
The Influence of Markov Decision Process Structure on
the Possible Strategic Use of Working Memory and
Episodic Memory
Eric A. Zilli*, Michael E. Hasselmo

Center for Memory and Brain, Boston University, Boston, Massachusetts, United States of America

Abstract

Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This
research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the
framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov
decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the
reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as
working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative
description of memory states sufficient for correct choices at specific decision points. Using information from the
mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or
more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis
determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We
demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and
human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and
the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in
previous publications and provide simple indications of the memory demands of the tasks which can require far less
computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of
memory tasks.

Citation: Zilli EA, Hasselmo ME (2008) The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic
Memory. PLoS ONE 3(7): e2756. doi:10.1371/journal.pone.0002756

Editor: Ernest Greene, University of Southern California, United States of America

Received April 7, 2008; Accepted June 23, 2008; Published July 23, 2008

Copyright: � 2008 Zilli, Hasselmo. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Silvio O. Conte Center Grant NIMH MH71702, NIMH MH60013, NIMH MH61492, NSF SLC SBE 0354378 and NIDA DA16454
(part of the CRCNS program).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zilli@bu.edu

Introduction

Studies of the biological mechanisms of memory function utilize

behavioral tasks that require use of memory systems for successful

performance [1]. These behavioral tasks are often designed to test

one of many specific hypothesized memory systems [1–3].

However, the mechanisms of memory function required for

specific tasks often becomes the focus of debate, as there is no

quantitative framework for describing the memory demands of

individual behavioral tasks. Often memory tasks can be performed

by more than one memory mechanism [4]. Even when it is clear

what type of memory is required at one point in the task, there

might be a different memory requirement at other times, or there

might be a need for interaction of different memory systems.

This paper presents mathematical procedures that can be used

to evaluate the memory demands at specific decision points in

specific memory tasks. The analyses are based around Markov

decision processes (MDPs), which provide a framework for

describing complex decision processes in behavior [5]. By

definition, each decision in a Markov decision process depends

only upon the current state [5]. Tasks that require memory can be

written as partially-observable Markov decision processes

(POMDPs; [6,7]). Agents can be trained to use memory

mechanisms in a non-Markov decision process [4,8–10], but a

systematic mathematical process for analyzing the memory

demands of a task has not been presented. Analyzing tasks written

as POMDPs can help elucidate the memory mechanisms sufficient

to solve each memory task, and could provide quantitative details

of these memory processes. Analyses examining specific ambigu-

ous observations allow consideration of a range of memory

demands within a single task. Thus, analyses of tasks as POMDPs

can help provide a quantitative behavioral stoichiometry of

memory tasks, providing a solid framework for evaluating

potential physiological mechanisms. Using these procedures,

behavioral scientists can quantitatively define the type of memory

and content of memory sufficient for making decisions at specific

points within a behavioral task.

Here we specifically address the use of working memory and

episodic memory (and, briefly, time-varying contextual informa-

tion) for performance of behavioral tasks. These terms have been

defined in other research, but are used in a specific, task-

independent manner in this paper. Here, working memory refers

to active maintenance of information about prior observations,

consistent with the use of the term in models and experimental

PLoS ONE | www.plosone.org 1 July 2008 | Volume 3 | Issue 7 | e2756

data focused on persistent spiking activity during the delay period

of a behavioral task [4,8–14]. Episodic memory refers to storage of

a sequence of observations that can be retrieved in response to a

single initial cue (the most recent sequence beginning with the cue

is retrieved). This operational definition proves useful in

behavioral tasks [4,15], but does not address all the components

of the definition of episodic memory in humans [16]. For this

reason we refer to this system as content-addressable sequential

retrieval (CASR) instead of episodic memory. Finally, our

consideration of context deals with systems that provide contextual

information as a function of the agent’s recent history.

We analyze tasks from the points of view of these memory

systems by using what we call disambiguation matrices. These

matrices relate observations held in memory at a particular

decision point in a task to the possible states the task might be in.

When an observation in memory disambiguates a choice point, an

agent can learn a policy that more closely reflects the underlying

dynamics of the task at that point. By calculating these matrices for

different memory systems, we show that tasks can be quantitatively

analyzed in terms of which memory systems and which strategies

using those systems are useful in performing them.

The essence of these analyses is this: by the structure of the state

space of a task as well as by the function of a particular memory

system, at any choice point in a task there are only certain

observations that can be provided by the memory system. When a

choice point in fact corresponds to multiple distinct states (which

the agent cannot distinguish between through sensory input alone),

it can be that certain observations can only occur in memory when

the agent is at certain of the distinct, but superficially

indistinguishable states. In such a situation, the memory

disambiguates the choice point, providing non-sensory informa-

tion as to the agent’s true state.

For the working memory analyses, we can look backward in time

from the choice point to see the recent observations that the agent

may have held in working memory. From each of those observations

we can look forward to see which choice point states are reachable.

If it is only possible for the agent to have observation X in working

memory when at choice point state 1, then if the agent has X in

working memory, it must be in state 1. In the case of episodic

memory, we look as far back in time from the choice point as is

needed to find the last time the choice point occurred, then look

forward to see, first, what observations can follow that past

appearance and, second, which choice points are then reachable

from those observations. The following analyses provide a way to

answer these questions, using matrices as ‘‘bookkeeping’’ tools to

keep track of which observations lead to which states.

The analyses are done from the viewpoint of an omniscient

observer who knows the complete description (in terms of a

POMDP) of a behavioral task. The results of the analyses are thus

primarily useful to those designing or simulating tasks or studying

the use of memory systems. The analyses and results from them are

less likely to be useful to agents actually performing any particular

task, thus the present results are primarily useful as a theoretical tool

for understanding and categorizing behavioral tasks.

Methods

We will be dealing with a type of partially-observable Markov

decision process. Let T be a POMDP describing the dynamics of a

behavioral task. It is a tuple T = ,TS, TO, TA, TP, TR. of,

respectively, a set of states, a set of observations, a set of actions, a

set of transition probabilities, and a real-valued reward function.

TP can be written as the set of probabilities

TP(s,o,a,s9) = Pr(st+1 = s9, ot+1 = o|at = a, st = s) which describes a

new state st+1 and observation ot+1 given a current state st and an

action at. In a POMDP, it is assumed that the underlying dynamics

of the environment are Markov but due to hidden variables or

limitations in, for example, sensory capability, the agent is not

aware of its complete state. Instead it must base its decisions on its

current observation.

Our analysis will be restricted to a subset of POMDPs that we

call aliased MDPs (AMDPs). An AMDP is simply a POMDP

where there exists some aliasing map A:TSRTO such that that

TP(s,o,a,s9) is only nonzero for o = A(s) for all s,a,s9. That is, the

transition probabilities are limited in that only a single observation

can occur for any particular state (although many states may be

aliased to the same observation). If A is one-to-one then the AMDP

is an MDP. It is primarily for conceptual simplicity that we make

this restriction. The analysis results hold when applied to

POMDPs (simply by changing the definition of the aliasing map

to be A:TSRP(TO) where P(TO) is the set of all subsets of TO).

This aliasing function is intended to represent the fact that the

dynamics of the world can be a function that depends on variables

not directly observable by the agent (e.g. in a spatial alternation task,

a hidden variable that affects the reward function is the spatial

response the agent made on the previous trial). These variables can

be included as part of the states TS so that state transitions and the

reward function depend on them, but they may be aliased out so

that multiple states in TS (e.g. with different values of the variables)

are treated by the agent as a single observation.

We will often be concerned with the image A(s) of a state sMTS

(i.e. the observation corresponding to state s) and the preimage

A21(o) of an observation oMTS (i.e. the set of all states that the agent

observes as o).

The states TS will be labeled using the Euclidean basis vectors ei

for 1#i#|TS|. All elements of vector ei are 0 except for the ith

which equals 1. For example, e2 = (0 1 0 0 …). We use these so that

the states can be directly included in equations of matrices that

refer to them. For most of the examples in this manuscript, the

observations will be labeled as colors such as green or blue.

Observations can also be associated with Euclidean basis vectors,

and the aliasing map A has a natural extended interpretation as a

|TO|-by-|TS| matrix mapping the state vectors to observation

vectors. This aliasing matrix will be written A.

An important distinction must be made between three similar

concepts: state, observation, and what we will call policy-state.

States and observations are elements drawn, respectively, from TS

and TO and are part of the formal definition of a POMDP. We

distinguish these from the policy-state of an agent, which refers to

the specific information used to select an action when the agent is

interacting with the environment (for instance, both the agent’s

current observation as well as any memory information available

to it, [4,8–10]). Policy-states in this manuscript only come into play

when considering how the agent can use disambiguation

information provided by memory.

