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Passwords

• First “modern” use in MIT's CTSS (1961) 

• “Passwords are dead”?

• User tend to choose passwords with low min–entropy
• Easy to guess 
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Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack
• E.g. the Mirai attack

• Easy to find IoT devices with Shodan like search engines 

• Service provider liability? 



Possible solutions

• It is hard to even decide the ideal guidelines for passwords
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Possible solutions

• Two factor authentication (2FA)

• Server saves a list of all users’ passwords and blacklists the 
popular passwords
• Put users’ passwords at risk: new single point of failure

• Blacklisting known popular passwords
• From previous breaches
• Known lists of popular passwords
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Primum non nocere

First do (almost) no harm
•Publishing passwords blacklist can also help attackers

• Attacker can use auxiliary data to guess password distribution
• Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user 
• Gathering statistics requires some password information
• One bit leakage doesn’t hurt the user a lot (next slide)
• Differential privacy can also help



The Password Game
• PGame(L): Attacker A wants to attack device D

• Published a list with L guesses for passwords
• Wins if the password of D is in the list

• Effect of one bit leakage on password:
• If A wins PGame(L) w.p at least 𝛿 using a 1 bit leak
implies
• There is A’ wins PGame(2L) w.p 𝛿 without a leak

• 𝜖-DP
• If A wins PGame(L) w.p at least 𝛿 using 𝜖-DP information
then
• There is A’ wins PGame(L) w.p > 𝛿 ⋅ 𝑒−𝜖 without a leak



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves  the number of password guesses



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves  the number of password guesses

• Probability of False Negative (pFN) must be negligible



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves  the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves  the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed

• Probability of False Positive (pFP) may be a small value



How to (not) share a Password: Desiderata

• Identify and blacklist popular passwords (heavy hitters) 
• those were chosen by more than a fraction τ of the users

• Server should not learn more than 1 bit on any user’s password
• At most halves  the number of password guesses

• Probability of False Negative (pFN) must be negligible
• No popular password is missed

• Probability of False Positive (pFP) may be a small value
• A legitimate password can be rejected with low probability



Previous work

•Finding heavy hitters in many settings -
[DNP+10,DNPR10,CSS11,CLSX12, HKR12,DNRR15]

•Semi-honest version [BS15,BNST17]

•Non colluding mix servers – [MS17]

•DP password list with trusted server – [BDB16] 

•Similar motivation, no DP – [SHM10]
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The Malicious World

•Both users and server might be malicious

•A malicious server wants to learn the passwords

•Malicious users want to “hide” popular passwords
•Adversary controls a coalition of users



MPC meets DP in the Malicious World

• Asymmetric security requirements from the parties in the 
protocol
• Relatively easy to protect users’ privacy from server

• Harder to protect against colluding malicious users

• Use efficient 2PC protocol tailored to the system’s 
correctness requirements   



Correctness

• Password used by at least a 1 + 𝛿 𝜏 fraction of the users:  
identified as a heavy hitter w.p at least (1-pFN)
• Even at the presence of malicious user coalition

• Password used by at most a 1 − 𝛿 𝜏 fraction of the users:  
identified as a heavy hitter w.p at most pFP



The semi honest solution

• Similar to the heavy hitters solution of [BNSTS17]

• We hash the passwords to l bits values
• “Naïve” hash function

• We assume collisions 

• OK if  1/ 1 − 𝛿 𝜏 ≪ 2𝑙

• Server initializes to zero a counter histogram T of size 2l



The semi honest Protocol

•For every user:

Server User

•Server iterates over all possible value of  𝑥 ∈ 0,1 l

• If 𝑣 = 𝑥, 𝑟 : 𝑇 𝑥 += 1
• Else: 𝑇 𝑥 −= 1

random 𝑟 ∈ 0,1 l

𝑣 = 〈𝐻 𝑝𝑎𝑠𝑠 , 𝑟〉



The semi honest solution

• 𝑇 𝑥 = 𝑁 ∗ 𝑃𝑟𝑜𝑏 𝑥 + 𝑁𝑜𝑖𝑠𝑒
• 𝑁𝑜𝑖𝑠𝑒~𝐵𝑖𝑛(𝑁 ∗ 1 − 𝑃𝑟𝑜𝑏 𝑥 , 0.5)

• 𝐸[𝑇 𝑥 ] = 𝑁 ∗ 𝑃𝑟𝑜𝑏 𝑥

• Blacklist the hash value if 𝑇 𝑥 > 𝜏𝑁

• Define 𝜏 as a function of N and 𝛿 such that:
𝑃𝑟𝑜𝑏 𝑁𝑜𝑖𝑠𝑒 > 𝜏𝑁𝛿 < 𝑝𝐹𝑁



The undercount attack

•A user wants to “hide” a popular password pass

• The user simply sends: 1 − 〈𝐻 𝑝𝑎𝑠𝑠 , 𝑟〉



The required functionally

• Input
• The server sends to the Trusted Third Party (TTP) an l bit input r
• The user sends to the TTP an l bit  input v 

• Output
• The TTP sends to the server 〈𝑣, 𝑟〉
• The user gets no output

• Two approaches: 
• QR based  
• Yao’s garbled circuit based 



A naïve QR based solution

• Based on the intractability of the quadratic residuosity (QR) 
assumption

• We encrypt the r vector as in the Goldwasser-Micali public encryption 
scheme

• The server generates an RSA modules N=pq, p and q primes

• We encode the bits of r into rp, 0 as QR and 1 as nQR

Is it secure?
Not if adversary 
knows an nQR



The nQR generation assumption

• Is it hard to generate a nQR number w.h.p?
• With probability better than 

1

2
+ 𝜖?

• Simple reduction from protocol security 
• Assuming Unique N for each device



Reduction to nQR generation assumption

• The honest algorithm 𝐴(𝑣, 𝑟𝑝) return e=〈𝑣, 𝑟〉

• The adversary algorithm 𝐴′(𝑣, 𝑟𝑝) return e=1- 𝑣, 𝑟
w.p

1

2
+ 𝛿

•Generate 𝑟𝑝 by random sample form ℤ𝑁 with Jacobi 
symbol 1
•Generate random 𝑣

•Return 𝐴 𝑣, 𝑟𝑝 ⋅ 𝐴′ 𝑣, 𝑟𝑝 , result nQR w.p
1

2
+ 𝛿



Solution based only on QR assumption

•Adding an Interactive zero knowledge proof that the 
inner product was computed correctly

•Non interactive version based on Fiat-Shamir

•Requires proof that N=pq where p and q are primes

•Another garbled circuit solution



Malicious bounds on 𝜏



Implementation and other usages

• We implemented the full malicious QR protocol on a RPi
• Non interactive version runs in about 15 seconds, can run in 

background
• Server computer  can verify in about 0.5 seconds

• Same solution can be used in any heavy hitters problem with 
possible malicious setting
• TOR network statistics
• Device PIN/Pattern
• Large service providers dynamic passwords statistics



Open questions

• Do we need Crypto?
• For non-malicious users – no (computational based) 

crypto needed!

• Can the attacker really use the leaked information from the 
blacklist publications?


