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Abstract: We present a novel multi-resolution variational framework for
vascular optical coherence elastography (OCE). This method exploits prior
information about arterial wall biomechanics to produce robust estimates of
tissue velocity and strain, reducing the sensitivity of conventional tracking
methods to both noise- and strain-induced signal decorrelation. The velocity
and strain estimation performance of this new estimator is demonstrated
in simulated OCT image sequences and in benchtop OCT scanning of a
vascular tissue sample.
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1. Introduction

Atherosclerotic plaque biomechanics determine the distribution of stress concentration within
the arterial wall [1]. Cyclic mechanical strain also affects macrophage gene expression and
smooth muscle cell proliferation within the vessel wall [2, 3]. Histological studies have shown
that matrix metalloproteinases weaken the structural integrity of plaques and localize in re-
gions of high circumferential stress, suggesting links between plaque biomechanics and in-
creased susceptibility to mechanical disruption [4]. Detailed characterization of arterial wall
biomechanics may therefore provide complementary information about lesion stability that is
not readily available from conventional vascular imaging.

Since ultrasound-based tissue elastography for biomechanical strain imaging was first pi-
oneered by Ophiret al. [5], considerable effort has been invested in the development of in-
travascular ultrasound (IVUS) based coronary arterial elastography [6, 7, 8]. Today, IVUS elas-
tography is the only method that has been demonstrated clinically for strain characterization
in coronary lesions. In IVUS elastography, one-dimensional A-lines from a single short-axis
cross-section are acquired as the artery pulsates over the cardiac cycle. Consecutive A-lines in
time, corresponding to the same circumferential vessel location, are selected starting from a
cardiac phase with minimal catheter motion artifact. Arterial tissue displacements as a function
of the luminal pressure change are estimated with cross-correlation analysis and the corre-
sponding one-dimensional strains are computed from the tissue velocity gradient. In current
practice, IVUS elastography is capable of acquiring approximately 500 angles per revolution,
with an imaging depth of∼7.5 mm, and a spatial resolution of 200µm for axial strains (ori-
ented along each A-line). The spatial resolution of IVUS elastography is a significant limitation
since vulnerable atherosclerotic plaques have structural components, e.g., fibrous caps, on the
order of 50-200µm in dimension, meaning that a thin fibrous cap will fall entirely within a
single sample.

Optical coherence tomography (OCT) has an order of magnitude higher spatial resolution
and significantly enhanced soft tissue contrast relative to IVUS [9], at the cost of reduced imag-
ing depths. Vascular optical coherence elastography (OCE) has the potential to provide high-
resolution characterization of strains in tissue lying within 1.0-1.5mm of the lumen interface,
the region most susceptible to plaque disruption. In OCT-based elastography, strain measure-
ments could be made every 10 microns allowing for 5 to 20 sample measurements through
the thin fibrous cap. This larger number of samples in OCT-based imaging and elastography
potentially allows for better definition of both structural geometry and biomechanical charac-
terization relative to IVUS-based methods.

Successful development of intravascular OCE requires robust arterial tissue velocimetry, a
critical step necessary for subsequent strain or elastic modulus estimates. Unfortunately how-

(C) 2004 OSA 20 September 2004 / Vol. 12,  No. 19 / OPTICS EXPRESS  4559
#4660 - $15.00 US Received 25 June 2004; revised 25August 2004; accepted 13 September 2004

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-199
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927


ever, OCT-based elastography is challenging because the short optical wavelengths used result
in rapid noise- and strain-induced decorrelation of intensity patterns between consecutive im-
age frames. Motion tracking based on a frozen speckle assumption [11, 12, 13] is inadequate
for vascular OCE, particularly for structures on the size scale of arterial walls.

In this paper, we present a multi-resolution algorithm which incorporates prior knowledge
about arterial wall behavior within a variational energy formulation for robust estimation of tis-
sue motion and strain in two-dimensions. We demonstrate the performance of this novel estima-
tor in simulated OCT images of a tissue block undergoing deformation. With these simulations,
we have been able to examine not only velocity estimation errors, but also strain estimation
errors, which have not been addressed in prior work on OCT-based elastography [11, 12, 13].
Finally, we present an example of estimation from benchtop OCT imaging of a normal arterial
specimen imagedex vivo.