Our primary concern in the following analyses are with the

topology (or connectivity) of the state space of a task and not with

the particular actions that carry the agent from state to state.

Because of this, matters are simplified: ignoring the control aspect

allows us to write the state space as a Markov chain [17], which we

will call N. To do so, we construct N by assuming the agent always

selects an action at random. The following common results on

Markov chains will be used.

Row r of N, N(r,?), is a vector where entry/column c is the

probability that the agent will move from state r to state c under

one step of its random policy (the probabilities TP(r,o,a,c) averaged

over all aMTA and oMTO). In Appendix S1 we show that the later

analyses give equivalent results regardless of the way N is formed as

Memory Systems

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2756

long as each entry is some linear combination with nonzero

coefficients of the transition probabilities. This means one could

instead calculate N as the adjacency matrix of the state space

graph, if that is more convenient.

The element at row r and column c in the matrix Nn, similarly,

gives the probability that the agent will be in state c after taking n

random steps from state r.

The direction of the transitions in the chain represented in N

can all be time reversed by transposing N (and normalizing the row

sums so that they remain probabilities):

Nrev r,:ð Þ~ N :,rð ÞTP
i

N i,rð Þ ð1Þ

Row r in N can be extracted by left multiplying N by a unit row

vector er in which the rth component equals 1 and all others equal 0.

A state is called absorbing if the transitions leading out from it

lead only back into itself. State r in N is absorbing if N(r,?) = er.

Therefore, the chain N can be modified to set state r as absorbing

by assigning N(r,?)rer.

Our results involve disambiguation matrices. A disambiguation

matrix D here is defined at an observation o. The columns of D

each correspond to a state in A21(o). The rows of D each

correspond to an observation the agent might have in memory (for

instance held in working memory or retrieved in CASR memory).

D expresses the probability that the agent might be in each state

(column) given that a particular observation (row) is in memory.

That is, D(r,c) = Pr(st = sc|om = or) where sc is the state corresponding

to column c, or the observation corresponding to row r, st the

agent’s current state, and om the observation in memory (reflecting

the observation observed at some earlier time). Of particular

importance are rows where one or more the probabilities is 0,

indicating that, when the row’s corresponding observation is in

memory, there is less uncertainty as to the current state.

Tasks
We will derive a simple structural analysis of behavioral tasks in

terms of matrices calculated from AMDPs by considering a

simplified alternation task. Further examples of the analysis are

given for other simplified tasks before we finish by analyzing the

tasks exactly as simulated in [4] and discussing the results. We also

show how to extend the working memory analysis to the case of

holding multiple items in working memory in two additional tasks.

GNU Octave 3.0.0 scripts (MATLAB compatible) containing

all of the analyzed AMDPs and analysis functions discussed in this

manuscript are available upon request.

Alternation. From the agent’s point of view, our simplified

alternation task consists of 5 observations, as shown in Figure 1.

This is a greatly abstracted version of the spatial alternation task

used in experiments [18–20]. A trial consists of the agent passing

from either red or blue observations through green to one of

yellow or magenta, from which the agent is returned to red or

blue, respectively. The agent receives a positive reward for

alternately entering the yellow and magenta observations on each

visit to green. Because the sign of the reward in going from, e.g.,

green to yellow does not depend on the agent’s observation, but

rather on its unobserved state, this chain is not an MDP, but it is

expressible as an AMDP.

We assume that the underlying AMDP is fully known for the

purposes of this analysis. One possible AMDP describing the task

with 8 states is shown in Figure 2. States e3 and e7 (respectively e4

and e8) are distinct only for clarity. The results of this analysis are

unchanged if each pair is merged into a single state.

Cued Alternation. Cued alternation is a variation on the

alternation task. The main difference is that there are two choice

points in this task, green and cyan, one of which is selected

randomly each trial. The agent is to learn two independent

alternations. For instance, each time green is presented, the agent

is to alternate its response, regardless of the responses made at any

number of intermediate cyan observations. This task is

demonstrated graphically in Figures 3 and 4.

2-Back. In the 2-back task (more generally the n-back task;

[21–23]), subjects are given a continuous stream of cues and must

respond to a cue only when it matches the cue from two items

earlier. The subjects must constantly update their working

memory of the most recent cues, because memory of the cue

from time t-2 is required to respond at time t, but memory of the

cue from t21 must be maintained in order to respond to the cue at

time t+1. The version of this task that will be analyzed is somewhat

simpler than most versions in that we use only four different cues

in the sequence, although the analysis should not differ for a larger

set of stimuli.

1-2-AX. The 1-2-AX task ([8,9]; based on an earlier task from

[24]) consists of a stream of the characters {1, 2, A, B, C, X, Y, Z}.

Figure 1. Observed alternation task. This shows the structure of
the task as observed by the agent. Transition arrows colored magenta
indicate transitions that may provide either positive or negative rewards
(depending on whether the agent has alternated or has selected the
same response).
doi:10.1371/journal.pone.0002756.g001

Figure 2. Underlying state-space of the alternation task. The
eight states are labeled with vectors e1,…,e8. The five observations are
identified by color. Thus there are two unaliased states and three pairs
of states that are each aliased to a single observation. Solid arrows
indicate transitions that result from any action. Action-specific
transitions are indicated by dotted and dashed lines. Red arrows
indicate transitions producing negative rewards; blue arrows indicate
transitions with positive rewards.
doi:10.1371/journal.pone.0002756.g002

Memory Systems

PLoS ONE | www.plosone.org 3 July 2008 | Volume 3 | Issue 7 | e2756

For instance, the following stream might occur: 2-A-Z-B-Y-1-C-Z-

B-Y-C-X-A-X-…. First a digit 1 or 2 is presented, then two, four,

six, or eight letters are presented, one at a time, alternately drawn

from the sets {A, B, C} and {X, Y, Z}. In this task, the agent is to

make a response when a target sequence appears, where the target

sequence depends on whether a 1 or a 2 most recently occurred in

the string. If a 1 most recently occurred, the agent should respond

to an X if immediately preceded by an A (e.g. the final symbol in

the example string above). If the most recent digit was a 2, the

agent should respond to a Y preceded by a B (e.g. the fifth symbol

in the example above). The probability of a target sequence

appearing as a letter pair in the sequence is 0.5, although the

results of the analysis are independent of this probability.

In this task, when observing an X or a Y, the agent must recall

both which digit was most recently shown as well as the identity of

the preceding symbol in order to act optimally.

Other Tasks. The six tasks simulated and fully described in

[4] will also be analyzed: spatial alternation, tone-cued alternation,

spatial sequence disambiguation, odor sequence disambiguation,

non-matching to position, and non-matching to lever. The spatial

and tone-cued alternation tasks are essentially identical to the

simplified tasks described above, differing only in their greater

number of ambiguous states and their longer side paths. The

spatial sequence disambiguation task is similar to the sequence

disambiguation task analyzed in Appendix S2 and involves two

sequences of states with overlap in one or more ambiguous

observations. In the odor sequence disambiguation task, the agent

is presented with pairs of odors it can freely sample (sniff at) before

selecting one as a response. There are two sequences of correct

odors which overlap in the middle two odors. The choice point is

the final pair of odors, where the agent must recall which sequence

is being presented. Finally, in the non-match to position and non-

match to lever tasks, the agent is first forced to enter one of two

positions or press one of two levers. Then both positions or levers

are made available and the agent is rewarded for selecting the

position or lever that was not available during the first stage.

Figure 3. Observed cued alternation task. This shows the structure
of the cued alternation task as observed by the agent. Starting at red or
blue, one of the two cues green or cyan is randomly selected and the
agent can enter either the yellow or magenta observations, before
returning to the bottom for another trial. Transition arrows colored
magenta indicate transitions that may provide either positive or
negative rewards (depending on whether the agent has alternated or
has selected the same response for the current cue).
doi:10.1371/journal.pone.0002756.g003

Figure 4. Underlying state-space of the cued alternation task. Each quadrant consists of eight states which differ only in the connections into
the red and blue states and out of the yellow and magenta states. The quadrants are identified by letter pairs that correspond to the rewarded
actions in each type of trial in the original task. The pair (L,R), for instance, means that if the green or cyan stimulus were presented, the agent would
be rewarded for selecting the ‘‘L’’ or ‘‘R’’ action, respectively. Red arrows indicate transitions producing negative rewards; blue arrows indicate
transitions with positive rewards.
doi:10.1371/journal.pone.0002756.g004

Memory Systems

PLoS ONE | www.plosone.org 4 July 2008 | Volume 3 | Issue 7 | e2756

Results

Working Memory Analysis
By working memory [25,26] we mean the capacity for the agent

to hold onto an experienced observation over a number of steps

(the definition used in the behavioral simulations in [4,8–10]). In

this case, the agent’s policy-state at time t, pt, is a triple pt = (ot, ot2i,

i) consisting of its current observation ot and the observation ot2i

that was present when the agent last took its ‘‘hold in working

memory’’ action, i steps earlier.

