



# Onion ORAM: Constant Bandwidth ORAM with Server Computation

**Chris Fletcher** 

Joint work with:

Ling Ren, Marten van Dijk, Srini Devadas

# I'lii Current art and where to go next



- State of the art schemes
  - Bandwidth: O(log N)
  - Client storage: O(1) (Path ORAM = O(log N))
  - Server storage: O(N)
- Is "optimal" ORAM possible?
  O(1) bandwidth, O(1) client storage, O(N) server storage
- Goldreich-Ostrovsky lower bound [1987, 1996]

Given a program that runs in T time and an N block ORAM with O(1) client storage, the program+ORAM must run in  $\Omega(T \log N)$  time

Ω(T log N) doesn't mean Ω(T log N) bandwidth!

# **IlliT ORAM with Server Computation**



Example: Outsourced storage (Honest but curious)



- "Read X, Y, Z, return F(X, Y, Z)"
- Message stream must be oblivious

## **Plii** Server comp. in previous ORAMs



XORing reads [Dautrich et al.], PIR+ORAM [Mayberry et al.]

- XOR + Ring ORAM
  - Permuted buckets → one real block touched / read
  - − **B**, d1, d2, d3, ...
  - **E(B, r)**, E(0, r1), E(0, r2), E(0, r3) ...
  - Server sends:  $E(B, r) \oplus E(0, r1) \oplus E(0, r2) \oplus E(0, r3) \oplus ...$
  - Client computes:  $E(0, r1) \oplus E(0, r2) \oplus E(0, r3) \oplus ...$
- Both schemes make read bandwidth O(log N) → O(1)
- Does not help on evictions!



# Can we make evictions O(1) Bandwidth?

#### **I'lir** FHE + ORAM



- Example: Ring ORAM
  - ORAM on server is encrypted under FHE scheme EFHE
  - Reads



Evictions

 $Path(leaf_g)' = EvictPath(Path(leaf_g))$ 

Read bandwidth is O(1), no bandwidth for evictions!

#### **Illir** Eviction circuit for FHE



### Path(leaf<sub>g</sub>)' = EvictPath(Path(leaf<sub>g</sub>))



- Only Select() touches blocks
- Server computation: polylog(N)
- 💢 Bootstrap to manage noise [Apon et al., Mayberry et al.]



\*Discuss later: Does the previous scheme achieve optimal Bandwidth/storage?

# Do we need bootstrapping? Do we need FHE?

#### **Illii** Do we need FHE?



- Additive-HE (e.g., Paillier)
  - $E^{AHE}(a) \oplus E^{AHE}(b) = E^{AHE}(a + b)$ – Addition:
  - Scalar multiplication:  $E^{AHE}(a) \otimes c = E^{AHE}(ca)$
- Select from (X, Y):

$$E^{AHE}(0) \otimes X \oplus E^{AHE}(1) \otimes Y = E^{AHE}(0+Y) = E^{AHE}(Y)$$

- Y = E<sup>AHE</sup>(plaintext)
- Select op  $\rightarrow$  E<sup>AHE</sup>(E<sup>AHE</sup>(plaintext))
  - Client decrypts twice
  - (Possible) ciphertext blowup per layer

Layers(output) = max( Layers(Block<sub>i</sub>) : Blocks ) + 1

**Block gets extra** 

layer of encryption

#### **IlliT** ORAM Read + Additive-HE



ORAM encrypted using 1 layer of E<sup>AHE</sup> (abbreviated E)



#### **IIII** ORAM Evict + Additive-HE



- Problem: Continuous reshuffling → Unbounded layers
- Reason: Blocks can get stuck in buckets after evictions

Layers(output) = max( Layers(Block<sub>i</sub>) : Blocks ) + 1



O(T) evictions  $\rightarrow$  Slot with C gets O(T) layers



ORAM with O(1) bandwidth, O(1) client storage, O(N) server storage

...with only additive-HE





# Design our ORAM eviction algorithm such that buckets are guaranteed to be empty regularly







# Design our ORAM eviction algorithm such that buckets are guaranteed to be empty regularly

- 1. Evict over reverse-lexicographic order of paths
- 2. Also evict to sibling buckets
- 3. Set Z, A s.t. Pr[bucket overflow] = negl(security parameter)
- 4. Evict to 1 bucket triplet at a time



# **Mir** Which A, Z work?



Theorem:  $Z \ge A$ ,  $N \le A * 2 \uparrow L - 1$ 

⇒ Pr[bucket overflow] = 
$$e \uparrow -(2Z - A) \uparrow 2 / 6A$$

•  $Z=A=\theta(\log N)\omega(1) \rightarrow \text{Pr[bucket overflow]} = N1-\omega(1)$ Note:  $N=\text{poly}(security\ parameter})$ 

- Asymptotics w/o server computation
  - Bandwidth =  $O(\log 12 N)\omega(1)$  blocks
  - Client storage =  $O(\log N)\omega(1)$  blocks
  - Server storage =  $\mathcal{O}(N)$  blocks







Not competitive w/o server computation

# Ilii Onion ORAM read w/ Additive-HE



#### Same as previous proposal

- Client sends leaf
- Server sends metadata
- Client sends  $\pi = E(0), E(0), ... E(1), ... E(0)$
- Server sends block

