
network.262 The combined efforts of all members of the IBM-originated
network eventually surpassed those of Apple, and led to a rapid downturn in
Apple’s fortunes.263 This basic story has been repeated in many industries and
accentuates the dangers of taking a strictly controlling approach.

The polar opposite of a total control strategy is total access. Under a total
access strategy, M would grant all comers access to the network defined by its
platform by making its APIs widely available at a low price (or even free of
charge). The maximum number of applications developers would thus work
on software compatible with M’s platform, motivating both developers and
consumers to purchase/adopt M’s standard. M would thus stand to gain a huge
share of the platform market but potentially no share of the applications
markets. Most commercially viable long-term strategies lie between the
extremes of total access and total control.

A restructuring of IP rights is likely to have a profound impact on M’s
thinking about the relative merits of access and control. An inability to control
the copying and circulation of object code must, by necessity, shift M’s focus
towards maximizing the revenue streams attributable to other revenue sources,
such as training, customer service, API licensing, and development tools.264

260 See Apple-History.com (last visited Dec. 5, 2001), at http://www.apple-history.com/
history.html.

261 See id.
262 See id.
263 See Leigh Kimmel, Apple Computer Inc.: A History, at http://www.geocities.com

/Athens/ 3682/applehistory.html (last visited Dec. 5, 2001). IBM’s architecture is now the
basis of the WINTEL standard—named because of the importance of Microsoft’s Windows
and Intel’s microprocessors to that architecture, two products owned by IBM’s competitors.
Thus, while the architecture won and IBM has hardly fared poorly, IBM both risked and lost
leadership of its own architecture.

264 The “Open Source” movement, see supra note 251, which advocates the liberal
circulation of source code, sells copies of its source code and thus eschews fees both for the
circulation of individual platforms and API fees. The best-known product of this movement
currently available is Linux, an open-source version of the Unix operating system.
Companies poised to profit from Linux, such as Red Hat and VA Linux, tend to view

B.U. J. SCI. & TECH. L.

Again, if M were forced to choose between disclosing source code and
maintaining it as a trade secret, the code would probably remain secret. This
decision would relinquish M’s rights over distribution of the platform and thus
render the total control strategy untenable. M would thus have to pursue an
access-oriented leveraging strategy as a simple matter of practical economics.

That realization does not end the analysis. Without IP rights, the application
competitors with whom M shared the APIs would be under no legal obligation
to refrain from publishing and/or circulating them, thereby making moot yet
another source of M’s revenue. The likelihood of this occurring, however, is
rather slim. Application developers will refrain from circulating APIs for two
reasons. First, they may be bound by contract to treat the APIs as M’s
proprietary trade secrets. Second, and more to the point, access to an API,
particularly during the pre-release stage, provides an application developer
with a tremendous market advantage. An application developer who shares the
API with a competitor is squandering that advantage. Coalitions of application
developers who agree to present a “united negotiating front” to M would
almost certainly be violating the antitrust laws as a monopolistic cartel.265

Thus, the practical economics of the matter not only constrains M’s strategic
decisions, but also provides M with de facto protection.

On the flip side, M might decide that it was not appropriately leveraging
what should be its competitive advantage in the applications markets. Because
M has sole access to the platform’s trade secret-protected source code, and thus
advance knowledge of all pending upgrades, M should have a substantial
advantage in the development of applications software. M could choose to
exploit its position without restricting access by delaying its information
sharing. In-house developers could thus benefit from a window of exclusivity
in their attempt to develop the best applications, or at least to be the first to
market. This window would not guarantee that M would always develop the
best applications. It would, however, give M an edge over its competitors,
whose applications would have to be either truly novel or appreciably better
than M’s products to win.