An agent or animal that does not have access to the age of a

memory (the number of steps it has been held in working memory)

may not be able to fully take advantage of the disambiguation

information that we will discuss in detail below. This information

is not always required, however, as demonstrated by successful

working memory simulations that have not included it [4,8–10].

We will return to this in the Discussion section.
Example: Alternation. Consider the 8 state, 5 observation

alternation task shown in Figures 1 and 2. The states in TS are

labeled with vector identifiers (e1, e2, etc.), and color-coded

according to their identity in O (e.g. A(e2) = A(e6) = green). The

goal of the task is for the agent to alternate its response on every

visit to the choice point (green states). For example, it should

always make a ‘‘right’’ response at e2 and a ‘‘left’’ response at e6.

It is clear that the resulting state and reward from taking a given

action in state e2 are not the same as those when taking the same

action in state e6. When observing green, the agent cannot learn

which is the optimal action to take. However, certain observations

in the paths leading into green always predict the agent’s current

state. If the agent has held its previous observation in working

memory, its policy-state will either be (green, red, 1) or (green,

blue, 1). For instance, if the policy state is (green, red, 1), then the

agent must be at e2, as is clear in Figure 2. Thus,

pt~ green,red,1ð Þst~e2:

This is made most clear by explicitly listing the paths that can

lead into a green state, shown in Figure 5. We see that the agent

has policy-states that indirectly come to represent the true

underlying states, thus disambiguating an observation. When that

happens, the Markov property of a particular aliased state is

restored, as just demonstrated. In such a case, working memory

allows the agent to learn a policy that more closely relates to the

underlying MDP, at least at a single observation.

This result is intuitively clear and, of course, can be determined

simply by inspection of the state space for small tasks like the

present example. Our goal in what follows is to formalize and

automate the process of determining when an observation is

disambiguated by working memory and then to extend this to the

somewhat more complex case of CASR memory.

In order to concisely express the disambiguation results from

above, we write a disambiguation matrix W for the observation

green. There will be one column in this matrix for each state aliased

to green and one row for each observation that may be held in

working memory from one step earlier. To specifically indicate that

we are considering observations from one step into the past, we refer

to the matrix as W1[green]. We can write the results above as

W1 green½ �~
1 0

0 1

� �
:

The first column corresponds to e2 and the second to e6. The

first row corresponds to red and the second row to blue. A nonzero

entry in the row corresponding to observation o and the column

corresponding to s indicates that the agent can be in state s given

that o is in working memory from one step earlier. If the entry

equals zero, the agent cannot be in s when o is in working memory

from the previous step.

We can derive this from the aliasing function A and the Markov

chain N of this task, calculated as described in the Methods (or by

inspection of Figure 1). N describes the potential transitions

between states in the task.

N~

0 1 0 0 0 0 0 0

0 0 0:5 0:5 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0:5 0:5

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

From this we want to calculate W1[o] for some number of steps i

and some observation o. The columns of W1[o] correspond to

states A21(o) (the states aliased to o). Each row corresponds to an

observation that can occur i steps before o. Notice that in the

present case, this matrix is a submatrix of N. Dropping all columns

except the second and sixth (for states e2 and e6), and all rows

except e1 (red) and e5 (blue) gives W1[green] from above, as

indicated by the bold elements in the matrix above.

To automate the finding of these observations, we begin with a

vector representation of the states aliased to o: v~
P

e[A{1 oð Þ e,

where the nonzero entries correspond to states aliased to o. Letting

Nrev be the time reverse of N, we calculate the new vector

v0~vNi
rev, where the nonzero entries correspond to states exactly i

steps before the states in A21(o).

Figure 5. Possible paths in the 5-state alternation task leading
from one green state to another. This set of possible paths is the
set of possible CASR memories the agent may retrieve from a green
cue. In this case, both the second and the third observations that occur
in every possible path predict which of e2 or e6 the agent will next enter.
doi:10.1371/journal.pone.0002756.g005

Memory Systems

PLoS ONE | www.plosone.org 5 July 2008 | Volume 3 | Issue 7 | e2756

In the present example, v = (e2+e6), and

Nrev~

0 0 0:5 0 0 0 0:5 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0:5 0 0 0 0:5

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

So v9 = vNrev = (1 0 0 0 1 0 0 0). We see that states e1 (red) and e5

(blue) precede green states. Thus the rows of W1[green] will

correspond to red and blue.

We form a matrix R{
i to hold this intermediate computation

and to group the states that can occur i steps before states A21(o)

by the observations they are aliased to. We can then left-multiply N

by R{
i to extract only the rows of interest. In the present example,

R{
i will have two rows: R{

i ~
e1

e5

� �
. If multiple states in v9 were

aliased to the same observation, the appropriate row in R{
i would

be the average of the state vectors (see W2[green] below). We write

this formally by using the aliasing matrix A to transform state

vectors to their corresponding observation vectors:

R{
i ~ADiag v0ð Þ where Diag(v9) is a matrix that is all zeros, except

along the diagonal where it has the elements of v9. Note that the

rows of R{
i need to be normalized after this step so that they

remain probabilities and the rows that are all zeros can be dropped

for conciseness.

Similarly, we want to keep only the second and sixth columns.

We do so by right-multiplying N by a matrix C with two columns,

C~ eT
2 eT

6

� �
.

Together, this yields

W1 green½ �~R{
1 NC~

e1

e5

 !
N eT

2 eT
6

� �

~
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

 !

0 1 0 0 0 0 0 0

0 0 0:5 0:5 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0:5 0:5

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

0 0

1 0

0 0

0 0

0 0

0 1

0 0

0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

~
1 0

0 1

 !
:

Thus, this mathematical process provides the disambiguation

matrix discussed earlier. Notice that this disambiguation is policy

independent. By the very structure of the task, working memory

can always provide sufficient information to disambiguate the two

aliased states, though a policy need not take advantage of this fact.

We can similarly find Wi[green] for other values of i:

W2 green½ �~R{
2 N2C

~
e3ze7ð Þ=2

e4ze8ð Þ=2

 !
N2 eT

2 eT
6

� �

~
1 0

0 1

 !
,

where the rows correspond to yellow and magenta. The rows of

R{
2 are averages of vectors because, e.g., a yellow observation in

working memory might have been either state e3 or e7 (Appendix

S1 shows that any linear combination with nonzero coefficients of

the vectors produces equivalent results).

W3 green½ �~R{
3 N3C

~ e2ze6ð Þ=2ð ÞN3 eT
2 eT

6

� �
~ 0:5 0:5ð Þ

Calculating Wi[green] for i.3 shows that elements held in

working memory for more than two steps in this task provide no

disambiguation.

Consider also W0~R{
0 N0C~R{

0 IC~R{
0 C. R{

0 corresponds

to a single observation so R{
0 will be a single row. If C is a single

column (i.e. the state is not aliased), then R{
0 ~CT so W0 = 1.

Otherwise W0 is a row vector with |A21(green)| elements all equal

to 1/|A21(green)|. For instance,

W0 green½ �~R{
0 N0C

~ e2ze6ð Þ=2ð ÞI eT
2 eT

6

� �
~ 0:5 0:5ð Þ:

Example: Cued Alternation. Next we examine a more

complex task. This task, cued alternation, is a simplified version of

the task initially described in [4]. The environment has 6

observations (shown in Figure 3) with 32 total states (see Figure 4).

The goal of this task is for the agent to learn two concurrent

alternations, alternating separately for green and cyan cues. For

convenience we call the two actions ‘‘L’’ and ‘‘R’’. There are

essentially four ‘‘trial types’’ in the task. At any given time, the

green cue might require the ‘‘L’’ action (for which there are two

possibilities: one where the cyan cue requires the ‘‘L’’ action and

another where cyan requires ‘‘R’’) or green may require the ‘‘R’’

action (for which there are two other possibilities), see Figure 4.

We write the possibilities as, for example, (R,L), indicating green

requiring ‘‘R’’ and cyan ‘‘L’’.

For the purposes of this example, we are interested in whether

the agent can distinguish between green states requiring ‘‘L’’ vs.

‘‘R’’ responses (a similar analysis is possible for cyan states). Thus

the agent, at a green state, should distinguish (L,R) from (R,R), but

not from (L,L), which is behaviorally equivalent. We will see how

this is taken into account when constructing the matrix C below.