2. Optical coherence elastography: background and related work

Optical coherence elastography is based on the same principles as those underlying ultrasound
elastography. As tissue is imaged under mechanical loading, displacement occurs in image fea-
tures that primarily correspond to macroscopic architecture, e.g., tissue interfaces. In addition,
motion occurs in coherent imaging speckle since the spatial distribution of microscopic tissue
scatterers changes under loading. The estimation of motion from macroscopic architecture and
microscopic speckle assumes that image features are well-preserved between consecutive im-
ages. The desired velocity estimate will therefore maximize similarity measures between blocks
in a reference image and those in a search image acquired under different loading conditions.

As described by Schmitt [10, 11], interference images obtained in OCT can be approximated
by the product of an exponential decay term which models beam attenuation and a spatial
convolution,

I(x,y) = exp(−2µ̄sy) [σb(x,y)∗h(x,y)] (1)

Coordinatesx andy correspond to lateral and axial scan directions, respectively oriented per-
pendicular and parallel to the sample beam axis. Parameterµ̄s is the mean attenuation due to
scattering over the sample,σb(x,y) models backscattering in the sample as a distribution of
points with varying backscattering cross-sections, andh(x,y) represents the OCT system point
spread function (PSF). The OCT PSF can be approximated as a separable and spatially invari-
ant product between the source autocorrelation function,Γ(y), and the pupil function,p(x), of
the source-detection optics [11],

h(x,y) = Γ(y)p(x) (2)

For Gaussian beams,

Γ(y) = Re
[〈

Es(y′)Es(y′ + y)
〉]

= exp

(
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πy√
ln2
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)2
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cos
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and

p(x) = exp

[
−1

2
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πDx
λ0 f

)2
]

(4)

whereEs is the vector electric field amplitude of the source,λ0 is the central free-space wave-
length of the source,∆λ is the FWHM spectral bandwidth of the source,f is the focal length
of the objective lens, andD is the 1/e2 intensity diameter of the sample beam at the entrance
pupil of the objective lens.
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Based on this image formation model, a single point scatterer undergoing displacement from
position(x0,y0) in the reference image to a new position(x0 + u,y0 + v) in the search image,
will have corresponding reference and search interference images described by:

IR(x,y) = exp(−2µ̄sy) [σbδ(x− x0,x− y0)∗h(x,y)]
= exp(−2µ̄sy) [σbh(x− x0,y− y0)]

(5)

IS(x,y) = exp(−2µ̄sy) [σbδ(x− x0−u,x− y0− v)∗h(x,y)]
= exp(−2µ̄sy) [σbh(x− x0−u,y− y0− v)] (6)

With conventional velocimetry, tissue motion is estimated by maximizing the correlation coeffi-
cient between sub-blocks of either the envelopes or complex magnitudes of Eq. (5)-(6) [9]. Each
image is subdivided into blocks of predefined size. For each reference block, cross-correlations
with all search image blocks are computed to obtain correlation coefficients as a function of
relative displacement between the reference and search locations. The best matching block in
the search image will maximize the normalized cross-correlation function and the relative offset
between this block and the reference provides the desired velocity estimate. This procedure is
expressed mathematically in Eq. (7)-(8) for a reference position of(x,y) andM×N sub-blocks
with mean intensities ofµR andµS. In Eq. (7), the estimated lateral and axial displacements,
û and v̂, at a given(x,y) location, are the arguments of the normalized correlation function
ρx,y(u,v) which maximize the correlation coefficient. Overlapping sub-blocks can be used to
estimate velocities on a finer grid in the reference image.

[û v̂] = argmax[
u v

]ρx,y(u,v)
(7)

ρx,y(u,v) =
M/2∫

−M/2

N/2∫
−N/2

[IR(x′−x,y′−y)−µR][IS(x′−x−u,y′−y−v)−µS]dx′dy′

[
M/2∫

−M/2

N/2∫
−N/2

[IR(x′−x,y′−y)−µR]2dx′dy′
M/2∫

−M/2

N/2∫
−N/2

[IS(x′−x−u,y′−y−v)−µS]2dx′dy′
]1/2

(8)