It is not clear how IP rights would have any direct impact on M’s ability to
pursue this (or other) potentially anticompetitive courses of action because
factors unrelated to IP law may constrain M’s behavior. It is likely, for
example, that a reputation for selling “damaged goods” in the form of slightly
stale APIs would reduce the licensing fees that M could generate by selling
those APIs. The more central API licensing fees are to M’s overall strategy,
the more likely M is to ensure that they yield top dollar. While this concern is
far from a guarantee that M will deal fairly with its competitors in the
applications markets, it does suggest a somewhat higher risk associated with

support and service as their main sources of revenue.
265 See PHILLIP E. AREEDA & HERBERT HOVENKAMP, ANTITRUST LAW: AN ANALYSIS OF

ANTITRUST PRINCIPLES AND THEIR APPLICATION chs. 7-8 (2d ed. 2000).

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

anticompetitive behavior and thus a somewhat reduced probability that such
behavior will occur.

It appears, then, that the relationship between a platform developer and
application developers is essentially governed by the trade secret protection
maintained on the platform’s source code and pre-released APIs. The major
protection that the IP system can afford in this relationship is protection against
reverse engineering. A deep IP system that prohibits all forms of reverse
engineering would strengthen the platform developer’s ability to extract API
license fees. A shallow system allowing most or all reverse engineering efforts
could weaken the platform developer’s negotiating position. It is not clear,
however, how much of a limitation that would be. Lead-time is crucial in
software. An application developer forced to wait for a new system release
before updating her product would be at a clear disadvantage to a competitor
who paid for pre-release API access. While this market reality does place
some limitation on the platform developer’s negotiating strength, the
significance of this limitation remains dubious. All told, even major shifts in
the IP protection afforded to the platform developer are unlikely to have more
than a minor impact on these relationships.

This Stage 3 analysis of the relationship between a platform developer and
other private sector actors thus suggests that platform developers forced to
choose between trade secret protection and an IP right will opt for trade secret
protection. Proposed regimes that force platform developers to make this
choice (e.g., the Manifesto’s proposal) would probably result in most platform
developers opting out of the IP system. Platform development would thus be
restricted to a few large, well-funded companies who could afford to circulate
enough copies of their platform to develop a network and to reap the bulk of
their returns through licensing and aftermarket support fees only after the
network had achieved a workable level of popularity.

While this possible shortage of platform competitors is certainly a negative
factor that needs to be considered in the Stage 4 analysis of the Manifesto’s
proposal, it is not clear that the absence of IP rights would chase any existing
competitors from the field. The intense need for up-front capital appears to be
endemic to the network nature of the platform industry and is thus unlikely to
either invite or deter many potential entrants under any type of protective
regime. With that thought in mind, the Stage 3 private sector analysis of the
platform industry may now feed into the Stage 4 consideration of the likely
societal consequences of the proposed reform.

The Stage 4 focus on societal perspectives is probably best understood
through the lens of one of society’s many personae: consumers. Software
consumers are the end users who pay for platforms at prices set under the rules
allowed by an IP regime. Under the current system, most platforms are priced
as a relatively small component of a total system that combines hardware, a
platform, and applications. Were the system reformed along the lines of the
Manifesto’s proposal, and were platform developers to choose trade secret
protection over IP rights, access to a working copy of the platform would
become essentially free to consumers. At the same time, consumers could also

B.U. J. SCI. & TECH. L.

expect to pay more for training, support, service, warranty contracts, and
possibly applications (whose developers were likely to have incurred higher
API access fees, which they are likely to pass through to end users).

The indirect impact of a regime change on consumers is likely to be even
more profound. A platform developer’s inability to restrict channels of
distribution would lead to a radical rebalancing of power between platform
developers and OEMs and to a less pronounced rebalancing of power between
platform and application developers. These realignments would reduce the
ability of a platform developer, including one controlling the de facto standard,
to extract monopolistic terms and conditions from other vendors in the supply
chain. The likely outcomes of this industry restructuring thus include an
increase in consumer choice, an increase in competition, a change of the rate at
which a de facto standard is adopted, a reduction in incentives to platform
development, and a consequent possible reduction in platform innovation.

