Outsourcing RAM Computation

Daniel Wichs

Mainly based on joint works with:
Craig Gentry, Shai Halevi, Mariana Raykova

Problem Overview

D €D e &

—

Client y=H) Server

 Weak client wants to leverage resources of a powerful
server to compute A(x) without revealing x.

* Efficiency Requirements:
— Client does much less work than computing 2(x)
— Server does about as much work as computing 2(.x)

Use FHE! Done?

* Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,...]

* But FHE works over circuits rather than RAM programs.

I’'m very
efficient!

Circuits vs. RAM

* Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,...]

* But FHE works over circuits rather than RAM programs.
— RAM complexity 77 = circuit or TM complexity 7712

— For programs with initial “data in memory”, efficiency gap can be
exponential (e.g., Google search).

 Could use ORAM, but then client does all the work.

Goals

—

y=P(x)
Client Server

* Client’swork: O([x[+|y])
* Server’s work: J(RAM run-time of P).

* May allow client pre-processing of P.

— Client does one-time computation in O(RAM run-time of P).

— Later, outsource many executions of P. Amortized
efficiency.

Goals

D €D e &

Client Server

* Basic scenario: client wants to run independent
executions of Zon inputs xd1, x2, xi3,...

* Persistent Memory Data:

— Client initially outsources large private ‘memory data’
D.

— Program executions 272 (xl7) can read/write to D.

Goals

Client Server

* Non-interactive solution: “reusable garbled RAM”.

Garbled Computation

Persistent Memory Data:

Garble Data:

Can execute many programs with read/write access to data.

Garbled RAM Reusable Garbled RAM

[LO13, GHLORW14, GLOS15] [GHRW14, CHIV14,...]

Garble RAM: P> P

_ Can garble many inputs per program.
Garble input: x> x

, , , Efficiently outsource RAM comp.
Size of 2, run-time 2 (x) is

O(RAM run-time A).

Outsourcing via
Reusable G-RAM

=T x4l

Client Server
Wi=P(xii)

* Client garbles program 2— /2 [datao-» |.
— Pre-processing = O(run-time /)

* Client repeatedly garbles inputs x4/ — x d7 .

* Server evaluates 7 on x {7 to get ylfusing »]
— Evaluation time = J(run-time A7)

Outsourcing via
Reusable G-RAM ,

=T x4l

i

Client Server
Wi=P(xii)

Client learns y4i . Server sends it back (+1 round =
optimal).

Output privacy: set y4i = encryption of real output.
Server sends back Y47

Verifiability: y4i includes (one-time) MAC of real output.

Garbled RAM

Garbled RAM Reusable Garbled RAM

PART | PART Il

Combine:
* Non-reusable garbled RAM.

 Obfuscation.

* Overview of [LO13].

* Circularity issue, fixes.

PART |

One-Time Garbled RAM

Garbled RAM Definition

without persistent data

GProgwi) -~

Glnput(y, 4) »x
Client] Server
secret: k

EvaI(P, x) -y

Garbled RAM Definition

with persistent data

GDataw i) -»

GProg@ii) -~ ii ~ O(run-time) §

Glnput(xi/, k,l') —x .
Client ” Server
secret: k

. Evairp (» s, xlz’) - P
e Security: server only learns 1,42, ...

(even data access pattern is hidden!) ~ O(run-time)

Weak vs. Full Security

E>Weak security: May reveal data 2, and data-access
pattern of computations.

— Locations of memory accessed in each step.

— Values read and written to memory.

 Compiler: weak = full security:

— Use oblivious RAM [cogs,..] to encode/access memory.

Overview of [Lu-Ostrovsky 13]

For now, read-only computation.

Memory

Data D=| “Y

state

D[2] D[3] .
Read location: i

CPU :ﬂ read bt |, J

Step 1 Step 2

state,

Memory

Data D= D[1] D[2] D[3] .
GProg:
Read location: i
Gmp CPU J read bit, CPU J
stte Step 1 >tep 2

garbled

garbled circuit

state,

»

>

garbled circuit

garbled

GData: A @o1]) | FkeED012]) Flk (3,0[3]) vee

Flk(.)is a PRF

GProg:

Read location: i

Glnp CPU J read bit, CPU J

state
garbled circuit state,

garbled circuit

»

>

garbled garbled

GData: A @o1]) | FkeED012]) Flk (3,0[3]) vee

Flk(.)is a PRF

Read location: i

GProg: cl0 =Enc (Flk (i0), labell0), cil
—Enc (Flk (i1), labelil)

G|np CPU J read bit, CPU J

state
garbled circuit state,

garbled PRF KEVZ k garbled

garbled circuit

PRF Key: k

»

\ A

Let’s try to prove security...

