ow to (not) Share a Password:
Privacy preserving protocols for finding
heavy hitters with adversarial behavior

Moni Naor Benny Pinkas Eyal Ronen

Passwords

* First “modern” use in MIT's CTSS (1961)
e “Passwords are dead”?

* User tend to choose passwords with low min—entropy
* Easy to guess

Compromise a User, Attack the Eco System

Compromise a User, Attack the Eco System

* Bad passwords do not only compromise the users

Compromise a User, Attack the Eco System

* Bad passwords do not only compromise the users

* Weak and popular passwords can be used for large scale attack

Compromise a User, Attack the Eco System

* Bad passwords do not only compromise the users

* Weak and popular passwords can be used for large scale attack
* E.g. the Mirai attack

Compromise a User, Attack the Eco System

* Bad passwords do not only compromise the users

* Weak and popular passwords can be used for large scale attack
* E.g. the Mirai attack
* Easy to find loT devices with Shodan like search engines

Compromise a User, Attack the Eco System

* Bad passwords do not only compromise the users

* Weak and popular passwords can be used for large scale attack

* E.g. the Mirai attack
* Easy to find loT devices with Shodan like search engines

* Service provider liability?

Possible solutions

* It is hard to even decide the ideal guidelines for passwords

Panacea

Greek Goddess of
Universal Remedy

Solution to all
problems; Cure-all

Possible solutions

Possible solutions

* Two factor authentication (2FA)

Possible solutions

* Two factor authentication (2FA)

Possible solutions

* Two factor authentication (2FA)

* Server saves a list of all users’ passwords and blacklists the
popular passwords

Possible solutions

* Two factor authentication (2FA)

* Server saves a list of all users’ passwords and blacklists the
popular passwords

* Put users’ passwords at risk: new single point of failure

Possible solutions

* Two factor authentication (2FA)

* Server saves a list of all users’ passwords and blacklists the
popular passwords

* Put users’ passwords at risk: new single point of failure

* Blacklisting known popular passwords
* From previous breaches
* Known lists of popular passwords

Passwords over time

Passwords over time

* password -> passwO0rd -> p@asswOrd->password

Passwords over time

* password -> passwO0rd -> p@asswOrd->password

*superman -> wonderwoman

Passwords over time

* password -> passwO0rd -> p@asswOrd->password

*superman -> wonderwoman

* Different populations

Passwords over time

* password -> passwO0rd -> p@asswOrd->password

*superman -> wonderwoman

* Different populations

Primum non nocere
First do (almost) no harm

Primum non nocere

First do (almost) no harm
* Publishing passwords blacklist can also help attackers

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution
* Publishing the blacklist is like publishing a code vulnerability

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution
* Publishing the blacklist is like publishing a code vulnerability

* Leaking password information can hurt the user

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution
* Publishing the blacklist is like publishing a code vulnerability

* Leaking password information can hurt the user
* Gathering statistics requires some password information

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution
* Publishing the blacklist is like publishing a code vulnerability

* Leaking password information can hurt the user
* Gathering statistics requires some password information
* One bit leakage doesn’t hurt the user a lot (next slide)

Primum non nocere

First do (almost) no harm

* Publishing passwords blacklist can also help attackers
e Attacker can use auxiliary data to guess password distribution
* Publishing the blacklist is like publishing a code vulnerability

* Leaking password information can hurt the user
* Gathering statistics requires some password information
* One bit leakage doesn’t hurt the user a lot (next slide)
* Differential privacy can also help

The Password Game

 PGame(L): Attacker A wants to attack device D
e Published a list with L guesses for passwords
* Wins if the password of D is in the list

* Effect of one bit leakage on password:
* If A wins PGame(L) w.p at least 6 using a 1 bit leak
implies
* There is A’ wins PGame(2L) w.p 6 without a leak

*e¢-DP
* If A wins PGame(L) w.p at least 6 using e-DP information
then
* There is A’ wins PGame(L) w.p > 6 - e € without a leak

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password
* At most halves the number of password guesses

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password
* At most halves the number of password guesses

* Probability of False Negative (pFN) must be negligible

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password
* At most halves the number of password guesses

* Probability of False Negative (pFN) must be negligible
* No popular password is missed

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password
* At most halves the number of password guesses

* Probability of False Negative (pFN) must be negligible
* No popular password is missed

* Probability of False Positive (pFP) may be a small value

How to (not) share a Password: Desiderata

* [dentify and blacklist popular passwords (heavy hitters)
* those were chosen by more than a fraction t of the users

e Server should not learn more than 1 bit on any user’s password
* At most halves the number of password guesses

* Probability of False Negative (pFN) must be negligible
* No popular password is missed