For the case of a translating impulse scatterer, velocity estimation with Eq. (5)-(8) basically
tracks the shift in the impulse response whenµ̄sy≈ µ̄s(y+v). For real tissues containing ensem-
bles of scatterers undergoing non-rigid deformation, the coherent impulse response from each
scatterer produces interference patterns in the backscattered signal that may not simply translate
between sequential images in time. Velocity estimates become more sensitive to interference
noise which reduces the maximum achievable correlation coefficient in Eq. (8). Decorrelation
effects such as this occur whenever the correlation window size is large relative to the deform-
ing structures of interest or when the strain induced by loading is large. In both cases, the effects
of mechanical loading cannot be modeled by simple speckle translation since spatial distortion
occurs in the underlying scatterer distribution. Under realistic circumstances, imaging noise
and decorrelation not only reduce the correlation value at the true displacement within the cor-
relation surfaceρx,y(u,v), but also introduce jitter which shifts the location of correlation peaks
in addition to multiple local maxima or false peaks whose values can exceed the correlation at
the true displacement. As a result, velocity and strain estimates can be excessively noisy for
characterizing biomechanical properties.

3. Robust optical coherence elastography

Strategies for improving velocity estimation include image sequence blurring for noise suppres-
sion, the use of larger correlation windows, and smoothing of velocity fields after estimation by
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correlation maximization. Based on our observations, these strategies lead to limited improve-
ments in velocity and strain estimates while compromising the spatial resolution advantage of
OCT for elastography. Image sequence blurring can remove not only noise, but also fine image
features that may be useful in motion tracking. Large correlation windows reduce our ability
to track fine changes in the velocity field and also lead to a violation of the translating speckle
model that is assumed in Eq. (7)-(8). Filtering of velocities or strains either with median-filters
or other smoothing kernels operate on the measurements after they have already been made.
This approach therefore cannot make use of information present within the underlying corre-
lation functions to improve velocity and strain estimates. A better solution would be to take a
“data-driven” approach in which velocity filtering takes place during the correlation maximiza-
tion process itself. In this manner, all the available correlation data are taken into consideration
for robust velocity estimation. One such scheme is the variational method we describe below.

3.1. A variational framework for incorporation of prior knowledge

We have posed the velocity estimation problem as a variational energy minimization in order to
exploit velocity information present within the correlation functions while adding robustness to
estimation by incorporating prior knowledge about velocity fields in the pulsating arterial wall.
In this approach, we avoid image smoothing so as to preserve all available information from
the full resolution data. The overall variational energy functional is

E(V (x,y)) = aED(V (x,y))+bES(V (x,y))+ cEI(V (x,y)) (9)

This energy depends on the unknown velocity fieldV (x,y) = [ u(x,y) v(x,y) ] and is a
weighted combination of three terms which control data fidelity,ED(V (x,y)), strain field
smoothness,ES(V (x,y)), and arterial wall incompressibility,EI(V (x,y)) . The functional forms
for each of these terms are:

ED(V (x,y)) = −
∫ ∫

ρx,y(V (x,y))dxdy (10)

ES (V (x,y)) =
∫ ∫ ∥∥∇ 2V (x,y)

∥∥2
dxdy (11)

EI(V (x,y)) =
∫ ∫

‖∇ ·V (x,y)‖2 dxdy (12)

where the expressionρx,y(V (x,y)) in Eq. (10) is the correlation coefficient function shown in
Eq. (8). Minimizing the data fidelity term in the absence of the strain smoothness and tissue
incompressibility terms is the same as correlation function maximization and results in velocity
estimates that are identical to those from conventional velocimetry. The strain smoothness and
tissue incompressibility terms constrain velocity estimation to penalize deviations based on
prior knowledge about arterial tissue biomechanics. Information in correlation functions from
neighboring reference locations is effectively combined to confer robustness to decorrelation,
false peaks, and poorly-defined regions of elevated correlation coefficient values. The strain
smoothness term forces the second derivative of the arterial velocity fields to vary smoothly over
the wall whereas the incompressibility model couples the behavior of the u and v velocity fields
so that points inside the wall do not deviate far from incompressibility. The desired velocity field
estimate,̂V (x,y), will minimize the overall variational energy:

V̂ (x,y) = argmin
V (x,y)=

[
u(x,y) v(x,y)

]{aED(V (x,y))+bES(V (x,y))+ cEI(V (x,y))} (13)
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Fig. 1. Block diagram illustrating multi-resolution velocity field estimation

3.2. Multi-resolution numerical solution for convergence to a global minimum

In order to obtain a numerical solution to the energy minimization problem, we discretize the
continuous expressions in Section 3.1 and derive the evolution equations corresponding to the
first variation of the energy functional. Starting from an initial guess for the velocity fields, the
resulting matrix-vector equations are solved iteratively until the maximum magnitude change
falls below 0.01%. Since this solution process will converge to a local minimum of the vari-
ational energy function, the unknown velocity fields must be initialized close to the global
minimum to ensure good global convergence properties. In order to achieve this, we use a
multi-resolution approach illustrated as a block diagram in Fig. 1.