The tradeoffs implicit in these likely outcomes, like those discussed in the
context of application developers, frame the Stage 4 assessment of societal
value with respect to platform developers. The current regime and the
Manifesto proposal once again provide a choice among combinations of likely
price, quality, access, and compatibility. If the effective elimination of IP
rights for platform developers would reduce neither the number of competitors
in the platform market nor the innovative effort that they expend trying to
make their platform-defined networks become the de facto standard, the
Manifesto’s proposal would maintain all of society’s benefits while reducing
societal costs. It would thus appear to be a step in the positive direction. That
conditional clause, however, is far from certain. While it is possible that the
rewards associated with the ownership of a network standard are so great that
no further motivation is needed, it is also possible that neither sales revenues
nor network control is enough, in and of itself, to motivate the expensive high-
risk challenge of platform development, and that developers forced to make
such a choice will instead choose to expend their efforts in other directions. If
this contrarian view is true, the Manifesto’s proposal could be a disaster.

Such a “disaster,” however, need not be crippling. Recall that the initial
theoretical discussion of reforms in section 4.3 noted a frequent synergy
between radical and conservative reform. Under that general formulation, a
radical reform step might be followed by a number of empirically observed
negative consequences. Conservative patches would then be needed to address
those problems without undermining the basic structural nature of the radical
reform. It would be naïve to believe that the first broad-brush pass at a reform
as complex as industry-specific IP rights tailored to the software industry could
be correct in all of its specifics. Should the Manifesto’s proposal be adopted, it
must be viewed as the start of a new process amenable to corrective tinkering,
not as the endpoint in a discussion of reform. The Manifesto’s proposal would
uproot society’s value calculations from their current locale and land them in a
radically different place. Conservative incremental steps would undoubtedly
be needed to move from that new place towards a societal optimum.
Foreseeable potential disasters like a reduction in platform innovation suggest

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

areas in which empirical evidence should be monitored and conservative
patches should be considered.

This Stage 4 societal analysis thus highlights yet another significant
difference between the application and platform industries. While the
Manifesto’s proposal appears to help society in its dealings with application
developers (and with platform developers who are content to ignore the
network nature of their products and treat them as if they were applications),
its impact on society’s relationship with platform developers focused on
network economics remains unclear. On the one hand, it could clear up many
of the existing antitrust problems without deterring innovation or retarding
progress. On the other hand, it could simply shift the tension from
anticompetitive behavior to the inadequacy of IP rights, thereby necessitating a
round of conservative tinkering following the radical reform. It is also possible
that political transition costs will render any radical reform untenable. Even in
this case, the four-stage framework will have served an important purpose. It
will have focused the public policy debate on fidelity to first principles—even
where the resolution may eschew those principles in favor of expectation
interests entrenched in the status quo.

3. Forcing a Choice

The ability of a platform developer to exploit copyright and trade secret law
simultaneously increases the prospects of anticompetitive behavior. Unlike
application developers, to whom copyright protection is almost certainly the
more valuable of the two, many commercial platform developers forced to
choose would be likely to retain trade secret protection, to allow their networks
to grow organically at zero cost, and to regulate access to other firms in the
vertical chain leading to a fully-integrated hardware/platform/application
package.266 Their revenue reductions would come from the stream that is
theoretically most expendable in a network industry (i.e., the charge for joining
the network), and their loss in strategic positioning would likely preclude more
anticompetitive behavior than valid competition. While this loss in distribution
revenues and monopoly rents would probably dissuade some investment in
platform research, the ample rewards available to anyone who controls a key

266 Again, the “Open Source” movement, see supra note 251, presents a model of
platform developers who have opted out of trade secret protection in favor of other sources
of revenue. While the movement may yet succeed with Linux, its commercial successes to
date have been rare. In fact, the open source movement predates the current dominant PC
standard of Windows. While open source advocacy was strong in certain academic circles,
however, Microsoft was able to attract large capital investment and to develop the platform
that eventually became dominant. It is hard to see how the Microsoft model could have
worked in an open source environment. Thus, past experience suggests that while an open
source environment could prove profitable, a secretive environment promises even greater
profits. Many commercial platform developers are likely to follow this model unless and
until its superior profitability potential is disproved.