Assume layers → ciphertext blowup

#### Simple scheme factoring in layers

- Elements of  $\pi$  have 1 layer
- Pad blocks on path to  $S = Max(IBlock_iI : Blocks)$  bits
- Split each padded block into C chunks s.t. S / C = Plaintext( $\pi li$ ) = P



# **Plif** Eviction Terminology





Path(leaf)[i] = Path(leaf)[i].dest[j] =

*i*<sup>th</sup> triplet on path *j*<sup>th</sup> block in *i*<sup>th</sup> triplet's dest. bucket

# **Plif** Layer Analysis



#### Useful properties:

- 1. At eviction start: non-leaf sibling buckets are empty
- 2. At eviction end: non-leaf destination buckets are empty



- Blocks get stuck in the leaves
- Non-leaves empty at regular intervals

# **IlliT** Layer Analysis



Analyze: Layers on destination bucket at start of select



Theorem: buckets at level k < L have  $\le c * k + 1$  layers

• c is constant, c=1 in our final scheme

# IlliT Onion ORAM evict w/ Additive-HE CSAIL



#### Client Server

leaf<sub>a</sub> (eviction path) known by server

E(metadata for Path(leaf<sub>a</sub>))

```
Compute \Pi = \{\pi \downarrow 0 \dots \pi \downarrow Z * L\}
```

 $(|\pi \downarrow i| = O(Z))$  encrypted coefficients)

 $\Pi$ , E(updated metadata for Path(leaf<sub>o</sub>))



#### For triplet *i*:

Path(leaf<sub>q</sub>)[i].sibling = Path(leaf<sub>q</sub>)[i].src

For slot *j*:

 $args = \{Path(leaf_q)[i].dst[j], Path(leaf_q)[i].src\}$ 

Path(leaf<sub>q</sub>)[i].dst[j] = Select( $\pi \downarrow Z * i + j$ , args)

## **PliT**Eviction Post-Processing



#### Problem: layers in leaves are not bounded

At end of each eviction...



- Layer theorem now applies to all levels
- Adds constant amortized bandwidth if Z ~ A



# **Setting parameters**

#### **Wit Which Additive-HE scheme?**



#### Problem: each layer can add ciphertext blowup

- Layer bound =  $O(\log N)$
- Paillier (1999):

 $n \rightarrow n \uparrow 2$  (n = RSA modulus)



• Damgård-Jurik (2001):  $n \uparrow s \rightarrow n \uparrow s + 1$ 



- s = free parameter
- Strategy: set  $s \downarrow 0 = \log N$ ,  $\log N$  layers  $\rightarrow n \uparrow s 0 + \log N = n \uparrow 0 (\log N)$
- Operations are like Paillier:

$$E(a) \oplus E(b) = E(a)E(b)$$

$$E(a) \otimes b = E(a) \uparrow b$$

• Best attack: factor n, complexity  $\exp(|n|)^2 1/3$  (log |  $n|) \uparrow 2/3$ 

 $| \cdot | / n | = \theta (\log 13 N) \rightarrow \text{defeat attacks w/ complexity}$  $N \uparrow \omega(1)$ 



### **Illii** Optimization: Hierarchical PIR



• So far ... Select =  $(+) \pi \downarrow i \otimes Block \downarrow i$ PIR"

"trivial linear

- Each select adds 1 layer layer bound=log*N*
- Z inputs  $\rightarrow |\pi|=Z*$  layer bound  $*|n|=log \uparrow 5 N\omega(1)$
- **Hierarchical PIR [Lipmaa 2005]** 
  - Multiplexer tree
  - Z inputs  $\rightarrow /\pi/=\log Z$  coefficients  $\rightarrow$  select adds  $\log Z$  layers
  - ∴ layer bound  $\mathcal{I}' = \log M \log \log N$
  - $Z \text{ inputs } \rightarrow /\pi/=\log Z * \text{layer bound } f' */n/$  $=\log 14 N \log 12 \log N$





#### **Illii** Parameterization



- Strategy: set  $/\Pi/=|\{\pi \downarrow 0 \dots \pi \downarrow Z * L\}| = O(B)$
- I.e., Π contributes constant (amortized) bandwidth
- Let  $Z=A=\log N \omega(1)$
- $|\pi \sqrt{read}| = |n| * \log 12 N\omega(1)$  (n = RSA modulus)
- $|\pi \text{levict}| = |n| * \log N \log 12 \log N$  (mux tree)
- $/\Pi / evict = |n| * \log 12 N \log 12 \log N = \log 15 N \log 12 \log N$

#### Final asymptotics:

- Block size  $B = \Omega(\log 15 N \log 12 \log N)$
- Bandwidth =  $\mathcal{O}(B)$
- Client storage =  $\mathcal{O}(B)$
- Server storage = O(BN)



### **Ongoing/Future work**



- Decrease block size  $B = \Omega(k*\log 12 N \log 12 \log N)$ 
  - Modern schemes w/o computation:  $B = O(\log 12 N)$
- How?
  - Server computation is  $0(\log 12 N)\omega(1)$  blocks is  $0(\log N)$  possible?
  - Is there a suitable additive-HE scheme with  $k=o(\log 13 \ N)$ ?
- Protect against malicious servers
  - Server performs select incorrectly
- Improve Garbled RAM schemes?
  - Use ORAM as a blackbox
- Parameterization for SWHE for Onion ORAM
  - No bootstrapping needed