The full resolution reference and search images are first downsampled by a factor of 5 to
obtain a low-resolution sequence from which an initial low-resolution estimate of the velocity
field is obtained by correlation maximization in Eq.( 7)-(8). This estimate is used to initialize
the variational method applied at the low-resolution scale. The resulting robust estimates of the
low-resolution velocity distribution are mapped into the high-resolution domain and are used to
define high-resolution search regions for computing full-resolution correlation functions at each
reference position of interest. The low-resolution estimates from the variational method also
serve as a good initial guess for iterative estimation of velocity fields from the full-resolution
correlation functions. The resulting full-resolution velocity estimates are then used for strain
calculations as described in Section 6.

Both the conventional and multi-resolution variational algorithms described above were im-
plemented in C++ for rapid processing. MATLAB (MathWorks, Natick, Massachusetts, USA)
was also used for image visualization and data analysis. To achieve rapid computation on the
order of seconds for an image pair, we used a fast normalized cross-correlation approximation
to the correlation coefficient function in Eq. (8) that uses 2D FFTs to compute the numerator
and pre-computed running sums for the denominator [14].

4. Simulations of OCT imaging during tissue compression

We characterized the performance of the multi-resolution variational method in simulated OCT
imaging during axial compression of a tissue block containing a circular inclusion (Fig. 2(a))
which represents either a typical compliant lipid pool or a stiff calcified nodule. Sequential
interference images were generated as described in Eq.(1)-(6) by computing the product of an
exponential decay term and a convolution between the coherent OCT point spread function and
the distribution of backscattering arising from point scatterers moving in the sample.

The scattering fields in these simulations were generated by assigning backscattering values
at discrete points within the tissue block. These backscattering values derived from independent
uniform random variables with a variance of 10 for scatterers within the block and a variance of
2 for scatterers within the circular inclusion. These values were empirically chosen to produce
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higher mean backscattering within the block relative to the inclusion. The resulting contrast
difference emulates that observed between lipid and the normal arterial wall in OCT images.

Motion of the tissue scatterers during compression was simulated using displacement fields
from finite element modeling of the tissue geometry. A two-dimensional rectangular geometry
with an embedded circular inclusion was defined. Since lipid pools and calcified nodules can
range in size from a few hundred microns to over a 1.0mm in dimension, a typical inclusion
diameter of 500µm, falling within the biologically relevant range, was chosen for these simu-
lations. Fixed-point boundary conditions were imposed at the center of the bottom edge of the
block and roller boundary conditions were assigned at all other points on the bottom edge. An
axial (downward) displacement load was applied to the top surface so that the block was com-
pressed by 0.15mm over 5 timesteps, to achieve an overall strain of 4.3%. With each timestep,
the load induced∼0.9% strain within the block.

Both the block and inclusion were modeled as nearly incompressible linear elastic materials
(ν=0.495). For all simulations, the block was assigned unit elastic modulus, while the inclu-
sion modulus was varied to represent a lipid rich or calcific lesion embedded in fibrous tissue.
The modulus ratio of lipid to fibrous plaque is approximately 0.0001, and the modulus ratio
of calcium to fibrous plaque is approximately 5 [3]. Finite element modeling was performed
in ADINA 8.0 (Watertown, MA), using a mesh composed of 9-node, quadrilateral, 2D, plane
strain elements. The mesh density, defined by the edge length of each element, was 0.025 mm
in and around the inclusion and 0.1 mm in the surrounding block (Fig. 2(b)). Each simulation
model consisted of approximately 3200 elements and 13000 nodes. The displacement fields
computed at each time step were used to represent tissue scatterer velocities,u(x,y) andv(x,y),
between sequential OCT frames. The backscattering field,σb(x,y, t +1), associated with mov-
ing tissue scatterers at timet +1 was computed using the equation

σb(x,y, t +1) = σb(x−u(x,y),y− v(x,y), t) (14)

In practice, the tissue scatterer field in the first frame was first upsampled and then non-
uniformally resampled with linear interpolation in Eq.(14) to obtain tissue scatterer fields in
sequential frames.