B.U. J. SCI. & TECH. L.

element of a network’s infrastructure is likely to spur a substantial amount of
innovation and continued investment.

The Manifesto’s proposal, if followed, is likely to bifurcate the software
industry. Platform developers will opt out of the IP system in favor of trade
secret protection. Application developers will reveal their source code in
exchange for the new sui generis software rights. As the Stage 4 analyses
showed, this bifurcation is likely to improve societal value with respect to the
parts of the industry that opt in. The societal impact of the parts of the industry
likely to opt out is harder to predict, yet still potentially favorable to the
Manifesto’s proposal. Considering all factors, then, the analysis appears
favorable for industry-tailored rights of the sort proposed in the Manifesto.

VII. ANALYZING THE SOFTWARE INDUSTRY

The preceding section presented a fairly lengthy discussion of the software
industry. The discussion included several pointers to relevant conclusions set
within the analytic framework of section V. The basic purpose of the
framework, however, was to ease policy analysis by presenting these
conclusions in a compact, summary form. This section thus presents such
summaries for the two policy alternatives being studied: the current IP regime
and the Manifesto’s proposal.

A. The Current Regime

Recall that the analysis proceeds in four stages: (i) industry analysis, (ii)
regime specification, (iii) assessment of private value, and (iv) assessment of
public value. These stages will be considered in turn:

• Stage 1: Characterize the Industry.
Perhaps the most significant of software’s attributes is that, as a technical

matter (rather than as a legal matter), it is easy to copy and to distribute at near-
zero marginal cost. Within the industry, action shifts quickly as new types of
programs become technologically feasible, then popular, then integrated into
larger systems. Programs also often become easier to use and more robust as
they become more powerful. This constant drive toward higher quality can
impel innovators forward even after they have succeeded—unless their
progress is impeded by improvidently awarded property rights. These two
observations govern the basic shape of the industry, the interrelationships
among its participants, the types of incentives available to motivate its
potential and actual innovators, and the most likely sources of friction among
both incumbents and would-be entrants. The tension between the observations
makes software an industry that could either be strengthened or weakened by
decisions governing IP policy.

In terms of understanding industry incentives, the broad software industry
must be subdivided into platform developers and application developers.
There are currently only a few players in the platform market, and entry is
constrained by the relatively high barriers common in network industries. The
overall applications market is highly competitive, although some key

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

application markets are dominated by a small number of large players. The
key item differentiating these sectors lies in the types of business plans likely
to succeed. In either sector, returns on investment are generally measured in
months to a few years, although returns on sales of applications may begin
more quickly than returns on platforms. Low-priced circulation of platforms to
build networks can retard initial returns substantially, but promise exponential
growth if the network-building plan succeeds. Thus, the most likely source of
revenue to a platform developer comes from the sale of network access, while
the most likely source of revenue to an application developer comes from the
sale of software. This difference works its way into the incentives likely to
motivate innovation.

Three key elements thus dominate the relevant profile of this complex
industry:

• The industry may be split into platform and application sectors.
Application developers earn most of their revenues from sales of
recently developed programs. Platform developers earn most of their
revenues from licensing access and support to networks that they grow
over time.

• Software needs to be protected to retain any value. The valuable item
embodied in software is functional behavior, not literal expression.
Patents and trade secrets can protect such behavior; conventional
copyrights cannot. Sales receipts are contingent on effective protection.

• A good software package can generate a number of potentially lucrative
aftermarkets. The program’s developer has a natural competitive
advantage in most of those aftermarkets. Software developers can thus
profit from their innovations even in the absence of protective rights.

These elements govern the types of business plans that will motivate
successful software firms. They should also influence the types of IP rights
offered to these firms.