The transition matrix for this task is a pair of unwieldy 32-by-32

matrices that are not included here.

For working memory held over one step, we again set R{
1 based

on the states that transition into green states. As Figure 4 shows,

Memory Systems

PLoS ONE | www.plosone.org 6 July 2008 | Volume 3 | Issue 7 | e2756

there are four red and four blue states that transition into green.

However, states e9 and e18 cannot be occupied except possibly on

the first step of a task if the agent begins at them, because they

have no incoming transitions. R{
1 reflects the states the agent may

have just occupied, so in general the agent will not have been at e9

or e18 and so they will be omitted. Thus:

R{
1 ~

e1ze17ze25ð Þ=3

e2ze10ze26ð Þ=3

� �
:

For the analysis of two steps while holding an observation in

working memory, we have yellow and magenta rows:

R{
2 ~

e5ze7ze13ze15ze21ze23ze29ze31ð Þ=8

e6ze8ze14ze16ze22ze24ze30ze32ð Þ=8

� �
:

C is based on A21(green):

C0~ eT
3 eT

11 eT
19 eT

27

� �
:

However, recall that green states in (L,R) and (L,L) trials are

considered equivalent (disambiguating them is task-irrelevant as

mentioned earlier), as are (R,R) and (R,L). Since columns give the

probabilities of being in the respective states, we can simply sum

columns to lump states together. We use

C~ eT
3 zeT

19 eT
11zeT

27

� �
:

From these we can find

W1 green½ �~R{
1 NC~

1 0:5

0:5 1

� �
,

W2 green½ �~R{
2 N2C~

0:375 0:125

0:125 0:375

� �
:

Notice that the rows do not sum to 1 here. This occurs because,

unlike in the previous example, green here is not a ‘‘bottleneck’’;

the agent may enter the cyan observation instead of green. Since

we are currently only interested in the green states, we can simply

normalize the row sums to more easily see the relative

probabilities.

W1 green½ �~ 0:�66 0:�33

0:�33 0:�66

 !

W2 green½ �’~
0:75 0:25

0:25 0:75

� �

We see that W1[green] fails to fully disambiguate any state.

W2[green] is halfway between perfect disambiguation and chance

level. It is beyond the scope of this analysis to determine in detail

what effect on behavior this imperfect disambiguation might

produce. However, simulations of this task [4] did show that an

agent with only working memory was able to maintain a level of

performance intermediate between chance and perfect, correctly

responding approximately 2/3 of the time as W1[green] would

predict. This suggests that future work might further elucidate a

more general connection between Ei, Wi, and performance level.

W1[green] for i.2 also produce no disambiguation. We will see

later that CASR memory, on the other hand, does provide

disambiguation in this task.

Working Memory Summary. Given a matrix N describing

the transitions available to the agent and an aliasing function

A:TORTS, we can ask if the structure of N and A allows working

memory to disambiguate the different states mapping to some

particular observation oMTO.

The two steps as performed above are: 1. Find matrices R{
i and

C. 2. Find the product R{
i NiC.

First, letting v~
P

e[A{1 oð Þ e, we calculate v0~vNi
rev and then

R{
i ~ADiag v0ð Þ, dropping the rows that equal zero and

normalizing the other rows. There is one nonzero row in R{
i

for each observation found i steps before the starting states,

averaged across each state in the preimage of the observations.

There is one column in C for each state in A21(o). For simple tasks,

R{
i can be determined by inspection of the Markov chain by

identifying the states from which o is reachable in i steps (i.e. it

represents the states i steps backward from o).

Optionally, at this point, the decision should be made regarding

which state disambiguations are important and C altered

appropriately by summing columns. Skipping this step considers

all possible distinctions.

Finally, the product Wi o½ �~R{
i NiC is the disambiguation

matrix, which essentially is a submatrix of Ni where certain rows or

columns may have been linearly combined.

This submatrix summarizes the chain leading from states in R{
i ,

through i steps, up to the states aliased to the agent’s current state

C. So, if row r and column c of the matrix is 0, then the agent

cannot arrive at state c if the agent’s working memory contains r

from i steps earlier.

Content-Addressable, Sequential Retrieval Memory
Analysis

Episodic memory is a form of memory that, in humans, is

described as long-lasting and allows a person to recall spescific

autobiographical events [16]. Based on an earlier neural network

model of the hippocampus in which episodic memories were

retrieved on every time step [15], an abstract model of episodic

memory has been proposed and simulated in [4]. Here we refer to

this as a content-addressable, sequential retrieval (CASR) memory

system and assume it is ideal (noiseless and of infinite capacity),

containing a copy of the agent’s entire history of observations. This

CASR memory system allows an agent to retrieve a sequence of

observations from its history, beginning with the time at which the

agent last visited its current observation (called the retrieval cue;

although the analysis can be extended so that any observation can

be used as a cue, to do so is outside the scope of the current paper

and will be described in a later publication). In practice, this means

that an agent can select different actions depending on the path it

last followed after its previous visit to a state that looked like its

current observation. The agent’s policy-state with CASR memory

is a triple pt = (ot, e, i) of its current observation and the observation

it currently has in CASR memory (if any), as well as the number of

time it has taken its ‘‘advance retrieval’’ action since it last cued

CASR retrieval.

An important aspect of this analysis as presented here is that

only the agent’s current observation can be used as a retrieval cue,

as simulated previously [4,15]. It is straightforward but outside the

scope of this manuscript to modify the following analysis so that

any observation can be used as a retrieval cue.

Memory Systems

PLoS ONE | www.plosone.org 7 July 2008 | Volume 3 | Issue 7 | e2756

In many ways this analysis is similar to that for working

memory. There is a symmetry in the two analyses shown in

Figure 6.

We begin our consideration of CASR memory with a somewhat

general discussion that will use the alternation task as an example

(see Figure 2). This will be followed by analysis of one more

example tasks (see Appendix S2 in the supporting material for a

third worked-out example).

Example: Alternation. In Figure 5 are shown all of the

possible paths that can take the agent from one green state back to

another (possibly the same) green state in the alternation task. These

are the possible CASR memories the agent can replay from a green

retrieval cue. There are only two unique CASR memories:

(greenRyellowRredRgreen) and (greenRmagentaRblueRgreen),

and each corresponds to two different paths in the state

space.

While observing green, suppose the agent cues CASR memory.

If the agent takes the ‘‘advance retrieval’’ action once, only a

subset of observations in TO can possibly be retrieved. These are

the observations reachable in one step by actions leading out of

states A21(green) = {e2, e6}, which correspond to the non-zero

entries in the vector resulting from the product (e2+e6)N (i.e. the

sum of the second and sixth rows of N). As clear from Figure 2 or

from N itself, this yields the four states {e3, e4, e7, e8}, aliased to

observations yellow and magenta.

We may ask if having experienced any one of these observations

forces the agent’s state to be either e2 or e6 on its next visit to a

green state. More generally, let the agent be observing oMTO. By

the structure of T, does knowing that the previous episode began

with the sequence oRoaRob… provide information as to which

state the agent might be in?

An easy way of determining this is to make a new Markov chain

Nabs with both e2 and e6 (more generally, states A21(o)) set as

absorbing states and see if one, both, or neither of these two

absorbing states are reachable from each state in the chain.

Nabs~

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

From this, we can use a straightforward tool in Markov chain

theory, the absorption probability matrix B [17]. B is the matrix

where B(r,c) is the probability that the chain will absorb in c when

starting from state r. To find B, the absorbing rows of Nabs are first

discarded. The columns of the remaining rows are divided up into

one matrix Q of columns corresponding to transient states and one

matrix R of the absorbing state columns (not to be confused with

the unrelated matrices R{
i and Rz

j we use elsewhere). Then:

B~ I{Qð Þ{1
R: ð2Þ

This is the absorption probabilities only for transient states. For

our definition, the matrix B must then have the absorbing rows

Figure 6. Comparison of the CASR memory and working memory analyses. The possible 5-state alternation paths are shown again, but
altered to demonstrate that the paths may be of differing lengths and that there may be many possible paths. A symmetry of the two memory
systems is demonstrated by the complimentary way they depend on information from the beginning and end of episodes. A. In the case of CASR
memory, observations in each possible episode are examined from the left end of the sequence. These observations correspond to paths out of the
observation to be disambiguated. B. With working memory, observations are examined from the right end of the sequence, corresponding to paths
leading into the observations to be disambiguated.
doi:10.1371/journal.pone.0002756.g006

Memory Systems

PLoS ONE | www.plosone.org 8 July 2008 | Volume 3 | Issue 7 | e2756

that were removed put back in place (restricted only to the

columns used) so that all states are included.