Using the coherent PSF approximation in Eq.(2)-(4), we simulated a PSF based on measure-
ments of the axial fringe pattern of our OCT system (Fig. 3(a)). Convolution of this coherent
PSF with tissue scatterer fields from Eq.(14) was followed by multiplication with an axial ex-
ponential decay and downsampling to obtain a sequence of simulated imagesI(x,y, t) with a
pixel size of 1µm by 25µm. The degree of speckle or multiplicative noise present in these

3.50 mm

1.50 mm

0.50 mm

3.25 mm 3.25 mm

A B

Fig. 2. (a) Finite element geometry. (b) Finite element mesh.
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Fig. 3. (a) A comparison of a simulated PSF with fringe measurements from our OCT
system, (b) OCT image simulation of an inclusion within a tissue block after demodulation.

simulations was further controlled by using the noise model

In(x,y, t) = I(x,y, t)+nI(x,y, t) (15)

wheren is a uniformally-distributed random variable with zero mean and varianceσ2
n . An

example of OCT image simulation following demodulation with the Hilbert transform is shown
in Fig. 3(b).

5. Vascular tissue imaging

Our system for time-domain OCT (TD-OCT) imaging has been described in detail previously
[15, 16, 17]. This TD-OCT system provides an intrinsic spatial resolution of 10µm axially
and 25µm laterally. For vascular imagingex vivo, we used this system in benchtop scanning
(XY) mode. Light from a broadband optical source with a center wavelength of 1310 nm and
a bandwidth of 70 nm is split into a reference arm and sample arm within an interferometer.
The field in the sample arm is focused through the scanning optics to probe tissue at a depth
corresponding to the optical pathlength of the reference arm. Backscattered light returning from
the sample arm mixes with the field from the reference arm to produce an interference signal
that is then digitized. The amplitude of the interference signal carries information about tissue
structure and optical properties at the scan depth defined by the reference arm. To capture the
fringe-resolved information within the interference signal, oversampling is performed at 1µm
intervals axially and 25µm intervals laterally, with 12 bit quantization for each sample. Tissue
structure in an XY cross-section is probed in the axial (Y) direction by varying the optical
pathlength of the reference arm and in the lateral (X) direction by sweeping the sample beam
across the specimen. In this manner, image frames consisting of 2500 axial samples by 500
lateral samples are acquired in 250 ms.

A normal segment of human aorta harvested from autopsy was warmed to 37◦C in phosphate
buffered saline. Imaging was performed within 24 hours of harvesting. The cylindrical aortic
segment was sectioned longitudinally and opened to obtain a rectangular tissue specimen with
the luminal surface exposed to the sample beam. The longitudinally cut ends were affixed to a
sample holder so that mechanical loading in the lateral direction would approximate circumfer-
ential stretching of the intact aortic segment. The specimen was mounted horizontally within
the sample holder so that one end was rigidly fixed while the other end was affixed to a micro-
manipulator that allows for one-dimensional translation along the horizontal axis (Fig. 4). The
total specimen length was 50mm and the width was 20mm. The specimen length between the
tissue clamps was 30mm, whereas the imaging field-of-view was 10mm laterally and approx
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1.5mm axially. The imaging position within the sample was monitored by visualizing an aiming
beam (laser diode, 635 nm) that was coincident with the sample beam. Scans were positioned
within the center of the specimen and the scan direction within the sample arm was aligned so
that scatterer displacements were confined within the imaging plane.

6. Results and discussion

For conventional velocity estimation based on correlation maximization, each correlation func-
tion was upsampled with bi-cubic interpolation by a factor of 50 around the peak in order to
detect subpixel shifts of 0.02µm axially and 0.5µm laterally. A reference block size of 81×7
pixels ( 81× 175 µm) and a search region of 361× 21 pixels (361× 525 µm) were used to
compute correlation functions for the conventional method. These parameters were empirically
determined to balance the need for sensitivity to spatial variations in velocity against the need
to minimize errors in velocity estimation. Median filtering of velocity and strain estimates from
conventional motion tracking was performed with a 5× 5 kernel prior to comparisons with
results from the variational approach.

