
How to (not) Share a Password:
Privacy preserving protocols for finding
heavy hitters with adversarial behavior

Moni Naor Benny Pinkas Eyal Ronen

Passwords

• First “modern” use in MIT's CTSS (1961)

• “Passwords are dead”?

• User tend to choose passwords with low min–entropy
• Easy to guess

Compromise a User, Attack the Eco System

Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack

Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack
• E.g. the Mirai attack

Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack
• E.g. the Mirai attack

• Easy to find IoT devices with Shodan like search engines

Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack
• E.g. the Mirai attack

• Easy to find IoT devices with Shodan like search engines

• Service provider liability?

Possible solutions

• It is hard to even decide the ideal guidelines for passwords

Possible solutions

Possible solutions

• Two factor authentication (2FA)

Possible solutions

• Two factor authentication (2FA)

Possible solutions

• Two factor authentication (2FA)

• Server saves a list of all users’ passwords and blacklists the
popular passwords

Possible solutions

• Two factor authentication (2FA)

• Server saves a list of all users’ passwords and blacklists the
popular passwords
• Put users’ passwords at risk: new single point of failure

Possible solutions

• Two factor authentication (2FA)

• Server saves a list of all users’ passwords and blacklists the
popular passwords
• Put users’ passwords at risk: new single point of failure

• Blacklisting known popular passwords
• From previous breaches
• Known lists of popular passwords

Passwords over time

Passwords over time

•password -> passw0rd -> p@assw0rd->password

Passwords over time

•password -> passw0rd -> p@assw0rd->password

•superman -> wonderwoman

Passwords over time

•password -> passw0rd -> p@assw0rd->password

•superman -> wonderwoman

•Different populations

Passwords over time

•password -> passw0rd -> p@assw0rd->password

•superman -> wonderwoman

•Different populations

Primum non nocere

First do (almost) no harm

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user
• Gathering statistics requires some password information

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user
• Gathering statistics requires some password information
• One bit leakage doesn’t hurt the user a lot (next slide)

Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user
• Gathering statistics requires some password information
• One bit leakage doesn’t hurt the user a lot (next slide)
• Differential privacy can also help

The Password Game
• PGame(L): Attacker A wants to attack device D

• Published a list with L guesses for passwords
• Wins if the password of D is in the list

• Effect of one bit leakage on password:
• If A wins PGame(L) w.p at least 𝛿 using a 1 bit leak
implies
• There is A’ wins PGame(2L) w.p 𝛿 without a leak

• 𝜖-DP
• If A wins PGame(L) w.p at least 𝛿 using 𝜖-DP information
then
• There is A’ wins PGame(L) w.p > 𝛿 ⋅ 𝑒−𝜖 without a leak

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves the number of password guesses

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves the number of password guesses

• Probability of False Negative (pFN) must be negligible

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed

• Probability of False Positive (pFP) may be a small value

How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters)
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed

• Probability of False Positive (pFP) may be a small value
• A legitimate password can be rejected with low probability

Previous work

•Finding heavy hitters in many settings -
[DNP+10,DNPR10,CSS11,CLSX12, HKR12,DNRR15]

•Semi-honest version [BS15,BNST17]

•Non colluding mix servers – [MS17]

•DP password list with trusted server – [BDB16]

•Similar motivation, no DP – [SHM10]

The Malicious World

•Both users and server might be malicious

The Malicious World

•Both users and server might be malicious

•A malicious server wants to learn the passwords

The Malicious World

•Both users and server might be malicious

•A malicious server wants to learn the passwords

•Malicious users want to “hide” popular passwords
•Adversary controls a coalition of users

MPC meets DP in the Malicious World

• Asymmetric security requirements from the parties in the
protocol
• Relatively easy to protect users’ privacy from server

• Harder to protect against colluding malicious users

• Use efficient 2PC protocol tailored to the system’s
correctness requirements

Correctness

• Password used by at least a 1 + 𝛿 𝜏 fraction of the users:
identified as a heavy hitter w.p at least (1-pFN)
• Even at the presence of malicious user coalition