• Stage 2: Define the Protective Regime.
Existing software copyrights are narrow, shallow, and long. They are

narrow because behavior is not protected by copyright. They are probably at
least somewhat shallower than a standard copyright because of the courts’
growing willingness to allow decompilation by commercial competitors as part
of the reverse engineering process. Their length, although formally ninety-five
years, is effectively infinite because copyright protection lasts far longer than
the useful life of computer code. The anomaly of software is that innovators
do not have to opt out of trade secret protection to acquire IP rights. The de
facto combination of copyright and trade secret protection is both broader and
deeper than the copyrights provided for standard texts and is similarly of
effectively infinite length. The current IP system allows software developers
to avail themselves of this strong dual protection.

• Stage 3: Calculate the Potential Return on Private Investment.
Investment and expected return patterns in the software industry, as it

currently exists, follow some fairly predictable patterns. Up-front costs are
necessary to conceptualize and design software. Labor constitutes the major

B.U. J. SCI. & TECH. L.

cost. Software engineers must be highly educated and trained in the
specialized fields of software design and computer programming. Because the
competition to be first to market is fierce, substantial up-front investment is
often required to field a qualified team quickly. The primary factor limiting
returns is likely to be uncertainty of success, rather than discounting; returns
are likely to materialize within the first few years, or not at all. Expected
returns must thus be large enough to account for that uncertainty. Again,
investment in a platform is likely to be riskier and may take longer to show
returns than investment in an application. Returns must thus also be
correspondingly larger to justify the investment. Developers who are second-
to-market with software that they developed independently are free to market
their software, but they face a major disadvantage vis-à-vis an entrenched
competitor. Eventually, however, a new entrant will be able to dethrone an
incumbent who fails to invest in technological advancement.

• Stage 4: Consider the Societal Costs and Benefits.
The current regime has attracted massive capital investment to the software

industry. It has also led to the emergence of one or a few key players with
market power in virtually every platform market and in many application
markets, and generated an increasing amount of behavior that is coming under
antitrust scrutiny. As a general rule, software prices have declined and quality
has improved. As an absolute matter, the software industry that has emerged
under the existing IP regime must be judged a success. As a comparative
matter, however, it is not clear that alternative regimes could not have led to
faster, better, cheaper systems.

The transaction costs of the current regime are substantial, but relatively
well known. They include the management of the groups at the PTO and at the
Copyright Office currently engaged in software issues and the litigation and
court expenses associated with software litigation. Transition costs for an
incumbent system are always defined as zero. Conservative reforms to the
current regime could introduce some transition costs, albeit probably relatively
minor ones.

B. The Manifesto Proposal

The analysis of a regime based on the Manifesto’s proposal proceeds
through the same four stages:

• Stage 1: Characterize the Industry.
Many of the basic contours of the industry, as described in the Stage 1

analysis of the current regime, are inherent to the nature of software and thus
not dependent on IP rights. Under the Manifesto proposal, industry
participants would be forced to choose between IP rights and trade secret
protection.267 It is likely that most platform developers will choose the secrecy
route, while most application developers will opt for the newly configured IP
rights. These decisions will affect market decisions and market configuration

267 See Manifesto, supra note 11, at 2342-47.

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

and will likely lead to two industries that are even more distinct than they are
under the current regime. The investment and personnel requirements are
unlikely to change under any IP reform proposal.

• Stage 2: Define the Protective Regime.
The proposed IP rights are relatively short (say, a few years). They are both

broad and deep with respect to commercial competitors, but retain no depth
with respect to the state of scientific knowledge; full disclosure of source code
is the quid pro quo for IP protection. This requirement forces software
developers to choose between trade secret protection and IP rights. Secrets, as
always, remain proprietary as long as they are secret but have neither depth nor
breadth.