For the low-resolution step of the variational method, a reference block size of 15×11 pixels
(75×1375µm) and a search region of 61×41 pixels (305×5125µm) were used to compute
each correlation function. At full-resolution, a reference block size of 25×7 pixels (25×175
µm) and a search region of 101×21 pixels (101×525µm) were used. Weighting parameters
for the variational approach were empirically determined to be a= 1 , b= 20, and c= 0.1 based
on visual examination of processing results from a subset of simulated OCT sequences. These
values were then used for velocity estimation in the OCT experiments described below.

Following velocity estimation, the deformation matrixF was calculated at every point in the
velocity field using first-order finite difference approximations to the expression

F =

[
1+ ∂u

∂x
∂u
∂y

∂v
∂x 1+ ∂v

∂y

]
(16)

The deformation matrix is related to the strain matrixE and the identity matrixI by the rela-
tionship

E =
[

εxx εxy

εxy εyy

]
=

1
2

(
FT +F −2I

)
(17)

if a small strain approximation is assumed. For simulated OCT imaging of axial compression,
we present results for the axial strain componentεyy of the strain matrix whereas for imag-
ing experiments with lateral stretching, we present results for the lateral strain componentεxx

(strains are reported in units of %). Errors in velocity and strain field estimates were evaluated

Fig. 4. Benchtop OCT imaging system for XY scanning of mechanically-loaded specimens.

(C) 2004 OSA 20 September 2004 / Vol. 12,  No. 19 / OPTICS EXPRESS  4566
#4660 - $15.00 US Received 25 June 2004; revised 25August 2004; accepted 13 September 2004



A B

Fig. 5. Movie clips showing simulated axial compression (vertical loading in the downward
direction) of a 500µm inclusion with (a) more compliant (464KB Quicktime movie) and
(b) stiffer material properties than the surrounding tissue block (464KB Quicktime movie).

based on the normalized root-mean-squared error measures

RMSvelocity =

√
1
N

N

∑
k=1

(
vk −vk,real

vk,real

)2

RMSstrain=

√
1
N

N

∑
k=1

(
εk − εk,real

εk,real

)2

(18)

whereN is the total number of estimates, vk and vk,real are the estimated and real axial or lateral
velocities, andεk andεk,real are the estimated and real axial or lateral strains at the kth point of
interest within the velocity field.

6.1. Simulation experiments

We examined the detectability of a 500µm inclusion as a function of noise-induced speckle
decorrelation and compared the RMS error in axial velocity and strain estimates from conven-
tional motion estimation relative to those from robust estimation. Values for vk,real andεk,real

were obtained directly from finite element modeling. Velocities were reported in units of pixels
with positive axial and lateral velocities corresponding respectively to downward and rightward
displacement.

Figure 5 illustrates simulated axial compression of approximately 0.9% strain for two tissue
blocks, one with a compliant inclusion and the other with a stiff inclusion. On visual inspec-
tion, gross tissue displacement in both movie clips appears to be occurring in the downward
direction with velocities decreasing in magnitude from top to bottom. Differences in inclusion
stiffness between these examples are extremely difficult to appreciate by visual examination
alone, emphasizing the need for computational methods to measure tissue velocities and strains.
Decorrelation in speckle patterns between image frames can be visualized and its severity can
be measured by using the average value of correlation coefficient maxima over the image field.
For these movie sequences, the mean correlation peak is approximately 0.95.