B~

1 0

1 0

1 0

0 1

0 1

0 1

1 0

0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Starting from each state, we see that the agent will eventually be

found at either e2 or e6 and that this is deterministic in that, e.g.,

starting from one of the states {e1, e2, e3, e7} (rows 1–3 and 7 in B)

will always result in the agent passing through e2 before e6.

Likewise, starting from one of {e4, e5, e6, e8} will result in the agent

passing through e6 before e2. Compare this result with Figure 5.

This nearly answers our question about the use of CASR

memory in this task. The agent observes that it is in green and

through its CASR memory actions can retrieve the prior episode

which, let us say, begins greenRyellowR… The states aliased to

yellow that are immediately reachable from green are {e3, e7}.

From B we see that e2 is the first state in A21(green) reachable from

both e3 and e7. Thus: if the most recent pass through green was

followed by yellow, the agent must currently be at e2 and cannot be

at e6. The opposite results follow if the prior episode began

greenRmagentaR…, in which case the agent must be in e6 and not

e2. We see that CASR memory has fully disambiguated green.

As in the working memory analysis, this result can be made

clearer by examining only a submatrix of B, removing the

information that is not of interest. Instead of calculating R{
i using

the states i steps before o, we calculate Rz
i with the states i steps

after o. This is done by finding v9 = vN instead of v9 = vNrev.

Proceeding as before, we calculate the disambiguation matrix

E1[green]:

E1 green½ �~Rz
1 B

~
e3ze7ð Þ=2

e4ze8ð Þ=2

 !
B

~
1 0

0 1

 !
:

The first and second rows correspond to yellow and magenta,

respectively, and the columns correspond to states e2 and e6.

When calculating Rz
i for i.1, a slight modification to the above

is appropriate. The observations used in making Rz
1 were based

on the nonzero entries in vN, where v was the sum of the state

vectors aliased to the agent’s current observation. Though one

might expect that Rz
i would be based on vNi, in the present task

this results in a repeating sequence of matrices Rz
i . In this

alternation task, the nonzero entries would correspond to the

sequence of observations {yellow, magenta} for Rz
1 , {red, blue}

for Rz
2 , {green} for Rz

3 , back to {yellow, magenta} for Rz
4 , and

so forth, repeating forever. However, when CASR memory is cued

by a green observation, the retrieved memory begins at the last

visit to a green state and can continue only as far as the agent’s

subsequent visit to green (the present time). So, although vNi gives

the state occupancy probabilities after i steps, there may be states i

steps away that are not actually retrievable. To prevent these from

appearing in v9, vN is used to take the first step out of the retrieval

cue states, but the remaining i21 steps are taken in the chain Nabs,

preventing retrieval past the current time. Combining these gives

v0~vNNi{1
abs .

Example: Cued Alternation. We return again to the cued

alternation task. Let us consider what information one step of

CASR memory provides when used from a green state. We first

find matrices R and C.

Rz
1 here comes, as before, from the states immediately

reachable from green states. Examining Figure 4 easily provides

the information: there are four such yellow states and four such

magenta states.

Rz
1 ~

e5ze13ze21ze29ð Þ=4

e6ze14ze22ze30ð Þ=4

� �

Here we will modify the matrix C used in the working memory

analysis of cued alternation (because B has fewer columns than N,

but we still want to combine the cue states into two columns):

C~

1 0

0 1

1 0

0 1

0
BBB@

1
CCCA:

As in the previous example, we set the green states absorbing to

find Nabs from N, and then calculate E1[green].

E1 green½ �~Rz
1 BC~

1 0

0 1

� �

The rows observations are yellow and magenta, and the first

column corresponds to states e3 and e11, while the second column

corresponds to states e19 and e27.

If we had not combined states in making C, we would have

found

E1 green½ �’~Rz
1 B~

0:5 0 0:5 0

0 0:5 0 0:5

� �

which expresses the same disambiguation information as E1[green],

but in a less clear manner.

In this task we see that CASR memory for a green cue can

disambiguate the agent’s state along the green-relevant dimension,

and the cyan cue can disambiguate the cyan-relevant dimension

(which the reader may verify). So although perfect disambiguation

is impossible (as demonstrated by E9), the disambiguation is

sufficient for performing the task. It is simple to show that for cyan

cues, the second letter in the pair can be disambiguated, but the

first letter cannot. For example, (R,L) and (L,L) cannot be

disambiguated, but they can be distinguished from (R,R) and

(L,R).

The same disambiguation occurs in E2[green].

CASR Memory Summary. Given a matrix N describing the

transitions available to the agent and an aliasing function

A:TORTS, we can ask if the structure of N and A allows CASR

Memory Systems

PLoS ONE | www.plosone.org 9 July 2008 | Volume 3 | Issue 7 | e2756

memory to disambiguate the different states mapping to some

particular observation oMTO.

The three steps as performed above are: 1. Find Rz
i . 2.

Calculate B. 3. Find the product Rz
i B.

Letting v~
P

e[A{1 oð Þ e, we calculate v0~vNNi{1
abs , where Nabs

has states A21(o) set as absorbing. Then Rz
i ~ADiag v0ð Þ. Each

nonzero row in Rz
i corresponds to an observation found i steps

from A21(o), and the value of each row (after normalization) is the

average of the state vectors aliased to the corresponding

observation.

Next we find B. Using Nabs from the previous step, B is

calculated using Equation (2) to identify which of the o states the

agent will visit first when starting at each state in TS.

Finally, the product Ei o½ �~Rz
i B is the disambiguation matrix.

Ei[o] summarizes the chain leading from states in Rz
i , through

arbitrarily many states, up to the states aliased to the agent’s current

state o.

The examples used above had a small number of potential

episodes that could easily be drawn. However, there could be

infinitely many potential episodes and the results would still hold as

long as some ith observation always disambiguates the cue state (for

an ideal CASR memory with infinite capacity), as suggested by

Figure 6A.

This analysis can be extended to allow an arbitrary observation

to be used as a retrieval cue. This results in a slightly different

interpretation of the disambiguation matrix and introduces other

small complexities that depend on the way in which the retrieval

cue is selected. Because all of the tasks considered in this paper can

be solved using only the agent’s current observation as a retrieval

cue, we do not consider this modification any further, but leave it

for a future paper to examine in more detail.

Full Tasks
The analysis was performed on simplified tasks above to provide

short examples, but it can also be performed on larger AMDPs. We

used the algorithm described in Appendix S3 to form AMDPs of the

tasks that were simulated in [4]: spatial alternation, tone-cued

spatial alternation, spatial sequence disambiguation, odor sequence

disambiguation, non-match to position, and non-match to lever.

The implementation of spatial sequence disambiguation

contained 18 states aliased to 11 observations. The observations

were the agent’s spatial coordinates; the states were its coordinates

along with an indication of whether the agent should respond by

going left or right. The observation of interest here was the choice

point at coordinates ‘‘2,2’’. At this state, matrices E3[2,2] and

E4[2.2] were identity matrices, as were W3[2,2] and W4[2,2].

These matrices reflected the two states on the starting arm of this

task: either having recently come from one or the other starting

arm (with working memory) or memory of having recently entered

one or the other starting arm (with CASR memory).

Our implementation of the spatial alternation task [18–20]

contained 18 states aliased to 13 observations. The observations

were the agent’s spatial coordinates; the states were its coordinates

along with an indication of whether the agent last went left or

right. The observation of interest here was the choice point at

coordinates ‘‘2,2’’. At this state, the matrices E1[2,2] through

E5[2,2] were identity matrices, as were matrices W3[2,2] through

W7[2,2]. These both correspond to the 5 state long side arms of

the maze. Memory of either having recently been in one (working

memory) or recently entered one (CASR memory) and not in the

corresponding state on the other arm provide information that

allows the agent to perform alternation.

Our implementation of the cued alternation task contained 72

states aliased to 14 observations. The observations were the agent’s

spatial coordinates and also, only at the choice point ‘‘2,2’’, one of two

cues, selected at random (thus there are actually two choice point

states: one for each cue). The states were the agent’s spatial

coordinates, the most recent tone to have played, and the direction

the agent should go on the subsequent presentation of each tone (for 5

state elements in total). The matrices E1[2,2,cue1] through

E5[2,2,cue,1] were identity matrices (after summing appropriate

columns, as in the earlier example). For no i was Wi[2,2,cue1] was an

identity matrix. Agreeing with the earlier example analysis,

W3[2,2,cue1] through W5[2,2,cue1] were halfway between identity

and chance level.

