D o i

Onion ORAM:
Constant Bandwidth ORAM
with Server Computation

Chris Fletcher

Joint work with:
Ling Ren, Marten van Dijk, Srini Devadas

I'ii” Current art and where to go next

- State of the art schemes
— Bandwidth: O(log N)
— Client storage: O(1) (Path ORAM = O(log N))
— Server storage: O(N)

- Is “optimal” ORAM possible?
O(1) bandwidth, O(1) client storage, O(N) server storage

- Goldreich-Ostrovsky lower bound [1987, 1996]

Given a program that runs in T time and an N block ORAM with O(1)
client storage, the program+ORAM must run in Q(T log N) time

e O(Tlog N) doesn’t mean Q(T log N) bandwidth!

I"lif ORAM with Server Computation

- Example: Outsourced storage (Honest but curious)

Client Server

Trust boundary

(insecure) Storage
IProcessor (ORAM tree)

limited storage, compute

- “Read X, Y, Z, return F(X, Y, Z)”
- Message stream must be oblivious

Il Server comp. in previous ORAMs 1A% cc.n.

- XORing reads [Dautrich et al.], PIR+ORAM [Mayberry et al.]

- XOR + Ring ORAM

— Permuted buckets = one real block touched / read

— B, d1,d2,d3, ...
— E(B, r), E(O, r1), E(O, r2), E(O, r3) ...

— Server sends: E(B,r) & E(0,r1) & E(O, r2) & E(O, r3) & ...
— Client computes: E, r1) & E(0, r2) @ E(O, r3) & ...

- Both schemes make read bandwidth O(log N) - O(1)
- Does not help on evictions!

A connn

Can we make evictions
O(1) Bandwidth?

IliT FHE + ORAM AT e

- Example: Ring ORAM

— ORAM on server is encrypted under FHE scheme EFHE

— Reads
Client Server
leaf, EFHE(address)
EFHE(d) = Select(EFHE(address), Path(leaf))
RemoveBlock(EFHE(address), Path(leaf))
EFHE(d)
— Evictions

Path(leaf,)’ = EvictPath(Path(leaf))

Read bandwidth is O(1), no bandwidth for evictions!

i’ Eviction circuit for FHE @ﬂb

Path(leaf,)’ = EvictPath(Path(leaf))

m, = metadata m,
for block A

Mg

z,= MoveBlock(m, ... mg)

Block C can get stuck

A

B

~— \
Select(zz, my, Mg, Mg) 2 |Me C < Select(rg, A, B@

D

_—

E

F

< Select(z, A, B, C, D, E)
< Select(z, A, B, C, D, F)

Mg

Mg

« Only Select() touches blocks
@ Server computation: polylog(N)
@ Bootstrap to manage noise [Apon et al., Mayberry et al.]

A connn

*Discuss later: Does the previous scheme achieve
optimal Bandwidth/storage?

Do we need bootstrapping?
Do we need FHE?

IliT Do we need FHE? AL eane

- Additive-HE (e.g., Paillier)
— Addition: EAHE(Q) @) EAHE(b) = EAHE(a + b)
— Scalar multiplication: EAHE(a) ® ¢ = EAHE(ca)

- Select from (X, Y):
EAHE(0)®X @ EAME(1)XY = EAHE(0+Y) = EAHE(Y)

* Y = EA"F(plaintext) Block gets extra
- Select op > EAHE(EAHE(plaintext)) |layer of encryption
— Client decrypts twice

— (Possible) ciphertext blowup per layer

- Layers(output) = max(Layers(Block:) : Blocks) +1

i ORAM Read + Additive-HE AL eane

- ORAM encrypted using 1 layer of EAHE (abbreviated E)

Client Server
leaf

E(metadata for Path(leaf))

Decrypt metadata
Compute 7= E(0), E(0), ... E(1), ... E(O)
7, E(updated metadata for Path(leaf))

-

-

Write updated metadata

Block i
2 ol sl i Compute E(E(d)) = Select(z, Path(leaf))
. E(E(d))
Decrypt d = E(E(d))
Update d—>d E(da)

-

Path(leaf)[root].append(E(d’))

Illii ORAM Evict + Additive-HE AL eane

- Problem: Continuous reshuffling 2 Unbounded layers

* Reason: Blocks can get stuck in buckets after evictions

A,=Block A
with 1 layer

O(T) evictions - Slot with C gets O(T) layers

Layers(output) = max(Layers(Block;) : Blocks) + 1

—\

< Select(zc, By, Ay, Cp)

A connn

ORAM with O(1) bandwidth,
O(1) client storage,
O(N) server storage

...With only additive-HE

I'liir Onion ORAM AL eane

Design our ORAM eviction algorithm such that
buckets are guaranteed to be empty regularly

T A

C < Select(r, B, A, C)

13

I'liir Onion ORAM AL eane

Design our ORAM eviction algorithm such that
buckets are guaranteed to be empty regularly

1. Evict over reverse-lexicographic order of paths

2. Also evict to sibling buckets

3. Set Z, A s.t. Pr[bucket overflow] = negl(security parameter)
4. Evict to 1 bucket triplet at a time

Example: i e

evict to leaf 6

Informal guarantee:
Max layers = olog ») F yaN

i Which A, Z work? AT conne

Theorem: Z>A4, N<A4+2TL—-1
- Pr[bucket overflow] = eT—(22—-A)72 /64

s Z=A=0(log VMyw(1)—~> Pribucketoverflow] =#T—a(1)
Note: N=poly(security parameter)

- Asymptotics w/o server computation

— Bandwidth = 0(log72 &)w(1) blocks @
— Client storage = 0(log /V)w(1) blocks
— Server storage = 0(/V) blocks @

)

- Not competitive w/o server computation

15

I'liT Onion ORAM read w/ Additive-HE (725 ccu.