Figure 6-7 illustrate the FEM-derived axial velocity fields corresponding respectively to the
compliant and stiff inclusion movie sequences. In addition, they show the axial component of
velocity measurement results from conventional motion tracking and robust estimation within
the variational framework. For these examples, the estimated velocity fields from both meth-
ods are qualitatively similar to the true velocity from FEM. The estimated velocity fields also
demonstrate that processing of the movie sequences in Fig. 5 is necessary to highlight the
differences in behavior that could not be appreciated visually between compliant and stiff in-
clusions. The estimate from the variational approach appears significantly smoother than that
from conventional tracking. Additionally, the axial velocity RMS error is greater from conven-
tional velocimetry than from robust estimation. For the stiff inclusion, the RMS error in the
axial velocity field was 1.60% from conventional velocimetry whereas the RMS error with ro-
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Fig. 6. Axial velocity fields for a compliant inclusion. (a) True axial velocities from fi-
nite element modeling. (b) Axial velocity estimates from conventional motion tracking. c)
Axial velocity estimates from multi-resolution variational method. Axial compression was
applied in the downward direction.
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Fig. 7. Axial velocity fields for a stiff inclusion. (a) True axial velocities from finite element
modeling. (b) Axial velocity estimates from conventional motion tracking. c) Axial velocity
estimates from multi-resolution variational method. Axial compression was applied in the
downward direction.

bust estimation was 1.04%. Similar results were obtained from the compliant inclusion (1.83%
for the conventional approach vs 1.40% for the variational approach).

Figure 8-9 show the corresponding axial strain fields for both inclusion simulations. The
effect of velocity noise on strain field measurements is clearly evident from these examples.
While estimates from conventional and robust velocimetry were both qualitatively similar to the
FEM-derived displacements, the strain estimates are less similar to the true strain. Axial strain
is the derivative of the axial velocity field, therefore any noise present in the velocity estimate
is accentuated in the strain image due to the high-pass characteristics of the derivative operator.
Even with median-filtering, it is difficult to fully appreciate the extent and magnitude of the
strain difference within the inclusion for strains derived from conventional motion tracking.
In contrast, it is possible to determine the location and size of the inclusion with robust strain
estimation. Furthermore, it is possible to visually distinguish the compliant inclusion from stiff
inclusion with the variational approach. Quantitatively, the difference in RMS strain error be-
tween the conventional and variational methods is marked. In the stiff inclusion, for example,
with the conventional approach, the RMS strain error is 109.1% whereas with the variational
method, RMS strain error is 27.5%. Strains derived from conventional tracking are challeng-
ing to interpret whereas robust estimation allows for easier and more accurate interpretation of
strains measurements for comparisons between lesion types.

In the presence of worsening noise conditions or large tissue strains relative to imaging frame
rate, decorrelation of speckle patterns occurs leading to a drop in the average value of corre-
lation coefficient maxima over the image. Figure. 10-11 illustrate the effect of noise-induced
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Fig. 8. Axial strain fields for a compliant inclusion. (a) True axial strains from finite element
modeling. (b) Axial strain estimates from conventional motion tracking. c) Axial strain
estimates from multi-resolution variational method. Axial compression was applied in the
downward direction.
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Fig. 9. Axial strain fields for a stiff inclusion. (a) True axial strains from finite element
modeling. (b) Axial strain estimates from conventional motion tracking. c) Axial strain
estimates from multi-resolution variational method. Axial compression was applied in the
downward direction.

decorrelation on lesion detectability for robust estimation and on RMS estimation errors for
both techniques. Decorrelation in these simulations was introduced by using the speckle noise
model described previously and the averaged peak correlation coefficient was used to measure
decorrelation.

In Fig. 10, we see that as the mean correlation peak drops from 0.95 to 0.54, the strain fields
increasingly deviate from the known strain distribution due to increasing levels of noise and
other estimation artifacts. At a correlation value of 0.54, the presence of an inclusion within the
strain field is difficult to perceive even when robust estimation is used. In Fig. 11(a), we see that
the RMS velocity error for both the conventional and variational methods decreases as the level
of correlation increases. Velocity estimation errors with the robust approach are significantly
lower than those from conventional estimation over the range of noise conditions examined.
In Fig. 11(b), the corresponding strain estimation errors are shown. Again, errors decrease as
correlation increases, with significantly larger RMS strain errors for the conventional method
relative to the variational method. Strain errors for the stiff inclusion were lower than 50% only
when correlation values were greater than 0.7 and when the robust estimator was used. Strain
errors well in excess of 100% were observed for conventional estimation over the range of noise
conditions studied.