The non-match to position task [27] comprised 28 states and 10

observations. States were made up of spatial coordinates and an

indication of both the current task stage (sample versus test) and

which response the agent should make at the choice point. The

observations were spatial coordinates, except at the choice point

‘‘3,2’’ where the directions the agent could go were also observed

(corresponding to one arm of the maze being blocked, forcing the

agent to go the other way, or neither being blocked). The

observation of interest was the choice point during the test stage of

the task. In this case, the identity matrices were E6[3,2,LR]

through E8[3,2,LR] and W4[3,2,LR] through W6[3,2,LR] (LR

meaning that neither possible direction was blocked). These

correspond to memory of the choice point and the reward arms

during the sample stage.

The non-match to lever task [28] was somewhat more complex

than the previous three tasks. This task is made up of 30 states and

18 observations. The observation of interest is one of the two lever

states. In the above tasks, the agent was constrained to keep

moving forward and so the agent could not re-enter a state

immediately after leaving it. In the non-match to lever task, the

environment was rectangular so the agent could re-enter a state

just after leaving it. Thus there are many more states that can

immediately precede or follow a given state. Consider matrix

W3[lever1] for this case (with row sums normalized):

W3 lever1½ �~

0:5 0:5

0:5 0:5

0:5 0:5

1 0

0 1

0
BBBBBB@

1
CCCCCCA
:

Of the five states that can occur three steps before a choice

point, three do not disambiguate (three locations in the space

around the levers in the test stage), but two do disambiguate (the

two levers from the sample stage). For larger values of i, Wi[lever1]

shows that, initially, some states continue to disambiguate the

observation of interest, but the disambiguation decreases to chance

over time. With CASR memory, only partial disambiguation is

possible, starting from W4[lever1]:

E4 lever1½ �~

0:5 0:5

0:5 0:5

0:142857 0:857142

0:857142 0:142857

0:5 0:5

0:142857 0:857142

0:857142 0:142857

0:5 0:5

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Memory Systems

PLoS ONE | www.plosone.org 10 July 2008 | Volume 3 | Issue 7 | e2756

The most complex task in [4] was odor sequence disambigu-

ation [29], which comprised 106 states aliased to 42 observations.

In this task, the observations included information as to which of

the 5 pairs of odors in a trial the agent was currently at, which

odor it was currently smelling, as well as its status as to whether the

agent was currently successfully or unsuccessfully attempting to

respond to one of the two odors (four such possibilities) or whether

it is not currently attempting to responding (a fifth possibility).

Observations of interest occur in the final pair of odors (e.g.

observation ‘‘at pair 5, not responding to an odor, not sampling an

odor’’ or (5,0,0)), where the agent must recall which of the two

odor sequences is currently being presented. Here, disambiguation

is first provided by matrices E5[5,0,0] and W7[5,0,0]. One example

matrix is shown below.

E5 5,0,0½ �~

0 1

1 0

0:5 0:5

0:5 0:5

0:5 0:5

0:5 0:5

0:5 0:5

0:5 0:5

0 1

0:5 0:5

1 0

0:5 0:5

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

Of the twelve observations that can occur five steps after (5,0,0),

four of them provide disambiguation. These four observations are

the possibilities of successfully or unsuccessfully digging in one of

the two scented cups.

These results are briefly summarized in Table 1.

Working Memory of Multiple Observations
The CASR memory and working memory analyses above can

be used as a basis for analyses considering more complex

combinations and strategies using memory systems. We present

one example: an analysis of the case where more than one item

must be held in working memory to fully disambiguate an

observation. This is motivated by human working memory tasks,

which are often more complex in requiring that a subject hold

more than one item in working memory at a time [30].

In both the 2-back and the 1-2-AX task, disambiguation of an

observation depends on simultaneous working memory of items

from multiple time points in the past, e.g. times t2i, t2j, … We

desire a generalization of the earlier analysis to form a matrix Wi,j,…

reflecting this multi-item disambiguation. For instance, in the 2-

back task where items from both of the two previous time steps we

expect that matrix W1,2 should provide complete disambiguation.

Whereas each row of Wi corresponded to a single observation

from which the observation of interest is reachable in i steps, each

row of Wi,j corresponds to a pair of observations, one found i steps

before the observation of interest and the other found j steps

before. Thus if there are ri rows in Wi and rj rows in Wj, there are

rirj rows in Wi,j. However, Wi,j still has the same number of

columns as Wi and Wj.

For convenience, let Oi(ra) be the observation corresponding to row

ra in Wi and Si(c) be the state corresponding to column c in Wi.

Consider the entry Wi(ra,c). If this entry is zero, then memory of

observation Oi(ra) held over i steps means the agent cannot possibly be

in state Si(c). If the product Wi(ra,c)Wj(rb,c) = 0, then from one or both

of the matrices we know that the agent cannot be in state Si(c). We can

form a row vector of these products for each column by taking the

Hadamard (element-wise) product of rows Wi(ra,N) and Wj(rb,N).
We define Wi,j,k,…, i#j#k#…, to be the matrix composed of all

such row vectors (the Hadamard products of one row vector taken

from each of Wi, Wj, …). This is the Khatri-Rao product of

matrices Wi,Wj,… with each column as a separate partition,

written Wi,j = Wi * Wj * …, and can be formally defined as the

partition-wise Kronecker product of Wi and Wj [31,32].

This gives us the final form for the disambiguation matrix

representing the holding of multiple items in working memory:

Wi,j,k,... o½ �~Wi o½ �j o½ �k o½ �1 � � � ð3Þ

Example: 2-Back. The 2-back task consists of 4 observations

(cues) and 36 states (AMDP generated from a simulation of the

Table 1. Disambiguation results for all analyzed tasks.

Task Working memory disambiguation Wi[choice point] CASR memory disambiguation Ej[choice point]

Simplified Alternation full (i = 1,2) full (j = 1,2)

Spatial Alternation full (3#i#7) full (1#j#5)

Simplified Cued Alternation — full (j = 1,2)

Cued Spatial Alternation — full (1#j#5)

Non-Match to Position full (4#i#6) full (6#j#8)

Non-Match to Lever full (i = 3), decreasing for i.3 —

Spatial Sequence Disambiguation full (i = 3,4) full (j = 3,4)

Simplified Sequence Disambiguation full (i = 1) full (j = 2)

Odor Sequence Disambiguation full (i = 7), decreasing for i.7 full (j = 5), decreasing for j.5

2-Back semi (1#i#3) semi (j.1)

1-2-AX semi (i = {1,2,4,6}) —

Full disambiguation (e.g. an identity matrix) implies that an agent or animal using the given memory system should be able to perform the task perfectly. The
performance of an agent at a state that is semi-disambiguated (defined as at least some zero entries appearing in a nonzero row in the matrix) should be suboptimal or
even very poor, as the agent will not have sufficient information to make the correct decisions at the choice points.
doi:10.1371/journal.pone.0002756.t001

Memory Systems

PLoS ONE | www.plosone.org 11 July 2008 | Volume 3 | Issue 7 | e2756

task per Appendix S3). Each state is an ordered triple of the

current and past two cues, e.g. (A,B,C) if cue A was followed by

cue B and then cue C. When generating sequences, a given cue

can not occur twice in a row, so for any one of the 4 observations,

there are 3 observations that can precede it and 3 possible

observations that can occur two steps previously, for 36 possible

states. States are aliased so that only the final element in the list

(the current cue) is observed, so the preimage of each observation

contains 9 states. It is these states which must be disambiguated

from each other. Without loss of generality, we can select cue A as

the observation of interest.

Let us consider single-item working memory matrices first.

W1 A½ �~
0 0:1 0 0:45 0 0 0 0 0:45

0 0 0:1 0 0:45 0 0:45 0 0

0:1 0 0 0 0 0:45 0 0:45 0

0
B@

1
CA

W2 A½ �~

0:3 0:3 0:3 0 0 0 0 0 0

0 0 0 0 0 0:5 0:5 0 0

0 0 0 0 0 0 0 0:5 0:5

0 0 0 0:5 0:5 0 0 0 0

0
BBB@

1
CCCA

The rows in W2[A] correspond, respectively, to cues A, B, C,

and D. The rows in W1[A] correspond to cues B through D. The

first three of the nine columns correspond to the matching

conditions (when an A was presented two steps earlier). The last six

columns correspond to the non-matching conditions.

Although both W1[A] and W2[A] provide partial disambigua-

tion, none of the nine columns are fully disambiguated. Consider,

however, W1,2[A].