• Stage 3: Calculate the Potential Return on Private Investment.
Again, capital and labor requirements are unlikely to change from the

current regime. Developers of fundamentally new applications who succeed in
securing IP rights will have to recoup their investment during the abbreviated
length of those rights. They will thus have to balance their interest in charging
low prices to persuade users to adopt their application against their desire to
charge high prices during their brief monopoly period. The combination of
disclosure and the narrow temporal window should allow competitors to
capitalize on diversion, although they will undoubtedly have to wait longer
before seeing any return. Cross licensing of innovations in future software
generations may help to spread some of the wealth. All told, the emphasis on
diversion in this IP regime is likely to reduce the investment’s uncertainty, but
increase the time before second-comers can expect to see a return.
Discounting is thus likely to play a more important role in this regime than in
the current one.

Platforms, maintained by assumption as trade secrets, will be unable to
attract any revenue through distribution. Only developers of successful
platforms will see more than de minimis returns from the various aftermarkets.
Those returns are likely to be smaller than they are in the current regime but
still substantial. Investment in a platform under this regime is thus both riskier
and less lucrative than it is under the current regime. Platform development
would thus be restricted to a few large, well-funded companies who could
afford to circulate enough copies of their platforms to develop a network and to
reap the bulk of their returns through licensing and aftermarket support fees
only after the network had achieved a workable level of popularity.

• Stage 4: Consider the Societal Costs and Benefits.
The societal impact of the Manifesto’s proposal would be felt in two ways.

From the perspective of scientific knowledge, the requirement that software
developers publish their source code will almost certainly increase both the
amount and the quality of public domain code. It would also lead to increased
incidences of open standards and a fundamentally different market structure.
Some innovations may be slower to market, but they are more likely to be
compatible with existing technology when they do arrive. The likely impact of
the proposal would be to create more firms competing within an emergent de
facto standard and fewer competing standards. All told, compatibility and

B.U. J. SCI. & TECH. L.

product quality are likely to improve, but costs may be higher. At the same
time, increased competition and a reduction in anticompetitive behavior may
drive margins downward, thereby forcing producers rather than consumers to
absorb much of the cost increases. The net change in prices paid by consumers
is thus hard to gauge. From the perspective of consumers, these higher quality
but potentially more expensive applications may be at worst a mixed blessing.
It is not possible to know whether the net effect will increase or decrease
quality-adjusted prices.

Platform developers, who are likely to opt out of the IP system in favor of
trade secret protection, will add nothing to public domain scientific knowledge.
Without that protection, their revenue stream currently generated by software
sales would disappear. This loss would have to be balanced by price increases
elsewhere, likely in training, support, service, warranty contracts, and possibly
in applications (as a pass through of the increased API fees that platform
developers are expected to charge application programmers). Again, the net
effect of these increases is hard to project ex ante.

While the introduction of a sui generis regime protecting software may lead
to increased lobbying and consequently higher societal monitoring costs, the
operational transaction costs of the Manifesto’s proposal need not differ
greatly from those associated with the current regime. They would continue to
include the management of the relevant groups at the PTO and at the Copyright
Office or at some new Software Rights Office. It is again difficult to gauge
whether, in the long run, the new configuration of these offices would be more
or less expensive than the current setup. Litigation will remain inevitable, and
would almost certainly increase in the years immediately following a radical
policy shift, but if the system is an improvement on the merits, litigation
should decrease in the long run.

The “long run” hedges in these transaction costs allude to the likelihood of
substantial transition costs. Government agencies, courts, attorneys, and
companies will all need to be retrained about the new regime. Until the
contours of the regime have equilibrated, litigation and disruption are likely
occurrences. Furthermore, litigants whose rights were reduced by the regime
change may name the government in a series of takings lawsuits. These
transition costs could prove to be so substantial that they could negate the
benefits that would otherwise be expected from the regime change. That
scenario, however, appears to be unlikely. In the long run, sound industrial
policies will generally benefit society.