* Probability of False Positive (pFP) may be a small value
* A legitimate password can be rejected with low probability

Previous work

* Finding heavy hitters in many settings -
[DNP+10,DNPR10,CSS11,CLSX12, HKR12,DNRR15]

* Semi-honest version [BS15,BNST17]
* Non colluding mix servers — [MS17]

* DP password list with trusted server — [BDB16]
* Similar motivation, no DP — [SHM10]

The Malicious World

*Both users and server might be malicious

The Malicious World

*Both users and server might be malicious

* A malicious server wants to learn the passwords

The Malicious World

*Both users and server might be malicious
* A malicious server wants to learn the passwords

* Malicious users want to “hide” popular passwords
* Adversary controls a coalition of users

MPC meets DP in the Malicious World

* Asymmetric security requirements from the parties in the
protocol
* Relatively easy to protect users’ privacy from server
* Harder to protect against colluding malicious users

e Use efficient 2PC protocol tailored to the system’s
correctness requirements

Correctness

 Password used by at least a (1 4+ &)t fraction of the users:
identified as a heavy hitter w.p at least (1-pFN)
* Even at the presence of malicious user coalition

* Password used by at most a (1 — §)t fraction of the users:
identified as a heavy hitter w.p at most pFP

The semi honest solution

e Similar to the heavy hitters solution of [BNSTS17]

* We hash the passwords to ¢ bits values
e “Naive” hash function
e We assume collisions

e OKif 1/(1 —68)t « 2

* Server initializes to zero a counter histogram T of size 2¢

The semi honest Protocol

* For every user:
random 7 € {0,1}¢
Server — (H(pass),) User

*Server iterates over all possible value of x € {0,1}5
o If v={_x,r) T|lx]+=1
* Else: Tlx] —=1

The semi honest solution
*T|x] = N * Prob(x) + Noise

* Noise~Bin(N = (1 — Prob(x)),0.5)
*E[T|x]] = N * Prob(x)

* Blacklist the hash value if T[x] > TN

e Define T as a function of N and ¢ such that:
Prob||Noise| > TtN§] < pFN

The undercount attack

* A user wants to “hide” a popular password pass

* The user simply sends: 1 — (H(pass), r)

The required functionally

* Input
* The server sends to the Trusted Third Party (TTP) an ¢ bit input r
* The user sends to the TTP an ¢bit input v

* Output
* The TTP sends to the server (v,)
* The user gets no output

* Two approaches:
* QR based
* Yao’s garbled circuit based

A naive QR based solution

* Based on the intractability of the quadratic residuosity (QR)
assumption

* We encrypt the r vector as in the Goldwasser-Micali public encryption
scheme

* The server generates an RSA modules N=pq, p and g primes
* We encode the bits of rinto r?, 0 as QR and 1 as nQR

Is it secure?

2 Vs ar h
e =d” - H(Tp) ‘ where d & ZN Not if adversary

i—1 knows an nQR

The nQR generation assumption

* [s it hard to generate a nQR number w.h.p?
* With probability better than % + €7

Remarks about Theorem 2. When the factorization of n is secret, no efficient
algorithm for selecting a quadratic nonresidue mod » is known. Thus it may be that
revealing, say, the smallest quadratic nonresidue in Z, may endanger the secrecy of
the factorization of n or make deciding quadratic residuosity modulo n easy.

* Simple reduction from protocol security
* Assuming Unique N for each device

Reduction to nQR generation assumption

* The honest algorithm A(v, rP) return e=(v, r)

*The ?dversary algorithm A’ (v, rP) return e=1-(v, r)
W.P E + 0

* Generate P by random sample form Z, with Jacobi
symbol 1

* Generate random v

*Return A(v,rP) - A" (v, rP), result nQR w.p %)

Solution based only on QR assumption

* Adding an Interactive zero knowledge proof that the
inner product was computed correctly

* Non interactive version based on Fiat-Shamir
* Requires proof that N=pq where p and g are primes

* Another garbled circuit solution

Malicious boundson T

0.01

Ir'""q.

0.008

0.004

Thin fraction

0.002

Nt

5.5

6.5 7
Ll:::-gm Number of Users

Implementation and other usages

* We implemented the full malicious QR protocol on a RPi

* Non interactive version runs in about 15 seconds, can run in
background

e Server computer can verify in about 0.5 seconds

e Same solution can be used in any heavy hitters problem with
possible malicious setting
* TOR network statistics
* Device PIN/Pattern
* Large service providers dynamic passwords statistics

Open guestions

* Do we need Crypto?

* For non-malicious users — no (computational based)
crypto needed!

* Can the attacker really use the leaked information from the
blacklist publications?