• Password used by at most a 1 − 𝛿 𝜏 fraction of the users:
identified as a heavy hitter w.p at most pFP

The semi honest solution

• Similar to the heavy hitters solution of [BNSTS17]

• We hash the passwords to l bits values
• “Naïve” hash function

• We assume collisions

• OK if 1/ 1 − 𝛿 𝜏 ≪ 2𝑙

• Server initializes to zero a counter histogram T of size 2l

The semi honest Protocol

•For every user:

Server User

•Server iterates over all possible value of 𝑥 ∈ 0,1 l

• If 𝑣 = 𝑥, 𝑟 : 𝑇 𝑥 += 1
• Else: 𝑇 𝑥 −= 1

random 𝑟 ∈ 0,1 l

𝑣 = 〈𝐻 𝑝𝑎𝑠𝑠 , 𝑟〉

The semi honest solution

• 𝑇 𝑥 = 𝑁 ∗ 𝑃𝑟𝑜𝑏 𝑥 + 𝑁𝑜𝑖𝑠𝑒
• 𝑁𝑜𝑖𝑠𝑒~𝐵𝑖𝑛(𝑁 ∗ 1 − 𝑃𝑟𝑜𝑏 𝑥 , 0.5)

• 𝐸[𝑇 𝑥] = 𝑁 ∗ 𝑃𝑟𝑜𝑏 𝑥

• Blacklist the hash value if 𝑇 𝑥 > 𝜏𝑁

• Define 𝜏 as a function of N and 𝛿 such that:
𝑃𝑟𝑜𝑏 𝑁𝑜𝑖𝑠𝑒 > 𝜏𝑁𝛿 < 𝑝𝐹𝑁

The undercount attack

•A user wants to “hide” a popular password pass

• The user simply sends: 1 − 〈𝐻 𝑝𝑎𝑠𝑠 , 𝑟〉

The required functionally

• Input
• The server sends to the Trusted Third Party (TTP) an l bit input r
• The user sends to the TTP an l bit input v

• Output
• The TTP sends to the server 〈𝑣, 𝑟〉
• The user gets no output

• Two approaches:
• QR based
• Yao’s garbled circuit based

A naïve QR based solution

• Based on the intractability of the quadratic residuosity (QR)
assumption

• We encrypt the r vector as in the Goldwasser-Micali public encryption
scheme

• The server generates an RSA modules N=pq, p and q primes

• We encode the bits of r into rp, 0 as QR and 1 as nQR

Is it secure?
Not if adversary
knows an nQR

The nQR generation assumption

• Is it hard to generate a nQR number w.h.p?
• With probability better than

1

2
+ 𝜖?

• Simple reduction from protocol security
• Assuming Unique N for each device

Reduction to nQR generation assumption

• The honest algorithm 𝐴(𝑣, 𝑟𝑝) return e=〈𝑣, 𝑟〉

• The adversary algorithm 𝐴′(𝑣, 𝑟𝑝) return e=1- 𝑣, 𝑟
w.p

1

2
+ 𝛿

•Generate 𝑟𝑝 by random sample form ℤ𝑁 with Jacobi
symbol 1
•Generate random 𝑣

•Return 𝐴 𝑣, 𝑟𝑝 ⋅ 𝐴′ 𝑣, 𝑟𝑝 , result nQR w.p
1

2
+ 𝛿

Solution based only on QR assumption

•Adding an Interactive zero knowledge proof that the
inner product was computed correctly

•Non interactive version based on Fiat-Shamir

•Requires proof that N=pq where p and q are primes

•Another garbled circuit solution

Malicious bounds on 𝜏

Implementation and other usages

• We implemented the full malicious QR protocol on a RPi
• Non interactive version runs in about 15 seconds, can run in

background
• Server computer can verify in about 0.5 seconds

• Same solution can be used in any heavy hitters problem with
possible malicious setting
• TOR network statistics
• Device PIN/Pattern
• Large service providers dynamic passwords statistics

Open questions

• Do we need Crypto?
• For non-malicious users – no (computational based)

crypto needed!

• Can the attacker really use the leaked information from the
blacklist publications?