C. Policy Implications

These four stage analyses outline the likely impact of moving from the
current regime to one along the lines outlined in the Manifesto. As noted
above, most but not all of the anticipated effects seem to favor the Manifesto’s
proposal. This conclusion is consonant with the article’s thesis that industry-
specific IP rights can come closer to the societal optimum than can generic
rights drawn from the existing one-size-fits-all approach. The article has thus

2002] PROMOTING INNOVATION IN THE SOFTWARE INDUSTRY

reached several policy prescriptions—some matters of general methodology,
and some specific to the software industry—as promised in section I:

• Proposed reforms, particularly radical reforms, should be evaluated in
terms of their fidelity to first principles. The first principles of the IP
system exploit property rights to promote innovation. Reform proposals
should be evaluated within a framework that highlights the projected
costs of the rights offered and the expected benefits of the anticipated
innovations. Proposals deemed likely to make a net contribution to
society should be adopted. All others should be rejected.

• Industry specifics should be studied in the construction of proposed
reforms of IP rights. Technology, timing, resource requirements, and
incentives should dictate the types of rights offered to the members of a
given industry.

• The value of trade secrets should never be forgotten. Under a variety of
circumstances, firms forced to disclose their erstwhile secrets to obtain
legal protection may instead choose to keep their knowledge secret.
Never ignore the possibility of widespread opt outs when assessing the
likely impact of a reform proposal.

• Society can help itself by offering sui generis software rights. These
rights should protect the innovative behavior captured by the programs,
expire relatively quickly, and force developers to disclose their source
code.

This section provided a worked example of the analytic framework,
demonstrated the likely superiority of an existing reform proposed for the
software industry, and paved the way for informed debate about other
industries in which sui generis protection may be appropriate.

VIII. CONCLUSIONS

The two protective regimes evaluated in the context of the software industry
offer different tradeoffs to consumers and to society. They are likely to attract
different balances of investment, and to distribute rewards differently
throughout the private sector. While the Manifesto’s reform proposal was
motivated by a desire to avoid many of the pitfalls of the current regime—and
in particular the wave of anticompetitive behavior—it will not avoid them
without incurring countervailing societal costs. Nevertheless, it does appear to
represent a net societal gain—and likely a very large net gain. While the
potentially large transition costs caution against rushing to adopt its
prescriptions, careful, intelligent steps should be taken in its direction.

The point of this article, however, was more than the demonstration that a
specific reform proposal is likely to be superior to existing law. The analytic
exercise was designed to show that many of the problems currently plaguing
the software industry were inherent in the decision made early in the legal
consideration of software that every computer program must fit within one of
the few existing categories of IP rights. The first principles approach showed
that the investment, incentive, and technological properties of an industry are

B.U. J. SCI. & TECH. L.

crucial to understanding how that industry will interact with a set of property
rights. Under this approach, IP rights may be crafted to motivate desired
industrial development and to retard (if not to disable) undesirable and
anticompetitive behavior. While there may be circumstances under which
society would be well served by fitting a square peg into a round hole, such
instances are largely fortuitous. Relying on them makes for poor policy. A
first principles approach is much more likely to redound to the long-term
benefit of society.

In closing, then, it is worth reiterating a few points made toward the
beginning of this article. The bifurcation of innovators into authors and
inventors may have run its course. The division of IP rights into patents and
copyrights—a division that served the country reasonably well during the
agrarian and industrial ages—may be insufficient to deal with the complexities
of the information age. Advances in the basic natural sciences of biology,
chemistry, and physics, and in the basic social science of information, are
powering a wave of new industries. The speed of these advances, the
structures of these industries, the nature of their products, the necessary
interaction among competitors, and the opportunities for profit, may confound
attempts to adapt patent and/or copyright law. Software may be among the
most mature of these industries, but it is unlikely to be the only one. The next
few decades are likely to feature a growing number of such industries and
should thus also feature an analogous growth in new formats of IP rights. The
lessons learned from the existing formats will prove invaluable. Guidance in
the design of all such rights should come from the first principles articulated in
the Constitution: harness the profit motive to promote innovation.