- Same as previous proposal
— Client sends leaf
— Server sends metadata
— Client sends 7=E(0), E(0), ... E(1), ... E(0)

— Server sends block
I Assume layers - ciphertext blowup

- Simple scheme factoring in layers
— Elements of 7 have 1 layer
— Pad blocks on path to S = Max(IBlockil : Blocks) bits

— Split each padded block into C chunks s.t. S/ C = Plaintext(z//) =
P

Block 1

Block 2

<> 16

I'l" Eviction Terminology A0 o

Source Triplet O

Destination
Sibling
Path(leaf)[/] = i triplet on path
Path(leaf)[/].dest[j] = jf block in triplet’s dest. bucket

I'l" Layer Analysis L

- Useful properties:
1. At eviction start: non-leaf sibling buckets are empty
2. At eviction end: non-leaf destination buckets are empty

empty

|
|
|
|
|
|
|
|
1
T
|
|
|
|
|
|
|
|
L

Leaves:

— Blocks get stuck in the leaves
— Non-leaves empty at regular intervals 18

I'li Layer Analysis
- Analyze: Layers on destination bucket at start of select
Key intuition:

destination bucket was
sibling on last eviction

Layers?

Theorem: buckets at level £<Z have <c+4+1 layers

e cis constant, c=1 in our final scheme

19

I'liT Onion ORAM evict w/ Additive-HE (525 ccu.

Client Server
leaf,, (eviction path) known by server

E(metadata for Path(leaf))

-

Compute M={7J0 ... 747+ L }

(|7zi|=0(Z) encrypted coefficients)
11, E(updated metadata for Path(leaf))

OOQ* _’EB For triplet
&\“) Path(leaf,)[i].sibling = Path(leaf,)[i].src
3

For slot .

R >
@) &\69) args = {Path(leaf)[/].dst[j] , Path(leaf,)[].src}

Path(leaf)[i].dst[]] = Select(z{Zx/+/, args)

IllirEviction Post-Processing A0 o

Problem: layers in leaves are not bounded

- At end of each eviction...
Client Server
E(dj) = Path(leafg)[L].dSt[j] Forj=0...Z-1

-

Decrypt E(d) to a constant number of layers, yielding e

Compute E(e))
E(e)

- Layer theorem now applies to all levels
- Adds constant amortized bandwidth if Z~ A

A connn

Setting parameters

I'liT Which Additive-HE scheme? AL eane

Problem: each layer can add ciphertext blowup

- Layer bound = O(log /)
. Paillier (1999): n-nf2 (n=RSAmodulus) ()
- Damgard-Jurik (2001): 7n7s-nfs+1 @

— s = free parameter
— Strategy: set sJ0 =log/, log/V layers > nlsO+log/V = nT0(log/h)

- Operations are like Paillier:
E(a)DE(D)=E£(a)E(b) E(ad)Qb=F(a)Th
- Best attack: factor 2, complexity exp(|7|71/3 (log |
n|)12/3)
~[n[= 8(logT3 N) > defeat attacks w/ complexity
Nlw(1)

I'liT Optimization: Hierarchical PIR ...

« So far ... Select = 69 wli QFlockli “trivial linear
PIR” [

— Each select adds 1 layer
layer bound=log/V

- Zinputs =2 [z/=Z*layer bound * /7= logT5 Nw(1)

A B C D
. Hierarchical PIR [Lipmaa 2005] N S

E(rg)— 2-1sel | E(mo)— 2-1 sel

— Multiplexer tree \/

- Zinputs > [z/=logZ coefficients E(ry)— 21 se]

—> select adds logZ layers
- ~layer bound 7’ =logMoglog/V
- Zinputs 2 [7/=logZ *layer bound 7/
=log74 ¥ log12 logV At least better in theory@

MiI" Parameterization

- Strategy: set I1/= [7l0 ..mlZ +L }|=0(F)
- l.e., Il contributes constant (amortized) bandwidth

* Let Z=A=log/N w(1)

o |mlread|=|n| xlogT2 Nw(1) (n = RSA modulus)
o |mlevict |=|n| xlog N logT2 logh (mux tree)

o Mllevict [= |n|xlogT2 NV logT2 log/N =logT5 N log72 log/h/

- Final asymptotics: /

— Block size B = Q(log75 / log72 log/V)
— Bandwidth = 0(5%)

— Client storage = 0(5)

— Server storage = O(5N)

IMir Ongoing/Future work A0 o

Decrease block size B= Q (4*log72 N log72 log/V)

— Modern schemes w/o computation: B= 0 (log72 &)

How?

— Server computation is O(log72 NV)w(1) blocks - is O (log /)
possible?

— Is there a suitable additive-HE scheme with £=o0(log73 N)?

Protect against malicious servers
— Server performs select incorrectly

Improve Garbled RAM schemes?
— Use ORAM as a blackbox

Parameterization for SWHE for Onion ORAM
— No bootstrapping needed

26