Read location: i

cl0 =Enc (Flk (0), labellD), cll
=FEnc (Flk (i1), labelll)

state

garbled

CPU
Step 1

garbled circuit

PRF Key: k

J read bit,

state,

»

\ A

CPU
Step 2

garbled circuit

PRF Key: k

garbled

Use security of 15t garbled circuit

only learn output

cl0 =Enc (Fik (10), labell0) cll
=Enc(Flk (i1), labelll)

labels
garbled state

read bit;

CPU
Step 2

garbled circuit

PRF Key: k

Use security of 15t garbled circuit
only learn output (assume DJi]=1)

a0 =Enc (Flk (10), labellD)
labelll

labels
garbled state

read bit;

CPU
Step 2

garbled circuit

PRF Key: k

Use security of 2" garbled circuit

don’t learn
labello for read bit

don’t learn
PRF key k

Use security of Encryption/PRF

a0 =Enc (Flk (10), labellD)
labelll

labels
garbled state

read bit;

CPU
Step 2

garbled circuit

PRF Key: k

—

Circularity* Problem!

—

* May appear rectangular

So is it secure?

* Perhaps, but...

— No proof.
— No “simple” circularity assumption on one primitive.

Can we fix it? Yes!

* Fix 1: Using identity-based encryption (IBE).
[GHLORW14]

* Fix 2: Evolving key, “key revocation” (OWEF).
[GHLORW14], [GLOS15]

PART I

Reusable Garbled RAM

Main Results

1-time Garbled RAM

+

» Reusable Garbled RAM

Reusable Garbled Circuits
(obfuscation)

Reusable Garbled RAM Definition

without persistent data

View can be
simulated given

w1 2 ...

GProg@i) -~

{ Glnput(i, #) »xdi 1 i=1,...}

»

Client ' Server
secret: k

EvaI(P, xlz’) -yl

Reusable Garbled RAM Definition

with persistent data

View can be
simulated given
w192 ,...
GDataw i) -»
GProg@i) -~

c Glnput(xii, i) »x i
Client

secret: k

Server

Evairp (7, xlz’) -yl

e Construct reusable garbled RAM by combining:
— one-time garbled RAM (GProgl, Glnputl, GEvall)
— reusable garbled circuits

Plone, xlone Reusable Gprog ~-rireuse
reusable circuit-garbling of 1~
_ 8 g OT (17]
{ Reusable Ginput +-x!
GProgl :) Choosg fresh one-time key #
Glnputl ,) garble input @4 for c(#
} * Size of (17 = (RAM run-time of »)
G * |input| =0(|x]|)
Tk * |output| = (RAM run-time of »)

e Construct reusable garbled RAM by combining:
— one-time garbled RAM (GProgl, Glnputl, GEvall)
— reusable garbled circuits

Plone, xlone

i

{

GProgl ;)
Glnputl ,)

}

=

X, K

Problem: In reusable garbled circuits of
[GKPVZ13], size of garbled input always
exceeds size of circuit output.

Unfortunately: This is inherent. Cannot
do better if want simulation security.

Size of ¢17] = (RAM run-time of »)
linput| = O(]x][)
loutput| = (RAM run-time of 2)

e Construct reusable garbled RAM by combining:
— one-time garbled RAM (GProgl, Glnputl, GEvall)
— reusable garbled circuits

e Solution:

— Show that we do not need simulation-security for
reusable garbled-circuits. A weaker notion suffices.

— Construct reusable garbled-circuits with weaker security
notion but better efficiency needed in construction.
(using indistinguishability obfuscation)

* Theorem: Get reusable garbled RAM where:
— Garble, evaluate program: O(RAM run-time P).
— Garble input = O(input + output size).
assuming “ind. obfuscation” + stat. sound NIZK.

* Theorem: Get reusable garbled RAM with persistent memory
where:

— garble data = O(data size)

— garble program = O(description size P)

— garble input = O(input + output size)

— evaluate = O(RAM run-time P)

assuming “strong differing-inputs obfuscation” (heuristic).

* New: can be done from ind. obf. [CHIV14] ([BGT14,KLW14,LP14])

Thank You!

Don’t turn me into a circuit!