6.2. Imaging experiments

In these imaging experiments, we examined velocity and strain estimation in a normal aortic
specimen under either static or lateral stretching conditions. For the static case, the ground-truth
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Fig. 10. Lesion detectability as a function of noise-induced decorrelation for (a) the com-
pliant inclusion (correlation coefficients are 0.95, 0.79, 0.54 from left to right respectively)
and (b) the stiff inclusion (correlation coefficients are 0.95, 0.81, 0.55 from left to right
respectively).
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Fig. 11. Estimation errors in the stiff inclusion: (a) Root-mean-square velocity estimation
error as a function of noise-induced decorrelation. (b) Root-mean-square strain estimation
error as a function of noise-induced decorrelation.

velocity and strain fields should both be zero. Therefore, we determine the deviation of velocity
and strain estimates away from zero as one measure of performance. For the case of lateral
stretching, the expected strain distribution is homogenous and we report the standard deviation
of estimated strains as a measure of strain homogeneity within the sample.

Under static conditions, the estimated mean lateral velocity with the conventional approach
was 0.17µm per frame compared with a nominal applied translation of 0 pixels per frame. The
standard deviation of the lateral velocity estimates over the field was 3.94µm per frame. In
the axial direction, the mean and standard deviation were 0.66µm and 4.28µm, respectively.
Velocity estimation with the variational approach showed a mean velocity of 0.0017µm per
frame laterally (0.54µm per frame axially), which was closer to the applied translation than the
results from the conventional method. The velocity standard deviation of 0.16µm per frame
laterally (0.58µm per frame axially) was also smaller than for the conventional method results.
The mean and standard deviation of strain estimates over the field were respectively 0.043%
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500µm

Fig. 12. OCT imaging of an aortic specimen undergoing lateral (right-to-left) motion
(568KB Quicktime movie). Regions of the image outside the aorta have been masked out.

and 5.5% laterally (0.24% and 11.26% axially) for the conventional approach, compared with a
nominal applied strain of 0% over the field. In contrast, robust estimation provides better strain
estimation performance. The mean and a standard deviation of strain estimates were 0.0038%
and 0.12% laterally (0.024% and 0.12% axially), respectively. Figure 12 shows a movie of the
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Fig. 13. Estimated lateral velocity fields for an aortic specimen undergoing lateral stretch-
ing (right-to-left in the imaging plane) a) from the conventional method, and b) from the
variational method.

aortic segment undergoing lateral translation with slight lateral stretching. Figure 13 illustrates
the lateral component of the velocity field measurement whereas Fig. 14 illustrates the lateral
component of the estimated strain field. Velocities from robust estimation were observed to
vary more smoothly in both the lateral and axial directions than estimates from conventional
estimation. For the conventional approach, the strain mean and strain standard deviation were
0.22% and 47.26% in the lateral direction and 3.46% and 85.08% in the axial direction. In
contrast, the strain field from robust estimation showed a mean and a standard deviation of
0.026% and 1.32% in the lateral direction and 0.02% and 0.14% in the axial direction. These
results indicate that estimates from robust strain measurement are more consistent with the
expected homogeneous strain field than those from conventional strain measurement. Further
experimentation is underway to optimize and validate the accuracy and precision of velocity
and strain estimates with the variational method.

7. Conclusions

We have developed a robust method of tissue velocity and strain estimation based on a varia-
tional framework that incorporates prior knowledge about tissue biomechanics. This estimator
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Fig. 14. Estimated lateral strain fields for an aortic specimen undergoing lateral stretch-
ing (right-to-left in the imaging plane) a) from the conventional method, and b) from the
variational method.

outperforms conventional velocity and strain measurements based on correlation maximization.
Our new approach provides accurate velocity estimates with lower RMS velocity errors than
those from conventional methods over the range of imaging noise conditions studied. Strain es-
timation with the robust approach allows for strain measurements with an RMS strain error of
less than 50% in simulated OCT sequences with correlation values higher than 0.7. The RMS
strain estimation error with this method is lower than that from conventional estimation over the
range of imaging conditions examined. The estimated strain fields from robust estimation allow
for easier visual assessment of inclusion location, extent, and stiffness when compared with
results from conventional methods. Finally, we have demonstrated robust velocity and strain
estimation from images of a moving aortic specimen. Despite the lack of ground-truth in this
case, our results indicate that the estimated velocity and strain fields from robust estimation are
more consistent with the expected distribution of velocity and strains than those measurement
with the conventional approach. Variational estimation of tissue velocity and strain therefore
enables characterization of vascular tissue biomechanicsex vivo in a manner that has not been
possible with existing techniques.
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