W1,2 A½ �~W1 A½ � �W2 A½ �~

0 0:03 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0:225

0 0 0 0:225 0 0 0 0 0

0 0 0:03 0 0 0 0 0 0

0 0 0 0 0 0 0:225 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0:225 0 0 0 0

0:03 0 0 0 0 0 0 0 0

0 0 0 0 0 0:225 0 0 0

0 0 0 0 0 0 0:225 0 0

0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

The first row is the Hadamard product of the first rows of W1[A]

and W2[A]. The second row is the Hadamard product of the first

row of W1[A] and the second row of W2[A], and so forth.

Now each state is completely disambiguated. In this case,

examining the values of Wi,j[A] for various i, j suggests that it is

only W1,2[A] that provides perfect disambiguation.

Notice also that there are three rows that equal the 0 vector.

These correspond to memories that never occur in the task

(recalling the same cue from both 1 and 2 steps into the past).

Example: 1-2-AX. The 1-2-AX task comprises 8 possible

observations (1, 2, A, B, C, X, Y, Z) and 38 states (AMDP

generated from a simulation of the task per Appendix S3). The

states include the current observation, an indication of whether the

most recent digit was 1 or 2, and the identity of which of the 9

letter pairs is being presented (i.e. if an X is presented, the possible

letter pairs are (A,X), (B,X), and (C,X)).

Again, let us begin by examining a few working memory

disambiguation matrices. Our observation of interest will be the

letter X.

W0 X½ �~ 0:16 0:16 0:16 0:16 0:16 0:16
� �

W1 X½ �~
0:5 0 0 0:5 0 0

0 0:5 0 0 0:5 0

0 0 0:5 0 0 0:5

0
B@

1
CA

W2 X½ �~

0:75 0:125 0:125 0 0 0

0 0 0 0:75 0:125 0:125

0:36 0:06 0:06 0:36 0:06 0:06

0:36 0:06 0:06 0:36 0:06 0:06

0:36 0:06 0:06 0:36 0:06 0:06

0
BBBBBB@

1
CCCCCCA

The rows in W1 correspond to A, B, and C (the observations

that can precede X). The rows in W2 correspond, respectively, to

1, 2, X, Y, and Z. The first three columns in both matrices

correspond to sequences beginning with a 1, the final three

columns correspond to sequences starting with 2. The first and

fourth columns correspond to an A immediately preceding an X,

the second and fifth correspond to a B preceding an X, and the

third and sixth to a C preceding an X.

W1,2 X½ �~W1 X½ � �W2 X½ �~

0:375 0 0 0 0 0

0 0 0 0:375 0 0

0:183 0 0 0:183 0 0

0:183 0 0 0:183 0 0

0:183 0 0 0:183 0 0

0 0:0625 0 0 0 0

0 0 0 0 0:0625 0

0 0:03 0 0 0:03 0

0 0:03 0 0 0:03 0

0 0:03 0 0 0:03 0

0 0 0:0625 0 0 0

0 0 0 0 0 0:0625

0 0 0:03 0 0 0:03

0 0 0:03 0 0 0:03

0 0 0:03 0 0 0:03

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

The first row corresponds to an A preceding an X (from W1[X])

and a 1 preceding the X by two steps (from W2[X]) which, combined

Memory Systems

PLoS ONE | www.plosone.org 12 July 2008 | Volume 3 | Issue 7 | e2756

give the sequence 1-A-X. The second row corresponds to the

sequence 2-A-X. The sixth, seventh, tenth, and eleventh rows

correspond to the sequences 1-B-X, 2-B-X, 1-C-X, and 1-D-X.

Here each column is disambiguated, although there are many

rows that do not perfectly disambiguate the states. Unlike in the 2-

back task, however, in this task W1,2[X] is not the only matrix that

can disambiguate the states. Similar disambiguation results from

W1,4[X] and W1,6[X]. An informative digit can also occur eight steps

before an X, so W1,8[X] should provide complete disambiguation.

However, consider the valid sequence 1AX2BY2AX. The 1 is eight

steps before the final X, but is from a previous trial: eight is the first

distance at which a digit from an earlier sequence can be hit,

occurring when 2 sequences in a row have only a single pair of

letters. Though the agent may still be able to solve the task, the

structure of the task does not guarantee that the final letter in a nine

item sequence can be disambiguated. Also, perfect disambiguation

is never possible when i.2 because memory of the immediately

preceding stimulus is needed in this task.

Time-Varying Context
On a disambiguation level, brain systems that provide an

ongoing, time-varying context as a function of the agent’s

experienced observations are related to working memory for

multiple items. Formally we define an order-n time-varying

context as a function c:HnRTO where Hn is the sequence of the

n most recently experienced observations. Thus c is some function

mapping the recent history of the agent onto an observation

representing some form sof context. Examples of this type of

system include the temporal context model [33] or queue-like

buffers [34]. We will consider policy-states of the form (current

observations, contextual observation).

At most there can be as many different contexts as there are n-

observation sequences (in practice, only in an environment where

any observation can follow any other would all theoretical

sequences actually be possible). In this case, each context would

uniquely identify (‘‘sum up’’) the current history. So the disambig-

uation of the context would be C0n o½ �~W1 o½ �2 o½ �1 � � �n o½ � (in fact,

this is a conservative calculation, but further details are outside the

scope of this discussion and will be provided in a subsequent paper).

It is much more likely that certain sets of histories would

produce the same contextual observation, i.e. c(H1) = c(H2) for two

histories H1?N2. The context function acts as an aliasing map on

the history of the agent: it combines rows of C0n o½ � in the same way

that the matrices R{
i and Rz

j combine rows in Wi[o] and Ej[o],

respectively. Representing the aliasing given by function c in a

matrix Cc lets us write the disambiguation matrix

Cn o,c½ �~CcC0n o½ �.
It is clear that time-varying contextual information can provide

disambiguation of an observation. It is important to emphasize,

though, that not every memory system can do so. The following

section gives an example of a form of memory that never

disambiguates observations.

Discussion

We have demonstrated a simple process for calculating matrices

that reveal structural information about a given AMDP and are

derived to represent and evaluate the memory demands of a wide

range of behavioral tasks. The results of our analyses are

summarized in Tables 1 and 2. These analyses may prove useful

for evaluating the effect of lesions of brain regions on specific

memory mechanisms [20,26,36], and for evaluating how patterns

of neural activity could mediate different mechanisms of memory

function [34]. For instance, the simulation results reported in [4]

agreed with lesion studies and the present analyses support those

simulation results.

It is important to emphasize that the analyses concern the

disambiguation of single observations. Whereas it may be common

to refer to some task as, e.g., a working memory task or as an

operant conditioning task, it is only at particular observations

where memory systems are important for making decisions.

Consider that the entire life of a laboratory animal may be

considered as a single ‘‘task’’, but it would not be right to consider

this task to be a working memory task, or an episodic memory task,

or an operant conditioning task, etc. Nevertheless, for tasks that

have only a single choice point (there are many such tasks), the

entire task could be classified simply according to the strategies

useful at the choice point. In this sense, for instance, spatial

alternation can be considered both a working memory task and an

episodic memory task. Further, tasks with multiple choice points

where all the choice points have the same set of useful strategies

(e.g. the cued alternation task considered here) can be similarly

classified according to those strategies.

All of the tasks analyzed in this paper except the 2-back task

have been simulated in previous publications [4,9], showing that

agents can indeed learn tasks that our analysis predicts they should

be able to learn. Unpublished simulations of our own show that

the 2-back task can also be learned in a manner similar to the

methods used in [4].

Although this manuscript has focused on the underlying

structure of tasks, the analysis does suggest a prediction regarding

neural activity of animals performing episodic memory or working

memory tasks. While disambiguation comes in part from the

identity of observations in working memory or CASR memory,

additional disambiguation information is provided by the age of an

item in working memory or the number of steps of CASR memory

retrieved. An immediate prediction of this is that there should be a

neural representation of this information in addition to a

representation of stimulus identity. Successful past simulations of

working memory [4,8–10] have not included this information.

These simulations were successful because the task were solvable

without specifically requiring discrimination based on the age of

an item in working memory (though it is straightforward to

construct ‘‘pathological’’ AMDPs where such information should

be required). However, decisions in the 2-back task do depend

upon the age of an item, so this task should show neural activity

corresponding to the age of the memory. Responding on the basis

of the order of stimulus presentation [35,36] also requires

discrimination of the age of items in working memory.

Physiological data suggests that this discrimination of age may

be provided by a gradual change in neural activity corresponding

to temporal context [33,35].

In addition to the analysis of existing tasks, these and similar

analyses may be useful in the design and evaluation of new tasks.

Table 2. Disambiguation results in multi-item working
memory tasks.

Task Working memory disambiguation Wi,j[choice point]

2-Back full (i = 1, j = 2)

1-2-AX full (i = 1, jM{2,4,6}),

semi (i = 1, j = 8)

Full disambiguation means that an agent or animal using the given memory
system should be able to perform the task perfectly. At a semi-disambiguated
state, the performance of an agent may be suboptimal.
doi:10.1371/journal.pone.0002756.t002

Memory Systems

PLoS ONE | www.plosone.org 13 July 2008 | Volume 3 | Issue 7 | e2756

This is a direction we have not yet thoroughly explored, but two

possible approaches are clear. First, one might design a task using

whatever methods one prefers, then subject the task to these types

of analysis, and finally revise the task based on the results (possibly

applying multiple iterations). To design a task with specific

memory requirements, one might start by writing a set of

disambiguation matrices which one desires that an as-yet-

unknown task will reflect. These would provide a sort of task

skeleton, describing which observations lead to which states

through some specific number of steps. While multiple tasks may

have the same disambiguation matrices, this approach provides

constraints on connectivity which may reduce the complexity of

task design.

The present work only begins to consider the full disambigu-

ation problem. This work will be expanded in the future to address

additional tasks that require an interaction of a number of memory

systems (e.g. the multiple-item working memory example given

earlier). Our CASR memory analysis could also be extended to

consider CASR memory for sequences of observation-action pairs

instead of simply sequences of observations. By taking into account

the specific actions taken by the agent, it is likely that additional

disambiguation would be provided. Additionally, other memory

systems could be analyzed in this framework in the future, for

instance, more complex learned context systems [37].

These analyses have used a set of simple techniques which may

be useful in analyzing additional brain systems, even those

unrelated to the disambiguation problem. Many systems can be

translated into the framework of POMDPs and reinforcement

learning. Procedural memory might be defined simply as an

automatic encoding and playback of sequences of learned actions.

Selective attention in the context of factored observations could be

treated as the ability to select an action depending on only a subset

of the elements in the agent’s current observation (those elements

that are attended to) using additional actions to selectively attend

to or ignore elements of an observation. Sensory memory and

priming could be considered as altering the aliasing function from

the underlying states of a task (raw sensory input) to the

observations on which the agent acts. Theoretical results at even

this abstract level will likely be useful in designing new behavioral

tasks to study memory, in understanding how neural activity may

relate to different strategies that agents or animals can use, and in

designing increasingly physiological models of these systems.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0002756.s001 (0.06 MB

PDF)

Appendix S2

Found at: doi:10.1371/journal.pone.0002756.s002 (0.66 MB

PDF)

Appendix S3

Found at: doi:10.1371/journal.pone.0002756.s003 (0.03 MB

PDF)

Acknowledgments

The authors thank Lisa Giocomo and James Heys for comments on an

earlier draft of this manuscript. We also thank the anonymous reviewers for

their comments and one in particular for suggesting the useful formal

definition of disambiguation matrices given in the Methods section.

Author Contributions

Conceived and designed the experiments: EAZ. Performed the experi-

ments: EAZ. Analyzed the data: EAZ. Wrote the paper: EAZ MH.

References

1. Eichenbaum H, Cohen NJ (2001) From Conditioning to Conscious Recollec-

tion. New York: Oxford University Press.

2. Squire LR (2004) Memory systems of the brain: a brief history and current

perspective. Neurobiol Learn Mem 82(3): 171–7.

3. Schacter DL, Tulving E (1994) Memory systems. Cambridge, MA: The MIT

Press.

4. Zilli EA, Hasselmo ME (2008) Modeling the role of working memory and
episodic memory in behavioral tasks. Hippocampus 18(2): 193–209.

5. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction.
Cambridge: MIT Press.

6. Monahan GE (1982) A survey of Partially Observable Markov Decision

Processes. Mgmt Sci 28: 16.

7. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in

partially observable stochastic domains. Artificial Intelligence 101: 99–134.

8. O’Reilly RC, Frank MJ (2006) Making working memory work: A computational

model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:

283–328.

9. Dayan P (2007) Bilinearity, rules, and prefrontal cortex. Frontiers in

Computational Neuroscience 1: 1.

10. Moustafa AA, Maida AS (2007) Using TD learning to simulate working memory

performance in a model of the prefrontal cortex and basal ganglia. Cognitive

Systems Research 8: 262–281.

11. Fuster JM (1995) Memory in the cerebral cortex. Cambridge, MA: MIT Press.

12. Lisman JE, Fellous JM, Wang XJ (1998) A role for NMDA-receptor channels in
working memory. Nat Neurosci 1: 273–275.

13. Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual

working memory in prefrontal cortex of the macaque. J Neurosci 16: 5154–5167.

14. Zipser D, Kehoe B, Littlewort G, Fuster J (1993) A spiking network model of

short-term active memory. J Neurosci 13(8): 3406–20.

15. Hasselmo ME, Eichenbaum H (2005) Hippocampal mechanisms for the

context-dependent retrieval of episodes. Neural Netw 18: 1172–1190.

16. Tulving E (2002) Episodic memory: From mind to brain. Annu Rev Psychol 53:
1–25.

17. Kemeny JG, Snell JL (1976) Finite Markov chains. New York: Springer-Verlag.

18. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal

neurons encode information about different types of memory episodes occurring
in the same location. Neuron 27: 623–633.

19. Lee I, Griffin AL, Zilli EA, Eichenbaum H, Hasselmo ME (2006) Gradual

translocation of spatial correlates of neural firing in the hippocampus toward

prospective reward locations. Neuron 51: 639–650.

20. Ainge JA, van der Meer MA, Langston RF, Wood ER (2007) Exploring the role

of context-dependent hippocampal activity in spatial alternation behavior.

Hippocampus 17: 988–1002.

21. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J,

Smith EE (1997) Temporal dynamics of brain activation during a working

memory task. Nature 386(6625): 604–8.

22. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, et al. (2000)

Working memory for letters, shapes, and locations: fMRI evidence against

stimulus-based regional organization in human prefrontal cortex. Neuroimage

11(5 Pt 1): 424–46.

23. Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME (2001) Medial temporal

and prefrontal contributions to working memory tasks with novel and familiar

stimuli. Hippocampus 11(4): 337–46.

24. Nestor PG, Faux SF, McCarley RW, Shenton ME, Sands SF (1990)

Measurement of visual sustained attention in schizophrenia using signal

detection analysis and a newly developed computerized CPT task. Schizophr

Res 3(5–6): 329–332.

25. Baddeley AD (1986) Working Memory. Oxford: Clarendon Press.

26. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:

477–485.

27. Griffin AL, Eichenbaum H, Hasselmo ME (2007) Spatial representations of

hippocampal CA1 neurons are modulated by behavioral context in a

hippocampus-dependent memory task. J Neurosci 27: 2416–2423.

28. Hampson RE, Deadwyler SA (1996) Ensemble codes involving hippocampal

neurons are at risk during delayed performance tests. Proc Natl Acad Sci U S A

93: 13487–13493.

29. Agster KL, Fortin NJ, Eichenbaum H (2002) The hippocampus and

disambiguation of overlapping sequences. J Neurosci 22: 5760–5768.

30. Baddeley AD, Hitch G (1974) Working memory. In: Bower GH, ed. The

Psychology of Learning and Motivation: Advances in Research and Theory.

New York: Academic Press. pp 47–89.

31. Khatri CG, Rao CR (1968) Solutions to some functional equations and their

applications to characterization of probability distributions. Sankhya 30:

167–180.

Memory Systems

PLoS ONE | www.plosone.org 14 July 2008 | Volume 3 | Issue 7 | e2756

32. Liu S (1999) Matrix results on the Khatri-Rao and Tracy-Singh products. Linear

Algebra and its Applications 289: 267–277.
33. Howard MW, Fotedar MS, Datey AV, Hasselmo ME (2005) The temporal

context model in spatial navigation and relational learning: toward a common

explanation of medial temporal lobe function across domains. Psychol Rev 112:
75–116.

34. Koene RA, Hasselmo ME (2006) First-in-first-out item replacement in a model
of short-term memory based on persistent spiking. Cereb Cortex 17(8):

1766–1781.

35. Manns JR, Howard MW, Eichenbaum H (2007) Gradual changes in

hippocampal activity support remembering the order of events. Neuron 56:

530–540.

36. Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus

in memory for sequences of events. Nat Neurosci 5: 458–462.

37. Fuhs MC, Touretzky DS (2007) Context learning in the rodent hippocampus.

Neural Computation 19: 3173–3215.

Memory Systems

PLoS ONE | www.plosone.org 15 July 2008 | Volume 3 | Issue 7 | e2756

